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Abstract: Cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) and programmed cell death protein
1 (PD-1), two clinically relevant targets for the immunotherapy of cancer, are negative regulators of
T-cell activation and migration. Optimizing the therapeutic response to CTLA-4 and PD-1 blockade
calls for a more comprehensive insight into the coordinated function of these immune regulators.
Mathematical modeling can be used to elucidate nonlinear tumor–immune interactions and highlight
the underlying mechanisms to tackle the problem. Here, we investigated and statistically charac-
terized the dynamics of T-cell migration as a measure of the functional response to these pathways.
We used a previously developed three-dimensional organotypic culture of patient-derived tumor
spheroids treated with anti-CTLA-4 and anti-PD-1 antibodies for this purpose. Experiment-based
dynamical modeling revealed the delayed kinetics of PD-1 activation, which originates from the
distinct characteristics of PD-1 and CTLA-4 regulation, and followed through with the modification
of their contributions to immune modulation. The simulation results show good agreement with
the tumor cell reduction and active immune cell count in each experiment. Our findings demon-
strate that while PD-1 activation provokes a more exhaustive intracellular cascade within a mature
tumor environment, the time-delayed kinetics of PD-1 activation outweighs its preeminence at the
individual cell level and consequently confers a functional dominance to the CTLA-4 checkpoint.
The proposed model explains the distinct immunostimulatory pattern of PD-1 and CTLA-4 blockade
based on mechanisms involved in the regulation of their expression and may be useful for planning
effective treatment schemes targeting PD-1 and CTLA-4 functions.

Keywords: organotypic tumor culture; immune checkpoint blockade; T-cell migration; heterogeneous
random walks; tumor–immune interaction; delayed dynamics

1. Introduction

Immune-regulatory mechanisms modulate the immune response, primarily to allow
immune recovery and elude autoimmune reactions. Several regulatory mechanisms in-
volved in physiological immune tolerance are exploited by malignant tumors to escape
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immune rejection. Among them, immunosuppressive signaling pathways have a critical
role in the regulation of chronic immune responses. Cytotoxic T-lymphocyte–associated
antigen 4 (CTLA- 4) and programmed death 1 (PD-1), two negative co-stimulatory receptors,
attenuate T-cell activation mainly through intrinsic cellular mechanisms [1].

The CTLA-4 molecule effectively blocks the CD28-dependent co-stimulatory pathway
through the competitive inhibition of CD80 and CD86 ligands thanks to its higher affinity
for CD28. CD28-dependent signals are mainly mediated by phosphatidyl inositol 3-kinase
(PI3K) and Grb2 signaling molecules, which have established contributions to actin-based
cell movement alongside other effector functions [2–8]. In addition, ligand-bound CTLA-
4 releases an inhibitory signal that interrupts CD28 and T-cell receptor (TCR) signaling
cascades [1,3].

PD-1 engagement by its specific ligands (PD-L1 and PD-L2) directly suppresses the
TCR signaling cascade through the dephosphorylation and deactivation of its coupled
components following the recruitment of specific protein-tyrosine phosphatases. However,
most of the affected molecules are also involved in the regulation of cell migration, actin
polymerization, and T-cell anergy [8–11]. In addition, evidence suggests that PD-1 and
CTLA-4 converge on the modulation of the CD28 signaling pathway [12].

The blockade of PD-1 and CTLA-4 receptors attenuates their downstream signals,
which enables T cells’ reinvigoration, boosting the anti-tumor response. The clinical success
of checkpoint-inhibition-based cancer treatments is beholden to the fundamental research
that provided mechanistic views on immune regulation and tolerance. In spite of some
undeniable successes, checkpoint inhibitors are only effective in selected cancer types
(e.g., lung, melanoma, and bladder), with variable performance for patients [13]. Thus,
improving the therapeutic efficacy of PD-1 and CTLA-4 blockade would benefit from
more detailed mechanistic insights, particularly on the comparative aspects of checkpoint
functions that intertwined with the coordinated nature of immunoregulatory mechanisms
and their mutual compensatory relationships [1,14–16].

Despite the overlapping activities of the PD-1 and CTLA-4 receptors and down-
stream pathways, many studies indicate that each pathway has some peculiar specifici-
ties, for example, the timing of their action, their corresponding immune cell popula-
tions, their predominant operating environments, and downstream signal-transducing
molecules [17–20]. While TCR activation upregulates both receptors’ expression, the exis-
tence of CTLA-4 cytoplasmic reserves provides this receptor with the exclusive possibility
of rapid intracellular trafficking and translocation to the cell surface to adjust its membrane
level according to the TCR signal strength [21,22]. These molecular and mechanistic charac-
teristics can eventually manifest themselves in the dynamics of tumor–T-cell interaction.
However, in spite of its potential clinical relevance, comparative studies characterizing the
kinetics of checkpoint-induced immune inactivation remained rare.

Mathematical modeling represents a valuable approach for identifying mechanisms
underlying complex biological systems and proposing new hypotheses. The complexity of
a system is indicated by the complex endogenous patterns of the system itself and originates
from the nonlinear characteristics and temporal delays of its interacting components [23].

Several previous studies have considered various components involved in the dy-
namics of tumor–immune-cell interaction in the presence of immunostimulatory drugs or
checkpoint inhibitors for the model-based prediction of key parameters and the develop-
ment of optimal therapeutic strategies [24–33]. For example, a mathematical framework
highlighted the synergistic effect of combined radiotherapy and checkpoint blockade based
on the immunogenicity of irradiation and the intensification of abscopal effects by the con-
current checkpoint blockade [24]. A prognostic model describing the long-term response
(tumor burden) to checkpoint inhibitors was developed and calibrated with a large-scale
literature-derived patient cohort. The model parameters provided a sensitivity threshold
for the evaluation of responders and revealed biomarkers for predicting treatment effi-
ciency [28,29]. Some mathematical models integrated pharmacological kinetic information
to predict effective drug doses in addition to optimal treatment scenarios [25,30]. Particular
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attention has been dedicated to investigating the interesting dynamical phenomena in
tumor–immune interaction and its implications in the immunotherapy of cancer [31–33].

While most of the models consider cell–cell interaction networks, the integration
of the related molecular processes may resolve the relative contributions of intracellular
peculiarities to the modulation of the response to the inhibition of checkpoint pathways.

Furthermore, extensive clinical efforts to identify biomarkers of the response to PD-1
and CTLA-4 blockade are hampered by complex patterns that are dependent on pretreat-
ment conditions and the scheduling of treatments [13,34]. Molecular findings demonstrated
that PD-1 signaling employs a more exhaustive molecular cascade to disturb PI3K/AKT
signaling and displays a more efficient cell-level function compared with the CTLA-4
pathway [19]. Nevertheless, clinical observations indicate broader immune restoration and
more significant TCR repository enrichment following CTLA-4 inhibition. Consistently,
the prevalence of immune-related adverse effects is one of the major challenges in the anti-
CTLA-4-based immunotherapy of cancer [35–38]. Contrary to expectation, this relatively
broad immune restoration does not always lead to a superior therapeutic response and
tumor shrinkage compared with PD-1 blockade [37,39]. These controversial patterns of
responses to checkpoint blockade make the identification of robust clinical biomarkers
more challenging.

To mathematically resolve these controversies in clinical outcomes, here, we explore
the kinetic pattern governing PD-1 and CTLA-4 functions to address the possible therapeu-
tic limitations originating from the coordinated cell-level response to these pathways.

For this purpose, we used a previously developed ex vivo system that recapitulates
the tumor microenvironment, allowing the precise monitoring of the tumor response to
immune checkpoint blockade [40,41]. The system consists of a 3D microfluidic culture of
organotypic tumor spheroids derived from patient samples that retain autologous immune
cells. The applied microfluidic device allowed for controlled treatment with anti-PD-1
and anti-CTLA-4 antibodies, as well as a short-term evaluation of the response to these
inhibitors. Previously published data based upon cytokine measurements and immune
profiling validated the system as a novel platform for biomarker identification and the
systematic evaluation of checkpoint blockade outcomes [42].

Here, using time-lapse imaging and single-cell tracking, we obtained time series of
immune cell movements in three conditions of individual and combined PD-1 and CTLA-4
blockade to derive the state of immune cell activity and follow their temporal response
within an immunosuppressive tumor environment. The retrogressive movement of im-
mune cells, as well as the distinct dynamics of their response to PD-1 and CTLA-4 pathway
modulation, was delicately captured by extracting temporal variations in parameters in a
heterogeneous random walk model. Finally, a model of tumor–immune interaction based
on a system of ordinary differential equations revealed how the characteristic dynamics
of PD-1 and CTLA-4 activation potentially imposes limitations on the tumor response to
PD-1 blockade.

2. Materials and Methods

Cell migration tracking: Patient-derived organotypic tumor spheroids were obtained
as previously reported [42] and studied for the migration activity of immune cells in
response to checkpoint blockade (Figure 1a). Three and ten spheroid cultures derived from
melanoma patient biopsies responsive to PD-1/PD-L-1 blockade were investigated for
anti-CTLA-4 (Nivolumab) + anti-PD-1 (Ipilimumab) treatment or the exclusive inhibition
of PD-1, respectively. The response to CTLA-4 inhibition was analyzed in five thyroid
tumor cultures derived from a patient nonresponsive to PD-1/PD-L-1 blockade. The same
sample also accounted for six control experiments with no drug treatment. The detectable
moving cells were tracked in each experiment (Appendix A) to extract cell trajectories
and related parameters, such as velocity and persistence, using the Tracking package of
IMARIS software.
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Figure 1. Tracking lymphocyte migration in 3D organotypic tumor culture. (a) Schematic view
of the microfluidic device used for 3D culture of thyroid tumor spheroids (scale bar shows 1 mm).
Patient-derived tumor spheroids containing autologous immune cells were loaded in a collagen
medium in the central channel of the device and subjected to anti-PD-1 or anti-CTLA-4 antibody
treatment. A representative bright-field image of a thyroid tumor spheroid shows cells migrated into
the surrounding collagen. (b) Cell trajectories in three different conditions of pathway inhibition. A
total of 12, 28, and 9 migrating cells were tracked in the conditions of anti-PD-1, anti-CTLA-4, and
combination exposure, as indicated. For each experiment, individual trajectories are shown with
distinct colors, and all trajectories started from the same point (coordinate center) that is overlaid on
the same graph. Time-lapse images were captured every 15 min for at least 130 h.

Calculation of mean-square displacement of the cells: Mean-square displacement
(MSD) was evaluated as a substantial criterion to investigate the diffusive behavior of the
cells. The MSD of a walker is defined as follows:

R2(τ) = lim
t→∞
〈(X(t + τ)− X(t))2〉; (1)

where |X(t + τ)− X(t)| corresponds to the displacement of the walker between two con-
secutive steps. The parameters τ and t refer to the time interval and total time of the
movement, respectively. The MSDs were calculated for the cell trajectories as well as
simulated ones to check their correspondence and evaluate the model of migration.

Bayesian inference method for parameter estimation of the migration model: We
used heterogeneous random walks to model the migration of tumor-infiltrating (antigen-
experienced) lymphocytes and the detection of temporal variations in model parameters
affected by immune checkpoint activation. We applied an algorithm designed and imple-
mented by Metzner, C. et al. [43] for the sequential estimation of the random walk model
parameters based on the Bayesian inference method. Accordingly, the displacements are
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calculated using cell velocities in each time step, and the time-varying displacement vector
is described according to a first-order autoregressive model:

u(t) = q(t)u(t− 1) + a(t)n(0;1)(t); (2)

where the parameter q(t) represents the time-varying persistence of the cells and ranges
between −1 and 1, from anti-persistent to persistent random motion. The parameter a(t)
corresponds to the motion activity, namely, the intensity of noise in the random walk
process. The random noise vector n =

(
nx; ny

)
is taken from an uncorrelated Gaussian

distribution with unit variance. The likelihood function of the stochastic process conducts
the sequential Bayesian method to infer the joint distribution of the parameters for each
time step. Single-cell activity and persistence are given in Figure A2. See Appendix C for
more details.

Simulation of cell trajectories: The time-varying autoregressive model of the first
order was evaluated for the analysis of cell movements. In this way, we used the estimated
activity and persistence of the cells to simulate trajectories based on the same autoregressive
process. The model parameters were further estimated for the simulated trajectories to be
compared with the input parameters and to confirm the accuracy of the applied algorithm.
The subsequent statistical verification of the simulated trajectories determines the accuracy
of this modeling paradigm.

Mathematical model hypothesis: A set of biological assumptions was considered to
infer a mathematical model of checkpoint-induced immune modulation. These assump-
tions outline the theoretical underpinning of the work and reduce the parameters and
equations to those sufficient for a rational description of the experimental data.

Accessibility of tumor cells: The experimental results indicate that even in the case of
the two-pathway blockade, a fraction of tumor cells would survive. We supposed that this
is because of the limited accessibility of tumor-infiltrating lymphocytes to the population
of tumor cells, a well-known phenomenon that plays a role in tumor-associated immune
resistance [44]. Assuming a spherical geometry for tumor spheroids, Equation (7) relates
the accessible fraction of tumor cells to their total population [45].

Temporal delay in surface expression of PD-1 receptor: Most of the cellular CTLA-4 re-
ceptors are stored in cytoplasmic vesicles. The surface expression of CTLA-4 is quickly
upregulated by membrane trafficking control and the translocation of this intracellular pool
to the cell surface. In contrast, genetic and epigenetic mechanisms are mainly engaged in
the regulation of PD-1 expression, which leads to a time delay in T-cell inactivation induced
by the PD-1 pathway [21,22,46].

Direct and indirect tumor–T-cell interaction: The subpopulation of accessible tumor cells
may be directly killed by T-lymphocytes and, in turn, stimulate PD-1 and CTLA-4 pathways
via direct contact. The effects of T-cell exhaustion factors other than PD-1 and CTLA-4 (free
radicals, secreted cytokines, oxygen limitation, etc.) are assumed to be dependent on the
total population of tumor cells (regardless of the direct access to T cells) [47].

Upregulation of PD-1 expression: We assume that the sustained presence of cancer cell
antigens in the cultured tumor microenvironment leads to the upregulation of PD-1 surface
expression. The rate of this induction is considered to be constant (independent of the
population size of tumor cells).

No proliferation and recruitment in the 3D channel microenvironment: No immune cell
recruitment occurs in this experimental setup, and tumor cell proliferation can be ignored
because of limited nutrient availability in this condition.

Lymphocyte activity modeling: It is assumed that tumor cell death occurs in proportion to
lymphocyte activity, which appears in their migratory behavior. Therefore, the dynamics of
activity for tumor-interacting lymphocytes is modeled, instead of their population changes.

Marker of reinvigorated cells: The reinvigoration of T cells is detectable based on their
measured mobility behavior.

Dynamical modeling of tumor-infiltrating lymphocyte inactivation induced by
CTLA-4 and PD-1 signaling pathways: As stated above, genetic, transcriptional, and



Cells 2022, 11, 3534 6 of 20

translational regulation of PD-1 expression causes a few hours’ delay in lymphocyte inac-
tivation triggered by this receptor. Considering the above assumption, along with other
model hypotheses, and taking into account PD-1, CTLA-4, and other immunosuppressive
factors in the tumor microenvironment, the dynamical model of tumor–T-cell interaction is
schematically represented in Figure 2.
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Figure 2. Illustration of the relationships between the components of the mathematical model.
PD-1 and CTLA-4 receptors and other factors suppress lymphocyte activity in the tumor microenvi-
ronment. As a result of the cytoplasmic storage of preformed CTLA-4 molecules, the total population
of active lymphocytes can express the CTLA-4 receptor with no time delay and can be potentially
inactivated by this receptor at a gamma rate. Other inhibitory factors can also suppress lymphocytes,
independent of PD-1 receptor signaling. The regulation of PD-1 expression occurs mainly at the
genetic and epigenetic levels, resulting in a time delay in immune suppression triggered by PD-1
receptors. Concurrently, the cytotoxic activity of lymphocytes results in the death of tumor cells.

According to the PD-1 expression state, the dynamical model comprises activities for
three subpopulations of lymphocytes: lymphocytes with (1) unexpressed (Lu), (2) partially
expressed (Lp), and (3) fully expressed (Le) PD-1 receptors. The subpopulation of lym-
phocytes lacking PD-1 receptors is converted to PD-1-expressing cells with a delay of the
second order and the expression rate α. The conversion is then followed by PD-1-induced
inactivation at a β rate in contact with the accessible tumor cells (Equations (3)–(6)).

It is assumed that all three subpopulations of active lymphocytes may be deactivated
by CTLA-4 receptors at a γ rate, along with inhibitory factors other than PD-1 and CTLA-4
(i.e., radical formation and hypoxia) with a ξ rate of performance. The PD-1 signaling
pathway can exclusively inhibit cells in the full expression state of PD-1 (Le). The cytotoxic
activity of lymphocytes’ total population causes the death of tumor cells at a rate of
σ (Equation (6)).

Finally, the presumption of cell-to-cell contacts in CTLA-4 and PD-1 pathway acti-
vation, as well as the tumor cell death process, leads to a system of ordinary differential
equations as follows:

dLu

dt
= −γCaccLu − αLu − ξCLu, (3)

dLp

dt
= −γCaccLp − αLp + αLu − ξCLp, (4)
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dLe

dt
= −γCaccLe − βCaccLe + αLp − ξCLe, (5)

dC
dt

= −σCacc
(

Lu + Lp + Le
)
, (6)

where the accessible proportion of tumor cells (Cacc) is calculated from the total popula-
tion (C) as follows:

Cacc =
C

1 + C1/3

6

, (7)

This equation is derived by assuming a simple spherical geometry for the tumor spheroids
and the subsequent calculation of cells that hold a surface volume [45].

3. Results
3.1. Stochastic Modeling of T-Cell Migration

T-cell trajectories: The instances of T-cell trajectories under the condition of PD-1 and
CTLA-4 blockade alone or in combination are illustrated in Figure 1b. The tracks represent
2D projections of cell trajectories in 3D cell cultures. These results show temporal variations
in the T-cell step length, and for most of the cells, these variations display a decreasing
trend in the time series of cell movements. No significant cell movement was observed in
cultures without drug treatment (Appendix A).

Mean-square displacement of the cells: It was observed that the slope of the MSDlog−log
plots of the cells takes values smaller than one at many time intervals, which is a characteristic
of sub-diffusive motions. Furthermore, in all three experimental conditions, the slopes of the
curves have a decreasing trend and almost tend to zero (Figure 3d–f, blue curves).
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tories using the AR-1 model with time-dependent parameters (activity and persistence) based on
single-cell parameter changes estimated from experimental data. (d–f) Mean-square displacements
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(population-averaged) of tumor-infiltrating lymphocytes treated with anti-PD-1 or anti-CTLA-4
antibodies or a combination thereof (red curves). The MSDs show sub-diffusive behavior with an
approximate power-law exponent of 0.83 for PD-1, 0.93 for CTLA-4, and 0.98 for combined inhibition.
Blue curves represent the MSDs of simulated trajectories for each experiment. The intercepts of the
curves indicate the highest value of the cell diffusion coefficient in the combined treatment (D = 7.3).
The AR-1 model with changing parameters effectively reproduces the experimental MSDs obtained
in each condition. Insets: MSD curves for individual cells. The last steps of the migration trajectories
were removed because of error amplification in MSD calculations.

Temporal variation in cell migration parameters in checkpoint blockade experiments:
We supposed that the observed migratory behavior can be explained by a model of random
walks with time-dependent parameters. Based on this assumption, we used a first-order
autoregressive model with time-varying parameters to model the studied cell movements.
The sequential Bayesian inference method was applied to the cell trajectories to deduce the
statistical parameters over the single-cell migration periods (Appendix B).

For the evaluation of the autoregressive (AR-1) model of migration, the estimated param-
eters (time-varying persistence and activity of the cells) were used in an inverse manner to see
if the model reproduces trajectories that statistically match the migration data (Figure 3a–c).
In this way, the Bayesian method and applied algorithm were primarily assessed for the
simulation of trajectories able to conserve the input parameters (Figure A2). Here, the MSDs of
the simulated trajectories would show if the AR-1 model with changing parameters captures
the migratory behavior of the cells. As shown in Figure 3d–f, there is good agreement between
the population-averaged MSDs of the simulated time series and experimentally derived ones.

The temporal patterns of the movement activity and persistence of the cells are illustrated
in Figure 4a–c. In each experiment, while the activity parameter shows considerably changing
behavior, the population-averaged persistence parameter displays moderate variations over
the time of observation (Figure 4a–c, insets). In the case of PD-1 blockade, the ensemble activity
of the cells displays a relatively constant decrease over time from the very beginning, while
blocking the CTLA-4 receptor drives the cells to a more rapid decrease in motion but after a
short initial delay (Figure 4b,c). In the case of the drug combination, the migratory activity
of the cells showed more intensive fluctuations but only a slight overall decrease during the
time course of the experiment (Figure 4a). Additionally, as observed from time-zero values
of the activities, the cells retrieved their motion strength more intensely following CTLA-4
blockade (compared with PD-1 blockade). This initial activity did not decrease significantly in
combined receptor blockade, while in both cases of exclusive receptor inhibition, the activity
reduction continued to approximately reach a zero value.

1 
 

 
Figure 4. Temporal variation in immune cell activity and dynamical model simulation in (a) com-
bined as well as individual blockade of (b) PD-1 and (c) CTLA-4 pathways. Immune cell activity
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displays a much lower initial value in PD-1 blockade compared with the two other conditions.
Contrary to PD-1 blockade, the decrease in cellular activity in CTLA-4 blockade entails a delay of
several hours, while in the combined inhibition of the pathways, the cells remain active up to the
last frames of the assays. Dynamical model parameters were inferred by fitting the model (blue
curves) to immune activity changes derived from cell migration data (pink curves). Tumor–immune
profiling of the spheroids and live/dead cell staining confer an initial value of Tt0

∼= 22000± 30% and
final values of Tcombo

f
∼= 14000± 15%, Tpd1

f
∼= 20000± 40%, and Tctla4

f
∼= 13000± 35% for the tumor

cell population (yellow curves). Simulation results with the specified parameter set (σ = 0.00000022,
ξ = 0.000000137, γ = 0.0000024, α = 0.0549, and β = 0.000016; all in a temporal unit of time step)
show good agreement with the relative tumor-killing performance of anti-PD-1 and anti-CTLA-4
components according to cell death assessments in tumor spheroids. No unit is considered for cellular
activity. Inset: Population-averaged persistence of immune cell migration in checkpoint inhibition
experiments. The average values of the persistence parameter show moderate changes over time in
the experiments. Error bar corresponds to standard error.

3.2. Dynamical Modeling of Lymphocyte Activity in the Presence of Checkpoint Inhibitors

The dynamics of the inferred statistical parameters was investigated to elucidate the
cellular response to PD-1 and CTLA-4 checkpoint inhibitors reflected in lymphocytes’ move-
ment behavior. Accordingly, the immobilization of immune cells in the tumor spheroids was
leveraged to characterize tumor-induced T-cell suppression in the tumor microenvironment
(see Section 2). The marker of the reinvigorated cells is their migration activity, measured
based on the mean-square displacement (MSD) characteristics. No significant cell movement
was observed in cultures without drug treatment (control samples, see Appendix A). The
experimental data for the number of live tumor cells was used to evaluate the proposed model.

Model simulation for the combination of PD-1 and CTLA-4 blockade: As schemati-
cally illustrated in Figure 2, in the absence of PD-1 and CTLA-4 signaling cascades, other
inhibitory signals and factors in the tumor microenvironment modulate lymphocyte ac-
tivity at a decreasing rate of ξ. In addition, the cytotoxic activity of T cells decreases the
population of tumor cells at a rate of σ.

It was assumed that the whole population of experimentally measured spheroid tu-
mor cells (∼= 22,000 cells± 30%, Appendix A) are initially alive. Furthermore, the initial
value for T-cell activity corresponds to the relevant value obtained from the autoregressive
model at time 0. To infer the dynamical model parameters, we applied a Quasi-Newtonian
algorithm using an unconstrained nonlinear programming solver of the MATLAB opti-
mization toolbox (MATLAB R2016a, MathWorks). Setting the α, β, and λ parameters to
zero (Equations (3)–(6), Section 2), the parameters ξ and σ were determined so that the
simulation results reproduce the final tumor cell count as well as immune activity changes
in this experiment (Figure 4a, blue and yellow curves). The optimal solution was found
at a value of 0.55 ∗ 10−6 hr−1cell−1

tumor for the lymphocyte inactivation rate (ξ) caused by
factors other than the two blocked receptors. Moreover, considering the experimental value
for a final tumor cell population of ∼=14,000 cells ± 15%, the tumor cell death rate (σ) was
estimated to be 0.88 ∗ 10−6 hr−1 Act−1

imm.
Model simulation for PD-1 blockade: In the absence of a CTLA-4 inhibitor, the activation

of the relevant signaling pathway affects the dynamics of lymphocyte activity (Figure 2).
In this scenario, the parameters ξ and σ are set as the values inferred from the previous

simulation, and similarly, the initial values are experimentally determined for this condition.
In addition, tumor cell death data are used for model validation.

When training the experimental diagram, the value of 9.6 ∗ 10−6 hr−1cell−1
tumor was

estimated by the solver for the lymphocyte inactivation rate triggered by the CTLA-4
signaling cascade (γ) (Figure 4b, blue curve). As a model validation, the dynamical model
in this parameter adjustment captured tumor cell death data similar to those obtained from
PD-1 blockade experiments (compare the experimental value of 20,000 cells± 40% with the
model outcome of 19,500 cells for the final tumor cell population, Figure 4b, yellow curve).
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Model simulation for CTLA-4 blockade: In this case, the upregulation and consequent
activation of the PD-1 pathway modify the dynamics of lymphocyte activity (Figure 2). To
set the initial values of the model, we supposed that the whole population of activated
lymphocytes initially belongs to the subpopulation lacking the PD-1 receptor. In this setting,
the parameters α and β were learned so that the model could explain the experimental data
(Figure 4c, blue curve). Because of the possibly unrealistic assumption above, we attempted
to correct the initial condition of the model to obtain a more accurate estimation of the α
and β parameter values. Details are given in Appendix C.

The simulation results showed that the model is capable of reproducing the inactiva-
tion pattern of T cells for α = 0.22 hr−1 and β = 6.33 ∗ 10−5 hr−1cell−1

tumor, which is more than
six-fold greater than CTLA-4’s rate of function. The subsequent correction of the baseline
situation made no significant improvement in the parameter values (Appendix C). The
model was further validated by the relative concordance of the simulated cancer cell decline
with the tumor-killing performance of CTLA-4 blockade (compare the final population of
tumor cells in anti-PD-1 and anti-CTLA-4 treatments, Figure 4c, yellow curve). The inferred
values of the parameters are represented in Table 1 (Appendix C).

Table 1. Tumor–immune interaction parameters.

Parameter Definition OptimalValue * Unit **

σ Tumor cell death rate 8.8 ∗ 10−7 hr−1 Act−1
imm

γ
CTLA-4-induced immune

cell inactivation rate 9.6 ∗ 10−6 hr−1cell−1
tumor

β
PD-1-induced immune cell

inactivation rate 6.33 ∗ 10−5 hr−1cell−1
tumor

ξ
Non-checkpoint-induced

immune cell inactivation rate 5.5 ∗ 10−7 hr−1cell−1
tumor

α PD-1 expression rate 0.22 hr−1

* Optimal values estimated by fitting the model simulation to corresponding experimental results. ** Accounting
for time intervals corresponding to 15 min and unit-free measure of cell activity.

Comparing in vivo population of reinvigorated cells in PD-1 and CTLA-4 blockade:
In addition to the investigated spheroids (average size of 70 µm [42]), we ran the model for
a more realistic tumor size of about 100 mm3 [42], better mimicking in vivo conditions and
the consequent therapeutic implications of the model.

The results demonstrate that the population of immune cells deactivated by the CTLA-
4 receptor outnumbers the cells whose inactivation is associated with the PD-1 receptor
by nearly ten folds (Table 1). Presuming that this model outcome is a good representation
of the evolved tumor situation, this suggests that the inhibition of the CTLA-4 pathway
would reactivate a larger population of immune cells than the PD-1 pathway blockade.

Table 2 represents the average counts of cells that are set in motion following each
treatment scenario. These data indicate that CTLA-4 blockade in patient-derived tumor
spheroids is capable of reinvigorating a larger population of lymphocytes, which is in good
agreement with the model prediction. Indeed, because of the defined time delay in the
PD-1 suppressive function, a sufficiently large population of tumor cells drives immune
cells to the inactivated state primarily and more efficiently by CTLA-4 receptor stimulation
and signaling.

Table 2. Reinvigorated cell counts in checkpoint blockade experiments.

Type of Treatment Spheroids’ Active Cell Number (Average)

Anti-CTLA-4 65.6 ± 9.38
Anti-PD-1 19.3 ± 1.64

Combo 61.6 ± 7.75
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4. Discussion

T-cell migration can be modulated by PD-1 and CTLA-4 signaling pathways through
molecular intermediates that regulate the cytoskeletal structure and membrane organiza-
tion. As confirmed in our study, increasing the movement capacity to sweep the tumor
microenvironment, in line with the other cell-stimulating events, is one of the results of
T-cell reinvigoration following checkpoint inhibition [4–8,10,11].

However, controversial patterns of the response to checkpoint blockade make the
identification of robust clinical biomarkers more challenging.

In the current study, the motion pattern of tumor-associated immune cells was moni-
tored as a functional response to PD-1 and CTLA-4 pathways to elucidate, at the cell-level
temporal resolution, the kinetic constraints that potentially modulate the response to
checkpoint blockade.

Our results show that immune cells display reinforced sustained motility behavior in
the presence of combined pathway inhibitors. Although such a stimulatory effect on T-cell
trafficking converges with their energetic background following checkpoint inhibition, the
sub-diffusive behavior of the cells, even at the beginning of the assessments, demonstrates
T cells’ tendency to establish physical engagement with the tumor microenvironment
(Figures 3 and 4).

As shown in the activity diagrams, T-cell movement exclusively affected by PD-1 and
CTLA-4 pathways depicts distinct profiles of variation, such that T cells’ mobility behavior
dominated by the PD-1 pathway (anti-CTLA-4 treatment) represents a significant time lag
before a continuous decline. This time delay is considered in the presented dynamical
model as a time imposition of de novo PD-1 expression

This observation is supported by evidence of the profound transcriptional regulation
of PD-1 and subpopulations of lymphocytes with distinct levels of PD-1 expression. Mean-
while, molecular studies have shown that CTLA-4 surface expression, independently of
the transcriptional and translational rate of synthesis, lasts for several hours thanks to its
cytoplasmic reserves [48,49].

Accordingly, the proposed dynamical model was able to explain the distinct immunos-
timulatory pattern of PD-1 and CTLA-4 blockade based on mechanisms involved in the
regulation of their surface expression. Importantly, the model could explain how, despite
the functionally more efficient signaling cascade initiated by the PD-1 signal (compare the
parameter values in Table 1), the presence of cytoplasmic vesicles storing CTLA-4 receptors
enhances its suppressive function and eventually leads to the dominance of its effects at
the level of lymphocyte populations.

Our analyses suggest that the relative population of immune cells downregulated
by these two pathways depends on the initial population size of the interacting tumor
cells. In tumors with relatively large baseline sizes, the outstanding time delay in PD-1
expression potentially leads to exhaustive immune inactivation as the result of CTLA-4
function, which shapes an inherent limitation for anti-PD-1 treatment outcomes. Consistent
with this notion, our study emphasizes the importance of baseline tumor size as a marker of
the response to anti-PD-1 and anti-PD-L-1 treatment. While the antigen burden (i.e., tumor
mutation burden) is already considered a possible explanation for the tumor-size effect,
our study suggests that even in spite of the pretreatment adaptation of tumor–immune
populations, the marker of tumor size remains a limiting factor for the patient response to
anti-PD-1 and anti-PD-L-1 treatments [50–52].

It should be noted that this relatively sharp immune stimulation may lead to the acti-
vation of other immunosuppressive pathways and enhance the restoration of immunoreg-
ulatory cells, which explains the possibility of poor therapeutic outcomes in response
to CTLA-4 blockade [53–55]. Indeed, our analyses further emphasize the importance of
pretreatment immune profiling for anti-CTLA-4-based treatments and highlight the signifi-
cance of identifying predictive biomarkers as a strict irrevocable goal for improving the
response to CTLA-4 blockade.
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On the other hand, considering the importance of the initial response and the priming
of anti-tumor immunity for immunotherapy outcomes, the profound immune excitation
predicted here provides further rationales for combined and alternative strategies for
treatment [56]. Treating patients with immunostimulatory agents with acceptable immune-
related toxicity following the initial activation of the immune system by CTLA-4 blockade
may improve clinical outcomes. Moreover, in patients without baseline population-related
biomarkers for anti-PD-1 treatment [35,54], this strong immune restoration may establish
conditions for an improved objective response. Previous studies have also confirmed the
significance of immunotherapy scheduling in the kinetic pattern of immune stimulation as
a result of nonlinear effects in the context of glioma–immune interaction [31,32,57–59].

The presented quantitative insight into the distinct PD-1 and CTLA-4 functions can
be useful for the development of more relevant models for planning effective treatment
schemes. More generally, this study highlights the need for a more detailed understanding
of the kinetics of the response to checkpoint inhibitors toward developing therapeutic
strategies based on the multimodal stimulation of the immune response.
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Appendix A

Experimental Background

The derivation, treatment, and characterization of tumor spheroids are described in
detail in the article previously published by Jenkins et al. (Cancer Discovery 8.2 (2018)).
Briefly, during the experimental procedure, patient-derived tumor spheroids in combi-
nation with collagen were loaded into the central channel of a 3D microfluidic culture
device (Figure 1, main text). The cell culture was treated with monoclonal antibodies or
their combinations. Pembrolizumab and Ipilimumab antibodies were used as PD-1 and
CTLA-4 pathway inhibitors, respectively. The injected dose (clinically used 1:100 dilutions

https://github.com/safaeifard/
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of stock concentrations) resulted in peak plasma concentrations measured following the
administration of 10 mg/kg of each drug (FDA CDER application). In these experiments,
the immune profiles of tumor spheroids were characterized by different immune markers
detected by the flow cytometry technique.

The presence of different cytokines and their concentrations in the cell culture microen-
vironment were evaluated using a bead-based immunoassay approach. These outcomes of
assays show the success of the designed cell culture in recapitulating the tumor microenvi-
ronment, considering its autologous cell population and chemical signals.

In addition, live/dead cell quantification was performed using dual-labeling deconvo-
lution fluorescence microscopy. The presence of a lateral channel along the central area of
the culture medium entails the possibility of controlled drug injection. Time-lapse imaging
of cell mobility was carried out through the transparent cover of the chamber. All of
the experiments were performed at Dana–Farber Cancer Institute. Below, the relevant
experimental protocols and results are discussed.

Tumor samples: The immune cells were investigated in organotypic cultures of tumor
spheroids (including lymphoid and myeloid cells) derived from patient samples of thyroid
and melanoma cancers. Depending on the patient’s response to ICB components, the
spheroids were cultured in four types of mediums containing: (1) PD-1 and (2) CTLA-4
inhibitors and (3) their combination alongside (4) control cultures.

Live/Dead imaging of tumor spheroids: With the goal of tumor and non-tumor cell
death quantification, live/dead imaging was performed using dual-labeling deconvolution
fluorescence microscopy (Figure A1). The results are shown in Table A1. These data were
used to calculate the initial and final populations of tumor cells (TDR : TumorDeathRatio):

TumorPopulationt=0 = AverageSpheroidsPopultion∗
AverageSpheroidsTumorRatio ∗ (1− TDRcontrol),

TumorPopulation f inal = TumorPopulationt=0 − TDRtreatment−TDRcontrol
1−TDRcontrol

∗
TumorPopulationt=0,

which gives the initial and final values of the tumor cell population:

Tt0
∼= 22000± 30%,

Tcombo
f

∼= 14000± 15%,

Tpd1
f
∼= 20000± 40%,

Tctla4
f
∼= 13000± 35%,

Table A1. Spheroid live/dead and tumor–immune profiling.

Experiment Spheroid Population Tumor Cell Ratio * Tumor Death Ratio **

Control 175000± 25% 0.22 0.090
PD-1 175000± 30% 0.16 0.196

CTLA4 130000± 25% 0.16 0.483
Combo 180000± 30% 0.13 0.433

* The ratio of tumor cells to the total population of spheroid cells (tumor + immune cells) for each drug treatment.
** The ratio of tumor cells to the total tumor cell population of spheroids (dead + live cells).
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Figure A1. Immune profiling and viability evaluation of patient-derived thyroid tumor spheroids.
A representative image of immunofluorescence staining that identifies the population of autologous
CD45+ and CD8+ immune cells in organotypic tumor spheroids derived from patient samples.

Time-lapse imaging of tumor culture: Time-lapse images of bright-field microscopy
were obtained during the experiments. The images were captured every 15 min using
a Nikon Ti inverted microscope with a 10× NA 0.3 objective and cooled CCD camera
(Orca R2, Hamamatsu) in a humidified, temperature-controlled chamber. Illumination was
with a CoolLED pe-100 white-light LED. Imaging of various fields of view over time was
controlled by NIS-Elements software of a Prior motorized stage along with the LED and
camera. Image capturing was carried out for more than 30 h (Figure 1).

Activated cell count in each treatment: The number of lymphocytes that were set in
motion was estimated at the beginning of PD-1 and CTLA-4 pathway blockade. For this
aim, we used time-lapse microscopic images of the first few frames to count moving cells
in microfluidic cell cultures treated with each blocking agent.

Appendix B

Evaluation of Parameter Estimation for AR-1 Model of T-Cell Migration

A sequential Bayesian inference method corresponding to the autoregressive model
of the first order was applied to the cell trajectories to deduce the joint probability dis-
tribution of the model parameters for each time step (Figure 1). We used the average
values of the inferred distributions to trace statistical parameter changes over the single-cell
migration period.

To evaluate the method and the parameter estimation algorithm for our migration
assay, single-cell time-varying parameters were used in an inverse manner to see if the
model can reproduce trajectories that statistically match the migration data.

The results of parameter estimation for simulated trajectories indicated that the
Bayesian method and the applied algorithm are able to conserve the input temporal
changes in the model parameters in simulated trajectories (Figure A2).



Cells 2022, 11, 3534 15 of 20

Cells 2022, 11, x FOR PEER REVIEW 16 of 21 
 

 

 

(a) 

 

(b) 

Figure A2. Cont.



Cells 2022, 11, 3534 16 of 20
Cells 2022, 11, x FOR PEER REVIEW 17 of 21 
 

 

 

(c) 

Figure A2. Single-cell parameters of AR-1 model of migration in combined inhibition of PD-1
and CTLA-4 pathways (a) as well as PD-1 (b) and CTLA-4 blockade (c). The Bayesian inference
method was applied to time series of cell trajectories, and the mean values of the inferred activity
parameter are shown for each cell (pink curves). The results of parameter estimation for AR1-
simulated trajectories (blue curves) show good agreement with those derived from the experiment.
Insets: Single-cell persistence of the cells (dark green curves) and simulation-derived ones (light
green curves). The # notes indicate IDs of patients from Dana–Farber Cancer Institute, the number of
tumor spheroids, and the tracked cell number, in that order.
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Appendix C

Appendix C.1 Parameter Inference for the Random Walk Model of Lymphocyte Migration

We used a Bayesian inference approach based on discretized probability distributions
presented by Metzner, C. et al. [43] for the joint inference of the activity (a) and persistence (p)
parameters in the AR-1 model of migration. Considering the two-dimensional vector of
cellular velocities, the likelihood function of this process can be considered as follows:

P(ut+1|pt+1, at+1; ut) =
1

2πa2
t+1

exp (− (ut+1 − pt+1ut)
2

2a2
t+1

)

The likelihood function is sequentially evaluated for the measured position of the
cells in each time step ut+1, given the previous cell state ut and the optimal values for the
latent parameters.

Starting from a flat distribution P0, the numerical values of the likelihood function are
sequentially multiplied by the corresponding discrete points of the (pt, at)-grid to update
the prior distribution. The time series of the averaged values of the posterior distributions
are considered temporal variations in the activity and persistence of the cells to use in the
subsequent analysis. The minimal probability of the posterior distribution and the grid size
were set to Pmin = 10−10 and 200, respectively. See [43] for more details.

Appendix C.2 Estimation of Parameters for the Dynamical Model of Checkpoint-Induced
Lymphocyte Inactivation

The integrated dynamical model presented in Equations (3)–(6) has five unknown
parameters. The list of parameters and associated dimensions are given in Table 1. There
are four time series of experimental observations to which the modeling results should be
fit: the lymphocyte activity changes in each checkpoint-blockade experiment in addition to
the initial and final tumor cell population in anti-PD-1 + anti-CTLA-4 treatment.

In order to find an optimal parameter set that reproduces the experimentally extracted
data points, we used a nonlinear unconstrained optimization workflow to minimize the
following cost function O(π):

min
k

∑
t=0

(Y(t)−Yπ(t))
2

where Y(t) indicates the observed data point in time step t, and Yπ(t) is the corresponding
theoretical value obtained from the model given the parameter set π. The number of data
points observed in each experiment is denoted by k.

Starting from an initial guess, the solution space of the parameters is explored for
the optimal values, which are given iteratively to an ordinary differential equation solver
for the evaluation of the model. We used the Quasi-Newtonian algorithm to minimize
the above cost function. All of the analyses were performed using MATLAB optimization
methods and toolbox (MATLAB R2016a, MathWorks).

Appendix C.3 Improving the Initial Values of Lymphocyte Subpopulations (Correction of α and
β Parameters)

Considering that the initial values of activity for the three subpopulations of lym-
phocytes (PD-1-deficient lymphocytes, those partially expressing PD-1, and those fully
expressing this receptor) might have been unrealistic, the integrated model was run for a
better estimation of the α and β parameters. In order to do so, using the already estimated α
and β parameters, the model was simulated, assuming again that the total activity initially
belongs to the unexpressed subpopulation.

The model-derived distribution of CTLA-4-deactivated cells with different PD-1 ex-
pression states was compared. It was anticipated that the relative populations would give
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a better estimation for the initial values of the simulation, which would result in a more
accurate estimation of the α and β parameters under the condition of CTLA-4 inhibition.

However, the dominant proportion of the lymphocyte population gathered in the stock
of the subpopulation lacking the PD-1 receptor. Moreover, there was no improvement in the
estimation of the α and β parameters when we used the obtained distribution of lympho-
cytes as initial values. Therefore, the presumption (model hypothesis) that initially assigned
the total activity to the population lacking the PD-1 receptor is an admissible assumption.
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