Table 10.
Performance comparison of the state-of-the-art methods and the proposed approach using various evaluation measurements on brain MRI dataset (Number of utilized images 595 (where, normal = 115, and abnormal = 480)).
Published Methods | Used Methods | True Positive | True Negative | False Positive | False Negative |
---|---|---|---|---|---|
Orouskhani, et al. [44] | Conditional Deep Triplet Network | 375 | 175 | 60 | 8 |
Inglese, et al. [45] | Decision Support System | 360 | 178 | 57 | 7 |
Mandle, et al. [46] | Kernel-based SVM | 350 | 177 | 63 | 9 |
Abdulmunem, et al. [47] | Deep Belief Network | 365 | 178 | 67 | 10 |
Jang, et al. [48] | Sorting Algorithm | 380 | 174 | 66 | 8 |
Popuri, et al. [49] | Ensemble Learning | 350 | 175 | 61 | 7 |
Latif, et al. [50] | Neural-Network-Based Features with SVM Classifier | 355 | 176 | 64 | 11 |
Nawaz, et al. [51] | Multilayer Perception, J48, Meta Bagging, Random Tree | 375 | 169 | 59 | 6 |
Assam, et al. [52] | Random Forest | 380 | 172 | 58 | 7 |
Islam, et al. [53] | Convolutional Neural Network | 370 | 174 | 60 | 9 |
Dehkordi, et al. [54] | Evolutionary Convolutional Neural Network | 360 | 173 | 55 | 8 |
Krishna, et al. [55] | Local Linear Radial Basis Function Neural Network | 355 | 177 | 62 | 9 |
Takrouni, et al. [56] | Deep Convolutional Network | 365 | 171 | 68 | 10 |
Fayaz, et al. [57] | Convolutional Neural Network | 370 | 178 | 60 | 8 |
Proposed Approach | Logistic Regression | 405 | 185 | 30 | 5 |