Algorithm 1: Adaptive Stochastic Gradient Descent Algorithm |
Input: Fetal abnormality images. |
Output: Risk prediction |
start: |
# Remove the noise in the fetal abnormality images |
Do |
training data classification |
for j = 1 to Data |
initnumpy (array) → size |
[A,B,C] |
returns: [(class image)] |
returns: [corres, m(images)] |
end for |
pat_size = array(array, shape) |
class = trans (gauss_noise) |
m = trans (spat) |
m = m [0] |
return (class [0], m) |
for each i in data |
returns: sample(w) |
n_samples = l(s_labels) |
CountDiC = dict(unique, Count) |
w = [ ] |
for each label in s_labels |
Append (w) → (n_samples/count labels) |
return w |
end for |
end for |
update w |
while (iter<= imagei) |
End |