Skip to main content
. 2022 Oct 31;12(11):2643. doi: 10.3390/diagnostics12112643
Algorithm 1: Adaptive Stochastic Gradient Descent Algorithm
Input: Fetal abnormality images.
Output: Risk prediction
 start:
 # Remove the noise in the fetal abnormality images
Do
 training data classification
   for j = 1 to Data
initnumpy (array) → size
      [A,B,C]
         returns: [(class image)]
       returns: [corres, m(images)]
     end for
pat_size = array(array, shape)
  class = trans (gauss_noise)
  m = trans (spat)
  m = m [0]
       return (class [0], m)
    for each i in data
 returns: sample(w)
n_samples = l(s_labels)
CountDiC = dict(unique, Count)
     w = [ ]
     for each label in s_labels
        Append (w) → (n_samples/count labels)
        return w
       end for
    end for
   update w
   while (iter<= imagei)
End