Skip to main content
. 2022 Nov 14;12(11):2791. doi: 10.3390/diagnostics12112791

Table 10.

Performance comparison of the state-of-the-art methods and the proposed approach using various evaluation measurements on brain MRI dataset (Number of utilized images 595 (where, normal = 115, and abnormal = 480)).

Published Methods Used Methods True Positive True Negative False Positive False Negative
Orouskhani, et al. [44] Conditional Deep Triplet Network 375 175 60 8
Inglese, et al. [45] Decision Support System 360 178 57 7
Mandle, et al. [46] Kernel-based SVM 350 177 63 9
Abdulmunem, et al. [47] Deep Belief Network 365 178 67 10
Jang, et al. [48] Sorting Algorithm 380 174 66 8
Popuri, et al. [49] Ensemble Learning 350 175 61 7
Latif, et al. [50] Neural-Network-Based Features with SVM Classifier 355 176 64 11
Nawaz, et al. [51] Multilayer Perception, J48, Meta Bagging, Random Tree 375 169 59 6
Assam, et al. [52] Random Forest 380 172 58 7
Islam, et al. [53] Convolutional Neural Network 370 174 60 9
Dehkordi, et al. [54] Evolutionary Convolutional Neural Network 360 173 55 8
Krishna, et al. [55] Local Linear Radial Basis Function Neural Network 355 177 62 9
Takrouni, et al. [56] Deep Convolutional Network 365 171 68 10
Fayaz, et al. [57] Convolutional Neural Network 370 178 60 8
Proposed Approach Logistic Regression 405 185 30 5