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Simple Summary: Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is an impor-
tant approach for the diagnosis and evaluation of breast cancer (BC) in clinical practice. Recently,
DCE-MRI-based radiomics studies have received widespread attention and application in BC re-
search, such as in non-invasively predicting subtypes and recurrence risks. Therefore, we collected
two radiogenomics cohorts of BC and identified and validated three novel imaging subtypes by
unsupervised analysis in this work. In several external datasets, we found that breast tumors with
larger sizes and showing rapid enhancement patterns generally had the worst prognostic outcomes.
The bioinformatics analysis revealed significant differences in gene expression profiling and tumor
microenvironment characteristics among the three imaging subtypes. These findings highlight the
heterogeneity in BC imaging and its potential value as a clinical biomarker for BC and for achieving
precision medicine in BC.

Abstract: Background: This study aimed to reveal the heterogeneity of dynamic contrast-enhanced
magnetic resonance imaging (DCE-MRI) of breast cancer (BC) and identify its prognosis values
and molecular characteristics. Methods: Two radiogenomics cohorts (n = 246) were collected and
tumor regions were segmented semi-automatically. A total of 174 radiomics features were extracted,
and the imaging subtypes were identified and validated by unsupervised analysis. A gene-profile-
based classifier was developed to predict the imaging subtypes. The prognostic differences and
the biological and microenvironment characteristics of subtypes were uncovered by bioinformatics
analysis. Results: Three imaging subtypes were identified and showed high reproducibility. The
subtypes differed remarkably in tumor sizes and enhancement patterns, exhibiting significantly
different disease-free survival (DFS) or overall survival (OS) in the discovery cohort (p = 0.024) and
prognosis datasets (p ranged from <0.0001 to 0.0071). Large sizes and rapidly enhanced tumors usually
had the worst outcomes. Associations were found between imaging subtypes and the established
subtypes or clinical stages (p ranged from <0.001 to 0.011). Imaging subtypes were distinct in cell
cycle and extracellular matrix (ECM)-receptor interaction pathways (false discovery rate, FDR < 0.25)
and different in cellular fractions, such as cancer-associated fibroblasts (p < 0.05). Conclusions: The
imaging subtypes had different clinical outcomes and biological characteristics, which may serve as
potential biomarkers.
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1. Introduction

Breast cancer (BC) has surpassed lung cancer as the most prevalent cancer in the
world, placing a heavy burden on global healthcare each year [1]. The heterogeneity of
BC has been noted in gene expression profiles, histology, and clinical outcomes for a long
time, which have served as the basis of disease classification [2,3]. Based on the gene
expression profile, BC can be defined as five PAM50 intrinsic molecular subtypes, including
luminal-A, luminal-B, HER2-enriched, basal-like, and normal-like [4,5]. In the routine
implementation, various histopathological receptors including estrogen receptor (ER),
progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), and Ki67
are widely used to determine the clinical subtypes of BC, and guide the clinical decision-
making [6,7]. These factors shape the distinct patterns of tumor proliferation, metastasis,
and treatment resistance in patients.

Many studies have been performed to dissect the molecular and clinical heterogeneity
of BC, but that alone is still not enough in the era of personalized medicine. Fortunately,
the development of multi-omics offers the possibility to understand the whole spectrum of
disease, especially using radiomics and radiogenomics, providing an emerging perspective
to characterize a disease noninvasively [8,9]. Radiomics is now gaining increasing attention
in cancer research, by integrating high-throughput quantitative medical imaging features
into clinical decision support systems, such as malignancy diagnosis, clinical parameters
prediction, and prognosis and treatment response prediction [10–18]. For example, a ra-
diomics signature consisting of 24 computed tomography imaging features performed well
in predicting lymph node metastasis in colorectal cancer [18], and recent work showed that
magnetic resonance imaging (MRI) features were associated with the genomic subclones
and could predict the clinical outcomes of BC [19]. In the clinic, various imaging techniques
are applied to diagnose BC, such as ultrasound, mammography, and MRI; among these,
dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) data are widely used
in BC radiomics or radiogenomics studies for their advantages in high quality and three-
dimension resolution. However, most studies focus on uncovering the relationship between
medical imaging features and the molecular or clinical characteristics of the disease, and
few have analyzed the disease heterogeneity in imaging phenotypes from an independent
perspective [19–25].

Although imaging features are important phenotypes, few studies have focused on
disease heterogeneity in radiomics compared to genomics or transcriptomics. In this study,
we hypothesized that imaging features could reflect BC heterogeneity. Therefore, we
recruited two independent radiomics cohorts with both DCE-MRI and RNA-Seq data in
this work, one as the imaging-subtype discovery cohort with 174 samples and the other
as the imaging-subtype validation cohort with 72 samples. The representative imaging
features from tumor regions were extracted to mine the potential imaging subtypes de
novo. We further identified differences in clinical examination, imaging, and prognosis
among the subtypes, and revealed the underlying reasons for this heterogeneity in terms
of transcriptional activity and tumor immune microenvironment. The workflow is shown
in Figure 1. Our findings demonstrated that the imaging subtypes with distinct clinical
and molecular characteristics were reliable and reproducible, and were useful for the
noninvasive prediction of outcome and biological functions of BC in the clinic.
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Figure 1. Workflow of this unsupervised analysis based on DCE-MRI radiomics features in BC
patients. In this study, we took advantage of DCE-MRI techniques and calculated the voxel-based
percentage enhancement (PE) and signal enhancement ratio (SER) maps for each patient. Two
independent radiogenomics cohorts (n = 246) were collected to identify and validate the novel imaging
subtypes. The clinical and biological associations of DCE-MRI subtypes were further investigated.

2. Materials and Methods
2.1. Study Design

This study was designed as a multicentric exploratory study to investigate and validate
the heterogeneity of quantitative DCE-MRI radiomics features in BC and to uncover the po-
tential values in the prognosis of this kind of heterogeneity and the biological mechanisms
behind it (Figure 1). To achieve this goal, an unsupervised analysis pipeline including the
volume-of-interest (VOI) segmentation of tumor lesions, voxel-based percentage enhance-
ment (PE) and signal enhancement ratio (SER) maps calculation, image normalization,
resampling, radiomics feature extraction, and consensus clustering and bioinformatics
analysis was conducted in two independent radiogenomics cohorts. The patients and
technical details are reported below.
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2.2. Radiogenomics Cohorts and Datasets

Two independent radiogenomics cohorts with both DCE-MRI and RNA-Seq data (as
imaging-subtype discovery and validation cohorts, respectively) were recruited. Data from
the imaging-subtype discovery cohort included preoperative T1-weighted DCE-MRI and
RNA-Seq data collected between August 2016 and December 2018 in the local database.
The imaging-subtype validation cohort is a public dataset collected from 4 medical centers,
including the Memorial Sloan Kettering Cancer Center, the Mayo Clinic, the University
of Pittsburgh Medical Center, and the Roswell Park Cancer Institute [26]. The DCE-MRI
data were from the Cancer Imaging Archive (TCIA) and the RNA-seq data were part of
a larger prognosis validation dataset, TCGA-BRCA (n = 1050), from the Cancer Genome
Atlas (TCGA). The inclusion and exclusion criteria are displayed in Figure S1. Finally, the
imaging-subtype discovery and validation cohorts included 174 and 72 patients, respec-
tively. In addition, six external datasets of BC with only gene expression profiles (n = 1443)
were downloaded from the Gene Expression Omnibus (GEO) database, including GSE1456,
GSE3494, GSE7390, GSE20685, GSE25055, and GSE25065, which were used as prognosis
validation datasets in this study.

2.3. Pathological Assessment

The clinical immunohistochemistry (IHC) results of ER, PR, HER2, Ki67 and IHC
subtypes were determined for the patients in the discovery cohort. A patient with ER
positive, HER2 negative, high PR expression (more than 20%), and low Ki67 expression
(less than 20%) was regarded as luminal-A. Luminal-B patients were ER positive, HER2
negative, with low PR expression or high Ki-67 expression, or both ER and HER2 positive.
ER, PR negative, and HER2 positive were HER2-positive, and, finally, patients with all
negative IHC receptors were defined as triple negative BC (TNBC).

2.4. Imaging Parameters

The T1-weighted images were scanned in the axial position and acquired by Siemens
TrioTim 3-Tesla scanner (Siemens Healthcare, Erlangen, Germany) in the imaging-subtype
discovery cohort. The detailed parameters of most images were as follows: flip angle,
10 degrees; echo time, 15.7 ms; repetition time, 423 ms; field of view, 340 × 340 mm; slice
thickness, 0.9 mm; matrix size, 448 × 448 pixels. The patient was injected with gadolinium-
diethylenetriamine pentaacetic acid (Gd-DTPA) in a dose of 0.1 mmol/kg at an amount of
15 mL, and the dynamic sequences were acquired at 6 timepoints, including 1 pre-enhanced
and 5 post-enhanced (from 1 to 4.5 min after enhanced). In the imaging-subtype validation
cohort, the T1-weighted images were obtained by GE scanners on a 1.5-Tesla magnet
strength using a three-dimensional spoiled gradient-echo sequence with a gadolinium-
based contrast agent. The spacing between slices of validation images ranged from 2 to
3 mm, the in-plane resolution ranged from 0.53 to 0.86 mm, the acquisition matrix was
256 × 192, and the flip angle was 10 degrees. The echo time and repetition time were not
available in the validation cohort. The data used from the TCIA database in this study
followed the Data Usage Policies and Restrictions of TCIA [26].

2.5. Tumor Segmentation

Firstly, to correct the motion during dynamic enhancement, the post-contrast images
were registered to the pre-contrast images using the affine registration method. Then, the
threshold segmentation method was used to obtain VOI masks of tumor lesions roughly
from the subtracted images of the first enhanced sequences. Both image registration
and segmentation were performed in the open-source software 3D Slicer. Then, two
radiologists blinded to the clinical information, one with ten years and another with three
years of breast imaging experience, corrected the masks manually and confirmed tumor
masks consensually.
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2.6. Voxel-Based PE and SER Map Calculation

In order to not just extract features from the MR images and explore more radiomics
features by taking advantage of the DCE-MRI technique, we tried to define and calculate
the voxel-based PE and SER maps of VOI based on the signal intensity of each voxel for
each patient in this work, according to the Breast Imaging-Reporting and Data System (BI-
RADS) and some previous studies [27–29]. The N4 bias correction algorithm was applied
to avoid data heterogeneity bias in all the 3T-MR images [30]. Then, the voxel-based PE
maps quantified the relative change in the signal intensity for each voxel before and after
contrast enhancement; voxel-based SER maps can describe the comparison of the signal
intensity for each voxel during the post-contrast period. In this study, DCE-MRI sequences
at four timepoints, including pre-contrast, early, middle, and late post-contrast images,
were used to calculate the PE or SER maps of VOI. The voxel-based early PE map for each
sample was obtained by Equation (1):

PEearly = 100 ×
Iearly − Ipre

Ipre
(1)

where Iearly is the signal intensity of each voxel in the early contrast, and Ipre is the voxel
initial intensity before contrast. The voxel-based SER maps of both middle and late en-
hancement were calculated by Equation (2):

SERmap =
Iearly − Ipre

Imap − Ipre
(2)

where Imap here is the signal intensity of each enhanced voxel in middle or late images.
As mentioned above, the effects of motion between different timepoints were eliminated
because the post-contrast images were already registered on the pre-contrast images. N4
bias correction and the calculation of PE and SER maps were performed in Python 3.5.2.

2.7. Image Preprocessing and Radiomics Feature Extraction

Before feature extraction, images were resampled to a uniform voxel spacing
(1 mm × 1 mm × 1 mm) by the B-Spline method and were normalized as well as remapped
in the histogram to fit within µ± 3σ (µ: mean gray-level within the volume of segmentation;
σ: gray-level standard deviation), as absolute signal intensity values were not necessarily
comparable between scanners. Pyradiomics (version 2.2.0) was used to perform image
normalization, resampling, and radiomics feature extraction [31]. According to the Im-
age Biomarker Standardization Initiative (IBSI), 14 shape features, 18 first-order features,
and 22 gray level co-occurrence matrix (GLCM) texture features were extracted from the
pre-contrast MR images for each patient in this study. Similarly, 18 first-order features
and 22 GLCM texture features were extracted from the early PE, middle SER, and late SER
maps, respectively. In total, 174 radiomics features were calculated and used in this study.
Image preprocessing and feature extraction were all performed in Python 3.5.2.

2.8. Identification and Analysis of Imaging Subtypes

The consensus clustering algorithm was used to identify intrinsic imaging subtypes
in the discovery and validation cohorts [32]. The algorithm first subsamples both items
and features from a data matrix and then clusters them into k classes. The process is
repeated multiple times. The proportion of clustering runs in which two items are grouped
in multiple repetitive clustering, named as pairwise consensus value, is calculated. The
algorithm generates a consensus matrix for a given number of clusters k, which can provide
a quantitative method to estimate the number of unsupervised classes in a dataset.

In this work, we scaled imaging features by z-score and performed a bootstrap pro-
cedure with 10,000 times 80% items and 80% features resampling using the partitioning
around medoids algorithm with Spearman distance metric. By varying the number of
clusters k from 2 to 8, we selected the optimal number of clusters, which generated the
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most stable consensus matrices and the most unambiguous cluster assignments across
clustering runs. The optimal number of intrinsic unsupervised clusters was determined
in the discovery cohort, and the same procedure was performed on the imaging-subtype
validation cohort. Additionally, in-group proportion (IGP) statistical analysis was also used
to demonstrate the reproducibility and reliability of novel subtypes [33]. IGP will be 100%
if the clusters are identical between two datasets and will be 0% conversely.

One-way analysis of variance (ANOVA) and Tukey’s ‘Honest Significant Difference’
test was used to determine imaging features specific to each imaging subtype. The Student’s
t-test was used to compare the significant differences in imaging features between two
imaging subtypes. The 95% confidence interval (CI) was used to assess the differences in
DCE-MRI features of each subtype. Principal component analysis (PCA) was performed to
identify the contribution of imaging features to the novel subtypes.

We applied two-sided Pearson’s chi-squared test or Fisher’s exact test to test the
independence of imaging subtypes from other clinical characteristics, including ER, PR,
HER2, and Ki67, IHC subtypes, PAM50 subtypes, and clinical stages. The consensus
clustering, IGP, and statistical analysis were performed in R 4.0.1.

To explore the relationship between imaging subtypes based on radiomics features and
the parameters of the conventional pharmacokinetic model, we further calculated two key
DCE-MRI quantitative parameters, Ktrans and ve, in the discovery cohort using a population-
averaged arterial input function (AIF)-based Tofts model [34,35]. Ktrans was calculated
by measuring the accumulation of Gd-DTPA-based contrast agent in the extracellular–
extravascular space, and ve was the fractional volume for extracellular space [35]. Statistical
differences in Ktrans and ve between different imaging subtypes were analyzed using
ANOVA and Student’s t-test. The estimation of pharmacokinetic parameters was imple-
mented in 3D Slicer and statistical analysis was performed in R 4.0.1.

2.9. RNA Sequencing and Transcriptomic Analysis

Tumor tissue was collected from 199 patients in the discovery cohort, and the protocols
of total RNA isolation and sequencing are described in the Supplementary Materials.
Trimmomatic was used to control the sequencing quality with the following parameters:
[LEADING:3 TRAILING:5 SLIDINGWINDOW: 4:15 MINLEN:60] [36]. RNA-seq reads
were aligned to human genome 19 by STAR [37] and quantified by HTSeq-Count [38]. The
expression values of 57,773 transcripts were quantified in the forms of both counts and
FPKM (fragments per kilobase of exon per million reads mapped).

We identified PAM50 intrinsic subtypes for the patients in the discovery cohort by
using genefu [39] and performed differential expression analysis between two imaging
subtypes using DESeq2 [40]. Genes with adjusted p-values less than 0.05 were considered
differentially expressed genes (DEGs). ANOVA was used to obtain subtype-specific genes
among three DCE-MRI subtypes. Gene set enrichment analysis (GSEA) was conducted
based on the DEGs to identify the Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways that differ significantly between imaging subtypes with the cutoff of false dis-
covery rate (FDR) less than 0.25 [41,42]. We used CIBERSORT with a BC-specific reference
signature matrix developed from single-cell transcriptome data to characterize the relative
proportion of the 15 cell types, including malignant, fibroblasts, and immune cells, in
bulk RNA-seq data [43,44]. ANOVA was used to determine specific cell types for each
imaging subtype. The Student’s t-test was used to compare the significant differences in
cell proportions between two imaging subtypes. All analysis was performed in R 4.0.1.

2.10. Prognostic Analysis

Kaplan–Meier analysis with the log-rank test was used to assess the differences in
disease-free survival (DFS) or overall survival (OS) among imaging subtypes. Due to the
lack of image data in the external prognosis validation datasets, we established a classifier
using the random forest with default parameters, except the number of trees was set to
2000, to predict imaging subtypes from gene expression profiles according to the imaging
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subtype-specific genes. The micro area under the receiver operating characteristic curve
(AUC) for multi-classification was used to assess classifier performance. The analysis was
performed in R 4.0.1.

3. Results
3.1. Identification and Validation of the DCE-MRI Subtypes

The patient distribution of the two radiogenomics cohorts was not different except
for the PAM50 molecular subtypes (Table 1), which indicated that there was no significant
clinical bias for the patients. Then, we identified three de novo subtypes based on 174 DCE-
MRI radiomics features using consensus clustering in the imaging-subtype discovery cohort
(Figure 2a). The 3-cluster solution corresponded to the largest and optimal cluster number
in the discovery cohort, which induced the least incremental change in the area under the
cumulative distribution function (CDF) curve while keeping the maximal consensus within
clusters and the minimal rate of ambiguity in cluster assignments (Figure 2b). Then, we
independently applied the same analysis procedure on the imaging-subtype validation
cohort, and, interestingly, we observed that samples in the validation cohort were also
clustered into three optimal clusters based on the 174 features, similar to the discovery
cohort (Figure 2c,d). The numbers of sample for imaging subtype 1, subtype 2 and subtype
3 were 50, 62, and 62 in the discovery cohort, respectively, as well as 15, 25, and 32 in the
validation cohort. The reproducibility of the three imaging subtypes across both cohorts
was evaluated by using IGP, resulting in values of 90.91%, 94%, and 90.91% for each subtype
in the validation cohort. In short, the three DCE-MRI subtypes identified in the discovery
cohort were validated in the validation cohort, indicating that these subtypes can reflect
the intrinsic image heterogeneity of BC.

Table 1. Demographics of BC patients in the imaging-subtype discovery and validation cohorts.
The detailed clinical, imaging, and molecular data for the discovery and validation of radiomics
cohorts. The patient distribution of the two cohorts was not different except for the PAM50
molecular subtypes.

Characteristics Discovery Cohort (n = 174) Validation Cohort (n = 72) p-Value

Age, mean (SD) ≤50 years:95/>50 years:79;
49.78 years (9.99)

≤50 years:30/>50 years:42;
53.96 years (11.75) 0.088 a

Histopathology type

0.069 a
Ductal 156 71

Lobular 4 0
Mixed 12 0
Other 2 1

BI-RADS

NA
Category 3 1 NA
Category 4 61 NA
Category 5 103 NA
Category 6 9 NA

IHC receptors
ER status P:127/N:47 P:61/N:11 0.071 a

PR status P:111/N:63 P:55/N:17 0.077 a

HER2 status P:36/N:138 P:14 / N:37/NA:21 0.407 a

Ki67 status high:136/low:38 NA NA

IHC-based subtype
Luminal-A 28 NA NA
Luminal-B 101 NA NA

HER2-positive 15 NA NA
Triple-negative 30 NA NA
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Table 1. Cont.

Characteristics Discovery Cohort (n = 174) Validation Cohort (n = 72) p-Value

PAM50 subtype

<0.001 a

Luminal-A 49 44
Luminal-B 43 9

HER2-Enriched 29 5
Basal-like 43 10

Normal-like 10 4

Pathological stage

0.267 aStage I 55 17
Stage II 94 47
Stage III 25 8

Note: unless otherwise indicated, data are the number of patients or the p-value of the statistical test. a p-value
for the two-sided Pearson’s chi-squared test. SD, standard deviation; P, positive receptor status; N, negative.
BI-RADS, Breast Imaging-Reporting and Data System. NA: not available.
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(a) and validation cohorts (c), the consensus matrix heatmaps for the optimal cluster number (k = 3)
are displayed. Rows and columns of the consensus matrix were samples and values ranging from zero
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to one, indicating the two samples never clustered together or always clustered together, respectively.
The dendrograms above the heatmaps indicate the samples ordering in three subtypes. The cluster
number k varied from 2 to 8, and the optimal k could be determined to be 3 when yielding the
largest relative change in area under the cumulative distribution function (CDF) curves for both the
discovery (b) and validation cohorts (d).

3.2. Imaging Characteristics of the DCE-MRI Subtypes

We examined the difference in imaging features among the DCE-MRI subtypes. The p-
values of ANOVA for each imaging feature in the discovery and validation cohorts are listed
in Table S1. The PCA results indicated that the 58 important imaging features constitute
the heterogeneity of the three imaging subtypes (Figure S2). Remarkably, we found that
tumor shape features, such as surface volume ratio and least axis length, showed extremely
significant differences among the three imaging subtypes in both cohorts (p-value < 0.001,
Figure 3a,b). In the discovery cohort, subtype 1 typically had smaller tumor size (mean
voxel volume [95% CI], 1458.66 mm3 [1306.95–1610.37]) compared to subtypes 2 and 3
(p-value < 0.01), while there was no significant difference in tumor size between subtypes
2 (mean voxel volume [95% CI], 8564.07 mm3 [6950.28–10,177.85]) and 3 (mean voxel
volume [95% CI], 8258.59 mm3 [3846.83–12,670.37]). The imaging features that can reflect
dynamic enhanced characteristics of the tumor, including the medians of early PE and late
SER maps, demonstrated highly significant differences among imaging subtypes in both
cohorts (p-value < 0.05, Figure 3c,d). We found that during dynamic contrast enhancement,
BC samples of subtype 2 showed a pattern of rapid enhancement, while subtypes 1 and
3 showed a generally enhanced pattern. Based on the clinical imaging characteristics,
we respectively defined subtype 1 as small size with generally enhanced pattern tumor
(Figure 3e), subtype 2 as large size with rapidly enhanced pattern tumor (Figure 3f), and
subtype 3 as large size with generally enhanced pattern tumor (Figure 3g).

It was interesting to note that when analyzing the differences in pharmacokinetic
parameters between the three imaging subtypes, we found significant differences in Ktrans

among the imaging subtypes (p-value < 0.01, Figure S3a). Compared to subtypes 1 and 3, BC
patients with subtype 2 had significantly higher Ktrans values (mean value, 0.1867 min−1),
which was consistent with the findings based on the rapid enhancement pattern defined by
quantitative radiomics. Although ve did not differ significantly among the three imaging
subtypes, it was different between subtypes 1 and 2 (p-value < 0.05, Figure S3b).

3.3. Distinct Prognostic Outcomes of the DCE-MRI Subtypes

We found significant DFS differences among the three DCE-MRI subtypes in the
discovery cohort (p-value < 0.05, Figure 4a). To assess the prognostic ability of imaging
subtypes further, we selected 993 subtype-specific genes by one-way ANOVA in the discov-
ery cohort and established the classifier using random forest to predict imaging subtypes
from gene expression profiles. This classifier achieved a moderate multi-classification AUC
with 0.6 in the independent validation cohort for the prediction of imaging subtypes. Then,
we applied the classifier to identify imaging subtypes in six external prognosis validation
datasets which only had gene expression profiles, and found significantly different prog-
nostic outcomes, including DFS and OS, for the imaging subtypes (p-value < 0.01, Figure 4).
Notably, the pattern of outcome in external prognosis validation datasets was consistent
with the imaging-subtype discovery cohort, with subtype 1 showing a favorable prognosis,
subtype 2 having the worst prognosis, and subtype 3 displaying an intermediate prognosis.
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Figure 3. Significant differences in tumor sizes and enhanced patterns shaped the imaging subtypes.
Three subtypes were significantly associated with four representative quantitative imaging features
in both cohorts, including surface volume ratio (a), least axis length (b), early PE map median (c), and
late SER map median (d). ANOVA was used to identify the differences in imaging features among
three subtypes, and Student’s t-test was used for the comparison between two subtypes. The mean
values with 95% CI of the selected imaging feature and the representative sample from the discovery
cohort for each imaging subtype are illustrated in (e–g) (yellow arrows point to the tumors).
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3.4. Associations with the Established BC Subtypes and Clinical Stages

Associations between the novel imaging subtypes and established BC subtypes or
tumor stages in the discovery cohort are detailed in Table 2. We noticed imaging subtypes
were significantly associated with Ki67 status, PAM50 intrinsic molecular subtypes, and
tumor stages (p-value < 0.01). In the discovery cohort, 77.2% of samples with high Ki67
expression belonged to subtype 2 or subtype 3, whereas subtype 1 was more likely to
have a low Ki67 expression (p-value = 0.004, Figure 5a). We also observed that 90% of
TN samples belonged to subtype 2 or subtype 3 (Figure 5b), and a similar distribution
(83.7%) was revealed in basal-like cases (p-value = 0.005, Figure 5c). Remarkably, we found
that the proportion of favorable prognosis for subtype 1 became lower as the tumor stage
increased, while subtypes 2 and 3 with worse prognosis were more prevalent in higher
stage (p-value < 0.001, Figure 5d). High Ki67 expression, TN or basal-like subtype and
high-grade tumor stage were usually regarded as the potential risk factors for clinical
assessment of BC malignancy and poor prognosis. The distinct patterns of clinical outcome
of imaging subtypes were consistent with the associations between the three subtypes and
these risk factors.

Table 2. Differences of established subtypes and clinical stages for DCE-MRI subtypes in the imaging-
subtype discovery cohort. The relationships between three imaging subtypes and established sub-
types of BC, including clinical receptor-based, IHC-based and PAM50-based subtypes, as well as the
clinical stages, were calculated.

Factors Subtype 1
(n = 50)

Subtype 2
(n = 62)

Subtype 3
(n = 62) p-Value

ER status
0.011 aER positive 44 39 44

ER negative 6 23 18

PR status
0.109 aPR positive 37 34 40

PR negative 13 28 22

HER2 status
0.409 aHER2 positive 10 16 10

HER2 negative 40 46 52

Ki67 status
0.004 aKi67 high 31 54 51

Ki67 low 19 8 11

IHC-based subtype

0.051 b
Luminal-A 13 6 9
Luminal-B 31 34 36

HER2-positive 3 8 4
Triple-negative 3 14 13

PAM50 subtype

0.005 b

Luminal-A 19 12 18
Luminal-B 11 19 13

HER2-Enriched 6 16 7
Basal-like 7 15 21

Normal-like 7 0 3

Pathological stage

<0.001 aStage I 28 16 14
Stage II 19 36 39
Stage III 3 13 9

Note: unless otherwise indicated, data are number of patients or the p-value of the statistical test. a p-value for the
two-sided Pearson’s chi-squared test, b p-value for the two-sided Fisher’s exact test.
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Figure 5. Associations of the DCE-MRI subtypes with clinical and pathway characteristics. The chord
diagrams between three imaging subtypes and clinical IHC receptors (a), IHC-based subtypes (b),
PAM50 molecular subtypes (c), and clinical stages (d) in the discovery cohort were described. Venn
diagram of the differentially enriched KEGG pathways between two of three imaging subtypes (e).

3.5. The Differences of Molecular and Microenvironment Characteristics among Imaging Subtypes

We identified 56 different enriched KEGG pathways between subtypes 1 and 2,
4 pathways between subtypes 1 and 3, and 44 between subtypes 2 and 3, respectively,
by gene differential expression analysis and GSEA (FDR < 0.25, Tables S2–S4). These
imaging subtype-associated KEGG pathways included cell cycle, ECM-receptor interaction,
Hedgehog signaling pathway, proteoglycans in cancer, PI3K-Akt signaling pathway, Ras
signaling pathway, and breast cancer. Interestingly, based on the heterogeneity of molecular
pathways, subtype 2 was distant from the other two subtypes, while subtypes 1 and 3
were much closer (Figure 5e). Compared to subtype 1, the cell cycle was significantly
enriched at the bottom in both subtypes 2 and 3 (FDR = 0.0464 and 0.165, Figure 6a,b), while
there was no difference between subtype 2 and subtype 3 (Figure 6c). We also observed
that ECM-receptor interaction was significantly different between imaging subtype 2 and
subtypes 1 and 3 (FDR = 0.055 and 0.1108, Figure 6d,f), while there was no difference be-
tween subtype 1 and subtype 3 (Figure 6e). Notably, the enrichment trend of ECM-receptor
interaction in subtype 2 with a worse prognosis was similar, compared to the subtypes
with slightly better prognosis. The extracellular matrix (ECM) is an essential component of
the tumor microenvironment and plays an important role in tumorigenesis, proliferation,
and metastasis. Therefore, we further estimated the abundance of 15 cell types in the
samples from both discovery and validation cohorts, including malignant, fibroblasts, and
immune cells. Significant differences in the abundance of fibroblasts, proliferating T cells
and macrophages were revealed among three imaging subtypes in the discovery cohort
(p-value < 0.05, Figure 6g–i, Table 3), and interestingly similar trends were also observed in
the independent validation cohort (Figure S4).
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Figure 6. Important enriched KEGG pathways and tumor microenvironment characteristics of
different DCE-MRI subtypes. Detailed differences in representative transcriptional behavior among
three subtypes including cell cycle (a–c) and ECM-receptor interaction (d–f) are illustrated. The
boxplots for the fractions of cancer-associated fibroblasts (g), proliferating T cells (h) and macrophages
(i) among imaging subtypes in both discovery and validation cohorts are displayed. ANOVA was
used to identify the differences in cellular fractions among three subtypes, and Student’s t-test was
used for the comparison between two subtypes.
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Table 3. Immune microenvironment cellular fraction differences of imaging subtypes in the imaging-
subtype discovery cohort. A BC-specific reference signature matrix developed from single-cell
transcriptome data was used to estimate the relative proportion of 15 cell types in the bulk RNA-seq
data. Then, the differences in the cellular fraction of imaging subtypes were assessed.

Cell Types p-Value Subtype 2-1 Subtype 3-1 Subtype 3-2

Malignant cells 0.166 0.141 0.517 0.67
Fibroblasts 5.11 × 10−6 * 2.58 × 10−6 * 0.031* 0.021 *

Proliferating T cells 1.18 × 10−5 * 1.06 × 10−5 * 0.001* 0.416
Cytotoxic T cells NaN NaN NaN NaN

Regulatory T cells 0.738 0.751 0.795 0.996
Naive-like T cells 0.408 1 0.504 0.464

Natural killer cells 0.408 1 0.504 0.464
Neutrophils 0.697 0.848 0.969 0.683
Plasma cells 0.241 0.218 0.759 0.565

Dendritic cells 0.408 0.504 1 0.464
Macrophages 0.011 * 0.013 * 0.773 0.059

Monocytes 0.8 0.911 0.976 0.788
Mast cells 0.408 0.504 1 0.464

B cells 0.704 0.896 0.679 0.91
Transitional T cells 0.884 0.892 0.996 0.923

Note: unless otherwise indicated, data are the p-value of ANOVA or Tukey’s test. * p-value for p-value < 0.05.
NaN: Not a Number.

4. Discussion

In this study, we identified and validated three distinct BC imaging subtypes by using
DCE-MRI features of tumor lesions in two cohorts. The novel BC subtypes had significantly
different tumor sizes and imaging enhancement patterns, as well as clinical outcomes.
Importantly, the independent prognostic value of imaging subtypes was demonstrated
in our discovery cohort, and by using a gene expression-based subtype classifier, we
displayed this value in six external datasets. We further discovered that the imaging
subtypes significantly correlated with Ki67, PAM50 subtypes and clinical stages, and
revealed the biological mechanisms underlying this heterogeneity. Three subtypes not only
differed significantly in their transcriptional activities such as cell cycle and ECM-receptor
interaction KEGG pathways, but also had different microenvironment characteristics,
particularly in the abundance of fibroblasts, proliferating T-cells, and macrophages. In
summary, we revealed BC heterogeneity from a new perspective and uncovered the possible
biological mechanisms, which may be useful for BC clinical decision making.

Tumor size and enhancement patterns were the most representative imaging differ-
ences in our imaging subtypes. As a critical determinant of clinical outcome and staging
system for BC, tumor size is strongly correlated with prognosis, and a larger BC usually
suggests a worse outcome. A tumor with a rapid uptake in the early-enhanced process
of DCE-MRI and a quick washout in the later part of enhancement suggests more malig-
nancy [45–47]. Imaging subtype 2 with larger tumor size, early enhanced rapid pattern
and quickly reduced late pattern (Figures 3b–d and S3a) were significantly associated
with poorer DFS of BC (Figure 4a). Conversely, subtype 1 had the best clinical outcome,
indicating that our findings were consistent with previous studies. More importantly, the
three subtypes displayed high reproducibility (IGP over 90%) in the two cohorts (Figure 2)
and had similar prognostic trends in multiple external datasets (Figure 4).

The heterogeneity of imaging features may arise from the differences in biological
mechanisms. We identified 80 out of 186 KEGG pathways associated with the imaging
subtypes, suggesting a link between DCE-MRI features and transcriptional activities. These
pathways, including cell cycle, ECM-receptor interaction, PI3K-Akt signaling pathway
and homologous recombination, fall into several broad categories involving a variety of
BC-related biological activities such as cellular processes, metabolism, and genetic and en-
vironmental information processing. We found biologically significant differences between
imaging subtype 2 and other subtypes, while subtypes 1 and 3 were more similar. The
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tail-end enrichment of cell cycle and a higher proportion of Ki67 low-expressing patients,
implied a reduced capacity for tumor growth and proliferation in subtype 1, resulting in
smaller tumor size and favorable prognosis. Profound changes in cellular metabolism were
usually a hallmark of malignancy, and subtype 2, which had the worst prognosis displayed
remarkable metabolic disorders compared to other subtypes [48–50]. For example, as a
key oxidative enzyme, cytochrome P450 can metabolize many carcinogens and anticancer
drugs in BC [51]. We discovered that two cytochrome P450-related pathways (metabolism
of xenobiotics by cytochrome P450 and drug metabolism-cytochrome P450) were specific to
subtype 2. Furthermore, although both subtypes 2 and 3 had larger tumor size (Figure 3a,b),
their enhancement patterns were significantly different (Figures 3c,d and S3a). The possible
biological mechanisms for this result could be explained by the fact that subtypes 2 and 3
displayed no difference in cell cycle but had significant differences in many pathways, such
as ECM-receptor interaction and some metabolic pathways. ECM is an essential component
of the tumor microenvironment and plays an important role in regulating BC progression
and metastasis, which might affect the process of enhancement imaging [52–55]. Our work
may provide a non-invasive perspective on the biology of BC.

Differences in the tumor immune microenvironment emerged in the imaging subtypes.
Subtype 2 exhibited a lower proportion of fibroblasts and a higher proportion of proliferat-
ing T cells and macrophages. Cancer-associated fibroblasts (CAFs) are not only important
components of the BC microenvironment and are essential in tumor growth and devel-
opment, but also have complex phenotypes and functional heterogeneity [56–59]. T cell
proliferation is closely related to immune response, treatment resistance, and prognosis of
BC [60–62]. Macrophages are important players in the extracellular matrix activity of breast
tumors and a high fraction of macrophages usually suggests a poorer prognosis [63,64].

Differing from most radiogenomics studies that focused on the association of imaging
features with gene expression profiles, we uncovered the heterogeneity of BC from the
novel perspective of radiomics, and further revealed the differences of clinical outcome
and biological activities for imaging subtypes. Although some previous works have used
similar approaches to identify potential imaging subtypes of glioblastoma and BC based
on MRI data [65,66], our work still has some strengths, especially compared to the work of
Wu et al. [66]. Firstly, we identified three imaging subtypes of BC in a larger dataset and
achieved high cluster reproducibility in an independent multi-center validation cohort (all
of our IGPs were greater than 90%, whereas only one IGP of Wu et al. [66] was greater than
90%). Secondly, the determination of breast background parenchymal tissue is a challeng-
ing task in clinical practice, whereas the segmentation of tumor lesions is much easier. We
predicted the prognosis well using only the information of tumor lesions, which is more
convenient for clinical applications. Additionally, we highlighted the clinical evidence
of DCE-MRI features as non-invasive biomarkers. In the radiomics discovery cohort, the
mean voxel volume with 95% CI of imaging subtype 1 was 1458.66 mm3 [1306.95–1610.37],
and larger tumor sizes were observed in subtype 2 (8564.07 mm3 [6950.28–10,177.85]) and
subtype 3 (8258.59 mm3 [3846.83–12,670.37]). Finally, we not only revealed the differences
in biological functions of imaging subtypes, but also further analyzed the associations of cel-
lular fractions with imaging subtypes, although the abundance of cells was estimated from
bulk RNA-seq data. It was noteworthy that we used a BC-specific expression matrix based
on single-cell data to estimate cellular fractions in bulk RNA-seq data, which indicated
that the tumor microenvironment was disease-specific. There were some limitations in our
work. Studies supporting the possible influence of biological activity on imaging features,
and whether this correlation is causal, still need to be verified in conjunction with biological
experiments. The enhancement patterns of DCE-MR imaging that define imaging subtypes
need to be analyzed for differences in vascular permeability based on histopathology data
to further validate our findings. The relationship between the complex characteristics of
the tumor microenvironment and imaging subtypes may require deeper mining in com-
bination with single-cell RNA-seq data. Additionally, the gene-profile-based classifier of
DCE-MRI subtypes did not perform very well, and should be improved based on more
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radiogenomics cohorts of BC in the future, and the robustness of the prognostic value of the
imaging features needs to be further evaluated in larger datasets for clinical applicability.

5. Conclusions

In this study, three novel BC subtypes were identified and validated based on the
radiomics features from tumor lesions in two independent DCE-MRI cohorts. The imaging
subtypes showed distinct clinical outcomes, molecular characteristics, and cellular fractions
in the tumor microenvironment. Our work may provide a potential radiomics biomarker
for the precision medicine of BC.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14225507/s1, Figure S1: The inclusion and exclusion
criteria of BC patients for radiomics cohorts. Figure S2: PCA of significantly different imaging features
in the imaging-subtype discovery cohort. Figure S3: Differences in pharmacokinetic parameters
of patients with different imaging subtypes in the imaging-subtype discovery cohort. Figure S4:
Distinct cellular fractions in the tumor microenvironment of different imaging subtypes in the
imaging-subtype validation cohort. Table S1: The p-values of ANOVA for DCE-MR features of three
imaging subtypes in the imaging-subtype discovery and validation cohorts. Table S2: Differentially
enriched KEGG pathways between imaging subtypes 1 and 2 in the imaging-subtype discovery
cohort. Table S3: Differentially enriched KEGG pathways between imaging subtypes 1 and 3 in
the imaging-subtype discovery cohort. Table S4: Differentially enriched KEGG pathways between
imaging subtypes 2 and 3 in the imaging-subtype discovery cohort.
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