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Abstract: The extensive use of logistic regression models in analytical epidemiology as well as in
randomized clinical trials, often creates inflated estimates of the relative risk (RR). Particularly, in
cases where a binary outcome has a high or moderate incidence in the studied population (>10%),
the bias in assessing the relative risk may be very high. Meta-analysis studies have estimated that
about 40% of the relative risk estimates in prospective investigations, through binary logistic models,
lead to extensive bias of the population parameters. The problem of risk inflation also appears in
cross-sectional studies with binary outcomes, where the parameter of interest is the prevalence ratio.
As an alternative to the use of logistic regression models in both longitudinal and cross-sectional
studies, the modified Poisson regression model is proposed.

Keywords: etiological studies; relative risk; logistic regression; modified Poisson regression

1. Introduction

Often in analytic epidemiology, the main interest of an investigation focuses on the
possible causal relationship between a risk factor and the occurrence of a disease (or another
binary outcome). The examination of the relationship between the factor and the disease
can be conducted both in prospective and retrospective studies. In prospective studies, the
association between the factor exposure and the disease is assessed using the relative risk or
risk ratio (RR). Relative risk is defined as the ratio of the probability of the disease (outcome)
in those exposed to the factor to the probability of the disease in the unexposed. Therefore,
as a measure, RR estimates how much higher (or lower) is the chance of developing the
disease for those exposed to the risk factor compared to the unexposed. The data of such
an investigation can be summarized in a 2-by-2 table of the following form (Table 1):

Table 1. Notation for entries in a 2-by-2 table.

Outcome (Disease)
Factor Event No Event Total

exposed a b a + b
unexposed c d c + d

Total a + c b + d n = a + b + c + d
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The RR in Table 1 is estimated by the equation

RR =
a/(a + b)
c/(c + d)

=
a(c + d)
c(a + b)

In cases where the etiology of rare diseases (or rare events) is being studied, or
generally, in cases where the values of a and c are very small compared to those of b and d,
the RR can be approximated by the odds ratio (OR).

The OR is defined as the odds of the disease occurrence between exposed and unex-
posed persons

OR =
(a/(a + b))/(b/(a + b))
(c/(c + d))/(d/(c + d))

=
a/b
c/d

=
a · d
b · c

OR is a measure of the strength of the association between a binary factor and an
outcome [1–3]. When the probability of the outcome (or the incidence of a disease) is low,
the difference between the odds ratio and relative risk is negligible.

RR =
a(c + d)
c(a + b)

≈ a · d
b · c

Theoretically, both relative risk and odds ratio can take any positive value.
In case-control studies, the same definitions can be applied, except that RR cannot be

assessed directly. In these investigations, the proportion of cases in the entire population at
risk is unknown; therefore, one cannot measure the incidence of the outcome or disease. The
assessment of relative risk in case-control studies is performed through OR, which adequately
approximates RR, as long as the incidence of the disease is low (rare diseases) [2–4].

In cross-sectional investigations, the above definitions are modified and adapted to
the cross-sectional concept of prevalence. In these studies, as a measure of the relationship
between exposure and disease, the prevalence ratio (PR) is commonly used. That is, the
prevalence of the disease in those exposed to a risk factor to the prevalence in the unexposed.
The prevalence ratio summarizes the concept of risk in cross-sectional studies but without
having the potential causality that exists in longitudinal investigations [2,3]. With the
notation presented in Table 1, the prevalence ratio is defined as

PR =
a/(a + b)
c/(c + d)

In the case of rare diseases, the ratio is adequately approximated by the prevalence
odds ratio (POR)

POR =
(a/(a + b))/(b/(a + b))
(c/(c + d))/(d/(c + d))

=
a/b
c/d

=
a · d
b · c

The odds ratio, as a cross-product ratio in a 2-by-2 table, has the property of “reci-
procity”, which means changing the reference category of the binary outcome will yield
reciprocal estimates [5–10]. Its assessment as a point estimate of the corresponding popu-
lation ratio, as well as the assessment of its confidence intervals, are independent of the
reference category of the outcome variable. Furthermore, it is known (from sampling
theory) that the logarithmic transformation of OR, in either the form a·d

b·c or the recipro-
cal b·c

a·d , is normally distributed with estimated standard error, in both cases, equal to√
1
a +

1
b +

1
c +

1
d . These properties make the logarithm of OR the natural measure (time-

invariant) in stochastic-risk modeling [2,3].
It must be emphasized that reciprocity does not apply to the assessment of RR because

its definition depends on the reference category of the outcome variable. In the case where
RR is defined in terms of the occurrence of the disease, it is estimated by the quantity
a/(a+b)
c/(c+d) , while in the opposite case (non-occurrence) by the quantity b/(a+b)

d/(c+d) (Table 1).
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Therefore, the interpretation of a comparison based on RR is critically important on whether
the positive outcome or its negative complement is modeled [5–7].

In contrast to the odds ratio, relative risk has a notable arithmetic property called
“collapsibility”. This means that a crude (unadjusted) risk ratio will not change if adjusted
for a variable that is not a confounder. Due to collapsibility, assuming no confounding,
the RR estimates the change in risk, on a ratio scale, for the entire exposed group due to
exposure. Odds ratios are not collapsible, and therefore, the interpretation of an OR is more
limited. The odds ratio will estimate the average change in odds for exposed individuals
only if all individual odds ratios are the same and all individual risks without exposure are
the same. With the exception of this unlikely situation, the crude OR will be closer to 1 than
the average of stratum-specific or individual ORs. Even in the absence of confounding, the
adjusted OR will be further from 1 than the unadjusted OR [11–16].

Odds ratio and relative risk are connected by the relationship OR =
1−( c

c+d )
1−( a

a+b )
· RR. This

arithmetic relation indicates that OR tends to overestimate RR by the factor
1−( c

c+d )
1−( a

a+b )
when

it is more than 1 or underestimates it when it is less than 1 [17]. However, in cases where
the incidence or prevalence of a disease is low (≤10%) OR approximates RR adequately [5].
The overestimation or underestimation of RR by OR tends to be further inflated when it is
controlled for potential confounders, as it usually results in logistic regression. A simple
method has been proposed to approximate the relative risk from an adjusted odds ratio
(obtained from logistic regression) and derive an estimate of an association effect that better
represents the true RR [17,18]. However, this method usually produces ratio estimates
biased away from 1 when outcomes are common and risk among those not exposed varies
substantially, suggesting that the strength of association is greater than is true [19,20].
Moreover, the proposed confidence interval for the adjusted RR, computed by applying the
method to the bounds of the adjusted OR’s confidence interval, can also be biased, leading
one to believe that the relative risk estimate is more precise than is true. Options exist to
obtain unbiased estimates of relative risks in studies of common outcomes. As we will
see below, there are methods that have widely available user-friendly software and are
statistically appropriate to handle binary common outcomes.

It is common, in statistical analyses of a binary outcome, to use logistic regression as a
predominant technique in assessing the risk of exposure or the benefit of a treatment [21,22].
Logistic regression is a linear model with a dependent variable, the log odds of a binary outcome

ln
(

p
1− p

)
= B0 + B1x1 + B2x2 + . . . + Bkxk

The basic advantage of logistic regression is the ability to yield odds ratio estimators
adjusted for the effect of covariates. However, in cases where the incidence of a disease (or
an outcome) is relatively high, the use of ORs frequently yields inflated estimates of the
RRs [5,11,13,23–26].

Modified Poisson regression is an alternative to logistic regression, where the parame-
ters are RRs rather than ORs. It is a generalized linear model with a linking function, the
logarithm of the probability of a binary event (instead of the log odds) [27]. For the data
summarized in Table 1, the probability of the disease in those exposed to the risk factor is
defined by

p =
a

a + b
A simple linear model, with outcome variable, logarithm of p and predictor the

exposure variable X, is expressed by the equation

ln(p) = B0 + B1x (1)
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For x = 1 (exposed) and x = 0 (unexposed) the values of (1) are

ln
(

p(x=1)

)
= B0 + B1 · 1 = B0 + B1 (2)

ln
(

p(x=0)

)
= B0 + B1 · 0 = B0 (3)

The exponential transformation of (2) and (3) gives

p(x=1) = e(B0+B1) (4)

and
p(x=0) = eB0 (5)

RR is defined as the ratio of the probability of the outcome of the exposed (x = 1)
divided by the probability of the unexposed (x = 0). Using Equations (4) and (5), RR is
finally defined by

RR =
p(x=1)

p(x=0)
=

e(B0+B1)

eB0
=

eB0 · eB1

eB0
= eB1

If a Poisson distribution is assumed, the model parameters are estimated by a maxi-
mum likelihood estimation algorithm (quasi-likelihood method, QL) [28]. Estimating the
coefficients of the simple model results in

eB0 =
c

c + d
and eB1 =

α(c + d)
c(α + b)

The estimated standard error of RR, after being corrected for data overdispersion
(using robust estimates for the covariance matrix), is given by [29]√

1
a
− 1

a + b
+

1
c
− 1

c + d

In the case of multiple predictor variables, the simple Poisson model can be extended
by the equation

ln(p) = B0 + B1x1 + B2x2 + . . . + Bkxk (6)

or, equivalently
p = eB0+B1x1+B2x2+...+Bkxk , (7)

where x1, x2, . . . xk are the values of a set of predictor variables X1, X2, . . . , Xk.
The interpretation of the model (6) is similar to the multiple logistic regression one,

with the difference that its coefficients are referred to the probability (and not to the odds)
of an outcome. Specifically, for each variable Xi, the quantity eBi is the factor by which the
probability of an outcome is multiplied when the independent variable Xi increases by one
unit (given that the other variables remain constant).

It should be mentioned that the above use of Poisson’s regression is an exceptional
use of Poisson’s model, which is commonly applied to count data. This specific model
application, with the error variance correction, is generally referred to as modified Poisson
regression or robust Poisson regression [27].

2. Materials and Methods

In a clinical study, survival of mixed lobular and ductal carcinomas of breast cancer
was compared with a series of patients with pure invasive ductal ones. One hundred and
thirty-two patients, ninety-eight with ductal carcinomas and thirty-four with mixed who
had been treated by modified radical mastectomy, were followed for 10 years [26]. Survival
data were available for all patients with a minimum of five-year follow-up period. At the
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end of follow-up time, their survivorship was assessed in relation to the histological type
of tumor. The data are presented in Table 2.

Table 2. Survivorship of 132 women at the end of five-year follow-up period.

Dead Alive Total

Histological type

Mixed
26 8 34

76.5% 23.5% 100.0%

Ductal
38 60 98

38.8% 61.2% 100.0%

Total
64 68 132

48.5% 51.5% 100.0%

The OR and RR of five-year mortality for the mixed versus ductal type were, respectively:

OR =
a · d
b · c =

26 · 60
8 · 38

= 5.13,

RR =
a(c + d)
c(a + b)

=
26 · 98
38 · 34

= 1.97

Moreover, the 95% Confidence Intervals (CIs) of OR and RR were: 95% CI OR (2.11,
12.50) and 95% CI RR (1.45, 2.69).

3. Results

Using a simple logistic regression model, with the five-year mortality as a binary
outcome (dead/alive) and the histological type as a predictor, the estimated OR for mixed
versus ductal carcinoma mortality at the end of five-year period is the same as in the simple
2-by-2 table, that is, about 2.5 times the RR (Table 3).

Table 3. Simple logistic and Poisson regression models with five-year mortality as the outcome variable.

Logistic Regression B OR p-Value 95% CI OR

Histological type (mixed vs. ductal) 1.64 5.13 <0.001 2.11–12.50

Poisson Regression B RR p-Value 95% CI RR

Histological type (mixed vs. ductal) 0.68 1.97 <0.001 1.45–2.69

Furthermore, using a multiple logistic regression model controlling for age, grade
of malignancy (Grade II, Grade III), possible lymphocytic infiltration, and the number of
lymph nodes metastases (≤3, >3), the estimated OR is further inflated to 5.25 (Table 4).

The results of logistic model indicate that adjusted OR tends to overestimate RR, even
to a greater extent than unadjusted one. Moreover, simulation studies have shown that
estimated CIs for the OR are quite wide, while the point estimation of the ratio appears
to have inconsistency problems (that is, the bias does not decrease as the sample size
increases) [19,23,29]. When estimating RR of an outcome, the use of logistic regression
model is considered abusive if the outcome incidence is rare (<10%). For common outcomes,
OR always overstates RR, sometimes dramatically. In these cases, the modified Poisson
regression model has been proposed [29–31].



Diagnostics 2022, 12, 2851 6 of 10

Table 4. Multiple logistic and Poisson regression models with five-year mortality as the outcome variable.

Logistic Regression B OR p-Value 95% CI OR

Histological type (mixed vs. ductal) 1.66 5.25 <0.001 1.94–14.22
Age of patients (in years) 0.01 1.01 0.723 0.95–1.08

Grade of malignancy (Grade III vs. Grade II) 0.44 1.55 0.360 0.61–3.95
Lymphocytic infiltration 0.66 1.93 0.219 0.68–5.51

Lymph node metastases (>3) 0.32 1.38 0.430 0.62–3.10

Poisson Regression B RR p-Value 95% CI RR

Histological type (mixed vs. ductal) 0.66 1.94 <0.001 1.36–2.75
Age of patients (in years) 0.01 1.01 0.688 0.98–1.03

Grade of malignancy (Grade III vs. Grade II) 0.17 1.18 0.380 0.81–1.72
Lymphocytic infiltration 0.29 1.34 0.250 0.81–2.22

Lymph node metastases (>3) 0.16 1.17 0.368 0.82–1.68

The modified Poisson regression model will be used to reanalyze the survival data of
breast cancer. The results of the modified Poisson regression, with dependent variable the
five-year mortality and predictor the histological type, are presented in Table 3. The table
includes the regression-derived coefficient (B), the estimation of RR, the Wald test, and the
CI for RR. The point and interval estimation of RR are identical to those calculated directly
by the contingency table (RR = 1.97, 95% CI: 1.45–2.69).

In order to adjust for covariates, the survival data were reanalyzed, controlling for his-
tological type, degree of malignancy, possible lymphocytic infiltration, number of metastatic
lymph nodes, and age (Table 4).

The adjusted RR for mixed versus ductal adenocarcinoma five-year mortality still
remains about twice as high (RR = 1.94, p < 0.001). Moreover, the CIs for all predictor
variables are robust and consistent compared to those obtained from the logistic regression
model. Specifically, the 95% CI for the histological type is (1.36, 2.75) versus (1.94, 14.22) of
the logistic model.

It is evident that the assessment of RR in Poisson regression is more coherent compared
to the logistic model. The difference from its unadjusted assessment in the 2-by-2 contin-
gency table between the histological type and the present situation is negligible (1.94 vs.
1.97), implying that its adjustment for potential confounding variables is small. Further-
more, the introduction of multiple independent variables in the Poisson model yields more
efficient coefficient estimators than the logistic model (more compact CIs).

The estimation of RR through the Poisson model is performed in terms of a specific
outcome (death in our example) without the “reciprocity” that appears in logistic model.
That is, while in logistic regression, regardless of the outcome against which the risk is
estimated, the exponentiated coefficients are reciprocal of each other (with the significance
remaining the same), in the Poisson model, both the coefficients and statistical significance
are modified according to the estimated outcome. This differentiation may seem strange to
those familiar with the use of logistic regression, but it is consistent with the rationale of
Poisson model since the dependent variable in the latter (i.e., the logarithm of the relative
risk) varies according to the outcome of interest. In extreme cases, there may be statistical
significance for one category of the binary outcome and not for the other [5].

The breast cancer data will be reanalyzed to show the differences in the symmetry (reci-
procity) between the logistic regression and the Poisson model results. In the new analysis,
the binary outcome will be survival and not death (Table 5). Exponentiated coefficients of
logistic model (that is, RRs) are reciprocal of the original ones (with death as a reference
event), while in the Poisson regression, they differ in both values and statistical signifi-
cance. For example, the adjusted RR for survival of mixed adenocarcinoma versus ductal is
OR = 0.19 = 1/5.25, p = 0.001, of Grade III versus Grade II, OR = 0.65 = 1/1.55, p = 0.360, etc.
On the contrary, reciprocity does not apply to the Poisson regression coefficients: for mixed
adenocarcinoma vs. ductal, RR = 0.40 6= 1/1.94 = 0.52, p = 0.005, for Grade III vs. Grade II,
RR = 0.79 6= 1/1.18 = 0.85, p = 0.353, etc.
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Table 5. Multiple logistic and Poisson regression models with five-year survival as the outcome variable.

Logistic Regression B OR p-Value 95% CI OR

Histological type (mixed vs. ductal) −1.66 0.19 0.001 0.07–0.52
Age of patients (in years) −0.01 0.99 0.723 0.93–1.06

Grade of malignancy (Grade III vs. Grade II) −0.44 0.65 0.360 0.25–1.65
Lymphocytic infiltration −0.66 0.52 0.219 0.18–1.48

Lymph node metastases (>3) −0.32 0.72 0.430 0.32–1.62

Poisson Regression B RR p- Value 95% CI RR

Histological type (mixed vs. ductal) −0.92 0.40 0.005 0.21–0.76
Age of patients (in years) −0.01 0.99 0.659 0.97–1.02

Grade of malignancy (Grade III vs. Grade II) −0.24 0.79 0.353 0.48–1.30
Lymphocytic infiltration −0.24 0.78 0.208 0.54–1.15

Lymph node metastases (>3) −0.12 0.88 0.434 0.65–1.20

4. Discussion

Binary logistic regression is widely used in empirical research, sometimes even uncrit-
ically. Based on the functional form of the logistic model, it results that the exponentiated
coefficient of a dichotomous independent variable (defining two groups) estimates the OR
of the binary outcome. If the investigation simply regards the existence of a significant rela-
tionship between the independent variable and the outcome with no interest in unbiased
estimation of RR, logistic regression is extremely useful with extensive applications.

However, if the focus is on estimating the RR of a binary outcome, then the use of
OR, as derived from the exponentiated coefficients of the logistic regression model, is
unsafe. This estimate is very close to the RR when the outcome has a low incidence in
the studied data (≤10%). Nevertheless, in cases where the incidence is higher, the use
of logistic regression tends to overestimate the RR and sometimes misleadingly inflate it.
In prospective epidemiological studies, when exposure to a risk factor is evaluated, the
logistic regression model should be used with great caution. In these cases, where the
estimation of RR can be performed directly from the data, it is suggested to use the modified
Poisson model as described previously. Especially in cases of common outcomes with a
frequency higher than 10% in the study data, the use of the modified Poisson regression
is considered necessary. The same procedure is proposed for the analyses of randomized
clinical trials [12]. Meta-analysis studies have estimated that approximately 40% of the
RR assessment in prospective investigations through logistic regression models leads to
extensive biases of the corresponding population parameters [32].

The binary logistic model can be used in a reliable and consistent manner if the
outcome has a low incidence in the sample data. It can also be used in studies with the
main interest in predicting an outcome or estimating the strength and direction of the
association between the independent variables and the dichotomous outcome. In these
latter cases, where there is no need for unbiased estimation of RR, logistic regression works
satisfactorily with information-rich output. Furthermore, in case-control epidemiological
studies, the use of logistic regression is the only option since the RR cannot be directly
estimated from the available data. In these specific investigations, the only possible option
is to estimate the ORs.

In cross-sectional studies, the use of logistic regression is subject to the same limitations
as in longitudinal studies [5,33–35]. In these cases, since we are interested in unbiasedly
estimating the RR of an outcome, the use of the modified Poisson model is suggested
(since the outcome has a low incidence in the available data). If the purpose of a cross-
sectional study is not to estimate the relationship (in terms of strength and direction) of a
dichotomous variable and an outcome but to unbiasedly estimate the prevalence ratio in
two groups, then the aforementioned limitations are equally applied.

Apart from the modified Poisson regression, as an alternative procedure for estimating
relative risk, the log binomial model has been proposed and is widely used. The latter has
similar power to the robust Poisson regression (possibly, in some cases, providing slightly
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smaller standard errors of the relative risk) but often exhibits convergence problems of the
maximum likelihood algorithm it uses [36,37]. Moreover, it generates incorrect estimates
when the covariate values in the data are not bounded by one (that is, the case of continuous
covariates) [36]. Results similar to those of Poisson regression are also provided by the Cox
proportional hazard model with robust variance estimation. The Cox model is equivalent to
Poisson regression if the follow-up time for all subjects in the study is considered constant
(in the analysis, we can set the follow-up time to one or any quantity that is the same for
all subjects). Another simple alternative for risk estimation is to use the Mantel–Haenszel
method for relative risk, which can adjust for one or two confounders [38,39]. However,
this method becomes inefficient when several factors, especially continuous variables, are
being adjusted for simultaneously. The literature is rich regarding the effectiveness and
unbiasedness of all previous methods. Considering the weaknesses and strengths of the
methods, as well as their ease of use and availability in commercial data analysis software,
Poisson regression seems to have the most advantages [31,40–42]. Nevertheless, researchers
should keep in mind that due to the lack of symmetry in Poisson regression coefficients
(as with all models with the relative risk as a dependent variable), the choice of reference
category is critically important in whether the positive outcome or its negative complement
is modeled. Moreover, the study results and inference should not be based solely on
statistical significance but also on clinical significance, which sometimes is overlooked, and
undue importance to statistical measures is given.

5. Conclusions

The uncritical application of logistic regression in epidemiological studies often creates
inflated estimates of the RR. The basic advantage of logistic regression is the ability to yield
approximations of the RRs through odds ratios adjusted for the effect of possible covariates.
However, in cases where the incidence of a disease or an outcome is relatively high, ORs
can substantially overestimate RRs. An alternative to the use of logistic regression is the
modified Poisson model. As a basic criterion for choosing the appropriate method, it is
suggested primarily to construct a 2-by-2 contingency table between the risk factor and the
outcome and then calculate both the OR and the RR. If the two values differ notably, the
use of the modified Poisson model is recommended. Since this procedure is implemented
in standard statistical packages, there is no justification for relying on logistic regression
when the relative risk is the parameter of primary interest.

In a future paper, validation of the performance of modified Poisson regression, in
terms of relative bias for point estimation and percentage of confidence interval coverage,
will be undertaken through simulated and real data sets.
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