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Abstract: Background: This study challenges state-of-the-art cardiac amyloidosis (CA) diagnostics
by feeding multi-chamber strain and cardiac function into supervised machine (SVM) learning
algorithms. Methods: Forty-three CA (32 males; 79 years (IQR 71; 85)), 20 patients with hypertrophic
cardiomyopathy (HCM, 10 males; 63.9 years (±7.4)) and 44 healthy controls (CTRL, 23 males;
56.3 years (IQR 52.5; 62.9)) received cardiovascular magnetic resonance imaging. Left atrial, right
atrial and right ventricular strain parameters and cardiac function generated a 41-feature matrix for
decision tree (DT), k-nearest neighbor (KNN), SVM linear and SVM radial basis function (RBF) kernel
algorithm processing. A 10-feature principal component analysis (PCA) was conducted using SVM
linear and RBF. Results: Forty-one features resulted in diagnostic accuracies of 87.9% (AUC = 0.960)
for SVM linear, 90.9% (0.996; Precision = 94%; Sensitivity = 100%; F1-Score = 97%) using RBF kernel,
84.9% (0.970) for KNN, and 78.8% (0.787) for DT. The 10-feature PCA achieved 78.9% (0.962) via linear
SVM and 81.8% (0.996) via RBF SVM. Explained variance presented bi-atrial longitudinal strain and
left and right atrial ejection fraction as valuable CA predictors. Conclusion: SVM RBF kernel achieved
competitive diagnostic accuracies under supervised conditions. Machine learning of multi-chamber
cardiac strain and function may offer novel perspectives for non-contrast clinical decision-support
systems in CA diagnostics.

Keywords: artificial intelligence; cardiovascular magnetic resonance; cardiac strain; support vector
machine; cardiac amyloidosis

1. Background

Cardiac amyloidosis (CA) is a rare restrictive cardiomyopathy, characterized by an
uncontrolled amyloid protein deposition that exacerbates organic function [1]. Early CA
diagnostics is usually hindered by indistinguishable clinical presentation and greater
awareness of more prevalent hypertrophic diseases and heart failure syndromes. Thus, CA
can be considered underdiagnosed, consequently delaying necessary therapeutic measures,
reducing quality of life and worsening clinical prognosis [2,3].

Cardiac magnetic resonance (CMR) imaging plays an important role in CA diagnosis
and CA differentiation from other hypertrophic diseases such as hypertrophic cardiomyopa-
thy (HCM). Despite clinical and radiological advances, CA remains a challenging diagnosis
usually confirmed by specialized centers with significant delay in the patient’s clinical
odyssey. The state-of-the-art CA diagnosis via CMR is ideally substantiated by diffuse
sub-endocardial or transmural late gadolinium enhancement (LGE), elevated myocardial
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native T1, elevated extracellular volume fraction and the inability of myocardial signal
suppression in phase-sensitive inversion recovery (PSIR) LGE sequences [4]. Their individ-
ual incremental diagnostic and prognostic value has been profoundly investigated [5–10].
Therefore, the left ventricle serves as the primary chamber for diagnostic validation.

However, recent investigations have shown that cardiac strain provides discriminative
value for all cardiac chambers and thus may support differentiation of CA from hyper-
trophic cardiomyopathy (HCM) and healthy control subjects (CTRL) [6,11–15]. Based on
previous observations [11,12,14–16] and in the hope of optimizing CMR diagnostic accu-
racy for CA detection, we hypothesize that strain measurements of the diagnostically less
popular cardiac chambers along with general cardiac functional parameters may achieve a
high CA diagnostic accuracy. Cardiac strain parameters would thus solely derive from both
atria and the right ventricle. This study was conducted primarily as a scientific challenge,
elucidating the diagnostic value of multi-chamber wall deformation.

The complexity of this diagnostic approach, encompassing a wide spectrum of parame-
ters, demands the computational gold standard termed machine learning. Machine learning
is a function of artificial intelligence, used as a promising alternative to overcoming the
limitations of traditional prediction approaches [17]. Recent supervised and unsupervised
machine learning approaches have proven highly valuable for the classification, regression
and prediction of complex datasets in all industrial sectors, including the medical field
of CA diagnostics [3,18,19]. For example, promising machine learning aspects have been
based on CA-specific laboratory profiles of heart failure patients [19] or CA-associated ECG
mapping [18]. This study utilized a support vector machine (SVM) algorithm to investigate
the diagnostic performance of CMR cardiac strain and functional parameters from the left
atrium (LA), right atrium (RA) and right ventricle (RV) for biopsy-validated CA patients,
contrasting them to corresponding data from HCM patients and CTRL subjects. Utilizing
41 strain and functional parameters, we assess the diagnostic performance of SVM for CA
detection. For the purpose of efficient and cost-effective clinical practice, an additional
machine learning algorithm was conceptualized using the 10 most valuable diagnostic
parameters available after the post-processing of a standard CMR examination.

2. Methods
2.1. Study Population

This study has a retrospective single-center observational design. The inclusion criteria
called for biopsy-validated CA patients and their subtypes. CA patients had received a
routine CMR according to standard diagnostic protocol with adequate imaging quality.
HCM patients were enrolled upon confirmed diagnosis in accordance with ESC guidelines
2014 [20] and AHA guidelines 2020 [21]. A group of healthy volunteers aged over 50 years
was included for improved comparison. Written informed consent was obtained from
all participants prior to the examination. Exclusion criteria for CTRL subjects included
a clinical history of cardiovascular disease and surgery, medication for cardiovascular or
metabolic disorders, associated risk factors, and contraindications for CMR. If CMR imaging
demonstrated myocardial abnormalities, aortic ectasia, pulmonary trunk dilation, valvular
heart disease, ischemic heart disease or signs of cardiomyopathy the control individuals
would be excluded. All examinations were done in accordance with the 1964 declaration of
Helsinki and the study was approved by the local ethics committee (Ethik-Kommission der
Medizinischen Fakultät der Ruhr-Universität Bochum; registration number 2017-238).
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2.2. Variable Selection

In adherence to the study objective, the included variables were selected based on
a profound array of strain and strain rates of the RA, LA and RV. For both atria, this
resulted in reservoir, conduit and booster longitudinal strain and strain rate in the two- and
four-chamber view. For the right ventricle, circumferential, radial and longitudinal strain
and strain rate were quantified in the short-axis and four-chamber view. Lastly, in addition
to demographic parameters such as age and body surface area, general cardiac functions
were included, such as age, body surface area, heart rate, right heart volumetrics, and left
and right ventricular ejection fraction were included. In sum, 41 different variables were
available for this study.

2.3. Cardiac MRI

All subjects underwent cardiac MRI at our institution using a 3.0 Tesla multi-transmit
magnetic resonance imaging system (Achieva, Philips Healthcare, Best, The Netherlands;
Release 5.3.1 and 5.6.1) incorporating dStream technology. Vector electrocardiogram-
triggered cardiac cine acquisitions were performed on all patients. The maximum gradient
performance was 40 mT/m with a slew rate of 200 mT/m/ms. A cardiac phased-array
coil was used for signal reception. An axially acquired stack covering the whole heart, a
short-axis stack covering the entire left and right ventricles (12–16 slices, no gap) as well
as standard two-, three- and four-chamber views were utilized with retrospectively gated
cine steady-state free-precession acquisitions (TR/TE/flip angle = 2.7 ms/1.35 ms/42◦) for
the assessment of heart function in all four cardiac chambers and morphology. A parallel
imaging technique with a SENSE-reduction factor of 2 was applied to keep breath-holding
times ≤ 12 s. Within one cardiac cycle >25 reconstructed heart frames were acquired in
order to achieve greater temporal resolution, as recently demonstrated [22]. The spatial
resolution was 1.5 × 1.5 × 8 mm3.

2.4. Strain Analysis

Strain analysis was conducted using the CVI42® software package (Circle Cardio-
vascular Imaging Inc., Calgary, AB, Canada, Release 5.12.1) based on cine steady-state
free-precession acquisitions. LA and RA feature-tracking techniques were applied as
previously described [23]. The longitudinal axis of the four-chamber view served as the
quantitative parameter for LA, RA and RV strain assessment. An additional short-axis
quantification was carried out for RV strain and an additional two-chamber view assess-
ment was included for LA strain. The following variables were used to comprehensively
assess RV strain: global and regional longitudinal, circumferential and radial strain as
well as global peak systolic and diastolic strain rate. RA and LA strain were described
by the reservoir, conduit and booster strain and strain rate, respectively. At end-systole
and end-diastole, the contours of LA, RA and RV endo- and epicardium were delineated
semi-automatically. For RA strain assessment, the linings excluded the superior and inferior
ostia of the vena cava as well as the right atrial appendage. For LA strain assessment, the
linings excluded the ostia of the pulmonary veins and left atrial appendage. Volumetric LA,
RA and RV quantifications were obtained using the disc-summation technique (Simpson
approach) at the end of diastole and systole.

2.5. Descriptive Statistics

Descriptive statistics were processed in SPSS (version 27.0.0.0, IBM Deutschland GmbH,
IBM, Armonk, NY, USA). All continuous variables were presented as mean ± standard devia-
tion (SD) when normally distributed, otherwise as median with interquartile range (IQR).
Comparison of baseline characteristics, volumetric parameters and cardiac strain between
three different groups was carried out using the univariate ANOVA or ANOVA–Welch test
if the criteria were met. A post-hoc Tukey HSD was conducted in case of homogeneity of
variance, otherwise a Games–Howell was used to identify inter-group differences. In case
of nonparametric data, the Kruskal–Wallis test was used.
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2.6. Correlation Matrix

For the linear correlation, a matrix was generated. The matrix displays the correlation
coefficient for different variables. Numbers in the matrix varied from −1 to +1. A number
closer to +1 indicates a strong positive correlation, a number closer to −1 indicates a strong
negative correlation and 0 demonstrates no correlation between the features. Initially, the
data were normalized for all features. Normalizing the data reduces the bias caused by
larger-scale data. The correlation matrix was generated using Pearson’s product–moment
correlation.

2.7. Classification Algorithms

Multiple machine learning classifier algorithms such as k-nearest neighbor (KNN),
support vector machine (SVM) linear, SVM kernel RBF, and decision tree (DT) were used on
the dataset as recently described in literature [24,25]. The hyperparameters were considered
as the default value used by SVC (support vector classifier) which fits the model and returns
the “best fit” hyperplane for the data. To estimate the algorithms, training and testing
methodology were used and ultimately the performance evaluation was calculated utilizing
the accuracy and confusion matrix. A summary of the workflow is presented in Figure 1.
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Figure 1. Flow diagram representing the methodology of machine learning and the classifier al-
gorithms used. SVM = supervised machine learning, KNN = k-nearest neighbor, PCA = principal
component analysis.

Processing of variables for the mentioned algorithms was performed using Python
(Version nr. 3.8.12). This study implemented a linear and radial basis function (RBF) SVM,
KNN and DT for MRI data analysis. Their basic function is illustrated in Figure 2. The SVM
algorithm was used to predict a diagnosis of amyloidotic cardiomyopathy in a cohort with
HCM patients and healthy controls. Thus, the SVM classifier predictor variable is cardiac
amyloidosis. The data were split into two categories: 80% of the data were used to train
and fit the model and the remaining 20% of the data were used to validate the accuracy of
the model. Then, the training model was fitted to all the algorithms. Ultimately, the fitted
model was validated using the test set.
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Figure 2. Simplified illustration of the classifier algorithm function for the decision tree (DT), k-
nearest neighbor (KNN), support vector machine (SVM), radial basis function (RBF) kernel and SVM
linear are portrayed. DT is characterized by the nodes (dots) representing variables and the branches
(arrows) representing decisions. KNN calculates data proximity (Euclidian distance) by assuming
similar variables remain at a shorter distance from one another. RBF computes similarity between
two data points ranging from 0 (similar) to 1 (dissimilar) enabling complex separation between data
points. SVM linear separates the data points based on the linear dividing “hyperplane”, albeit with
less flexibility than SVM RBF kernel. Different colored dots represent different cohorts; solid line
corresponds to best separation of cohorts; dashed lines represent confidence intervals.

2.8. Support Vector Machine (SVM) RBF

The algorithm, referred to as radial basis function (RBF) kernel, is characterized as
a pattern analysis algorithm that utilizes specific vectors referred to as “input spaces” to
quantify the degree of similarity between two data points. The RBF kernel value ranges
from zero to one. Similarity between points would result in the RBF kernel value being
closer to zero, two dissimilar points shift the RBF kernel value closer to 1. Precision (positive
predictive value), recall score (sensitivity) and F1-score (test accuracy) were calculated. To
calculate the AUC, the one vs. rest (ovr) method was used to evaluate multiclass models by
comparing each class against all other classes at the same time.



Diagnostics 2022, 12, 2693 6 of 13

2.9. K-Nearest Neighbors (KNN)

The KNN algorithm [26] was used to measure document relevancy to a given query
termed the Euclidean distance. Although numerous techniques exist to conduct this
algorithmic analysis, the Euclidean distance remains the most popular due to its efficiency
and simplicity. The Euclidean distance is the measure between the query vector and the
document vector. This algorithm assumes that similar variables remain in closer proximity.
Although this classifier algorithm requires no prior training, its prediction capabilities
suffer depending on the data size.

2.10. Decision Tree (DT)

A decision tree is another supervised machine learning algorithm that is used in both
regression and classification problems. In this algorithm, the data is continuously split
based on various parameters, and it can be explained by entities such as decision nodes
and leaves. The same training and testing methodology were applied to both KNN and DT.

2.11. Principal Component Analysis (PCA)

Principal component analysis is a dimensionality reduction method widely used to
reduce the dimensionality of large datasets with a large number of variables improving
cost-effectiveness and efficiency while preserving as much ‘variability’ (i.e., statistical
information) as possible [27]. Feature selection is based on the magnitude of the correlation
coefficients irrespective of their negative or positive sign. The PCA analysis can be based
on linear SVM or SVM RBF. Using PCA, the top ten variables with the greatest diagnostic
value for CA differentiation (out of the 41 available features in this study) were identified
and their cumulative diagnostic performance was assessed.

3. Results
3.1. Cardiac Features

This retrospective study enrolled a total of 107 subjects, including 43 CA patients,
20 HCM patients and 44 CTRL patients. CA patients made up the oldest cohort (79 years
(IQR 71; 85) in contrast to HCM (63.9 ± 7.4 years) and CTRL (56.3 years (IQR 52.5; 62.9)).
CA patients showed significantly impaired ejection fraction for both the left and right
ventricle compared to CTRL and HCM (all p < 0.001). Moreover, CA-associated impairment
of cardiac strain was observed in various chambers, for example for the reservoir phase of
both atria (RA; HCM: 33.5 ± 16.3% vs. CA: 10.6% (5.6; 19.9), p < 0.001; LA (four-chamber);
HCM: 14.7 ± 7.1% vs. CA: 7.0% (4.5; 11.1), p < 0.001). All features are summarized in
Tables 1 and S1–S3.

3.2. Classification Algorithms

The SVM matrices were generated (Figure S1). Assumed physiological relationships
between features could be observed. For instance, the RA reservoir phase (RA_S_Res) and
LA reservoir phase (LA_S_Res_2Ch) present a correlation coefficient of 0.68, suggestive of
functional bi-atrial interdependency.

The accuracies were 84.9% (0.970) for the KNN algorithm, 78.8% (0.787) for the DT
algorithm, 87.9% (AUC: 0.962) for SVM linear algorithm and 90.9% (AUC: 0.996) for the
SVM RBF kernel (Figure 3).

SVM RBF kernel presented the highest accuracy rate among all employed methods,
which is why it was the algorithm of choice for PCA. Corresponding confusion matrices and
classification reports were generated for all four classifier algorithms (Figure 4). Confusion
matrices demonstrate the performance summary of the classifier between the actual and
the predicted outcomes utilizing 20% of the data. For example, the confusion matrix for
SVM RBF kernel is displayed (Figure 4), whereby out of 17 biopsy-validated CA patients,
1 was predicted false negative, reducing the precision (positive predictive value) to 0.94.
For CTRL subjects, 2 were predicted false positive from a total of 12, lowering precision to
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0.83. Out of seven HCM patients, three were predicted false negative, resulting in a recall
(sensitivity) of 0.57.

Table 1. Baseline parameters of patients with cardiac amyloidosis and hypertrophic cardiomyopathy.
Comparison to healthy control subjects.

CTRL HCM CA Post-Hoc Test
p-Value

N 44 20 43
Sex [males] 23 10 32

Age [yrs] b 56.3 (52.5; 62.9) a 63.9 ± 7.4 79 (71; 85) a
CA-HCM, p < 0.001
CA-CTRL, p < 0.001

HCM-CTRL, p = 0.005
BSA [m2] c 1.87 ± 0.20 1.96 ± 0.18 1.89 ± 0.22 n.s.

HR [bpm] b 64.9 ± 10.0 63.1 ± 7.8 74.0 ± 14.8
CA-HCM; p = 0.001
CA-CTRL; p = 0.004

HCM-CTRL; p = 0.706

LV-EF [%] b 66.9 ± 4.7 72.2 ± 8.6 60.0 (50; 65) a
CA-HCM; p < 0.001
CA-CTRL; p < 0.001

HCM-CTRL; p = 0.043
a median value (interquartile range), b ANOVA–Welch; Games–Howell, c ANOVA–Tukey–HSDCTRL—healthy
control subjects, HCM—hypertrophic cardiomyopathy patients, CA—cardiac amyloidosis patients, BSA—body
surface area, HR—heart rate, LV—left ventricular, EF—ejection fraction, n.s.—not significant.
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3.3. Principal Component Analysis (PCA)

The variance across principal components (Figure 5) found that the top ten variables
can cumulatively explain 95.9% of the data with an accuracy of 78.9% using the linear SVM
and 81.8% using the RBF kernel SVM. The main components are summarized in a matrix
(Figure S2). Table 2 represents the top ten highest-rated variables of the first principal
component. Among the top ten predictors, LV-EF and RV-EF account for important CA
predictors (Table 2 and Figure S2). Moreover, the cardiac strain of the reservoir phase
for both the left and right atria appears to contribute high CA predictability (Table 2)
corresponding with their significant impairment in wall deformation compared to CTRL
and HCM (p ≤ 0.003; Tables S1 and S3).
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Table 2. Top ten highest rates for the first principal component.

Variance Ranking Magnitude of Coefficients

LA_S_Res_2Ch 0.410296
RA_S_Res 0.381366

LA_S_Res_4Ch 0.276865
RV_EF 0.269950

RV_GRS_4Ch 0.267888
RA_S_Con 0.224486

LA_S_Con_2Ch 0.212670
LA_S_Boo_2Ch 0.197627

LV_EF 0.159073
RA_S_Boo 0.156880

LV_EF = left ventricular ejection fraction, RV_EF = right ventricular ejection fraction, RA_S_Res = right atrial
strain of reservoir phase, RA_S_Con = right atrial strain of conduit phase, RA_S_Boo = right atrial strain of booster
phase, LA_S_Res_4Ch = left atrial strain of reservoir phase in four-chamber view, LA_S_Res_2Ch = left atrial
strain of reservoir phase in two-chamber view, LA_S_Con_2Ch = left atrial strain of conduit phase in two-chamber
view, LA_S_Boo_2Ch = left atrial strain of booster phase in two-chamber view, RV_GRS_4Ch = right ventricular
global radial strain in four-chamber view.
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Figure 5. The explained variance of the 10 most valuable diagnostic features is given in descending
order from left to right. The PCA bars each represent one component. For example, the first bar of the
explained variance is composed of the following variables shown in Table 2. Solid line corresponds
to the cumulatively explain of the data. LV-EF = left ventricular ejection fraction, RV-EF = right
ventricular ejection fraction, RA = right atrial, LA = left atrial, RV = right ventricular.

The confusion matrix for PCA using the SVM RBF algorithm is summarized in Figure 4.
In contrast to the previous models employing 41 variables, PCA was limited to 10 variables,
consequently lowering the recall rate to 0.94 for CA and 0.29 for HCM predictions (Figure 4).
Moreover, the precision rate of CTRL was reduced to 0.67. The loss in discriminatory power
of using PCA instead of all 41 features is reflected in lowered F1 scores.

4. Discussion

To the best of our knowledge, this study is the first to report a supervised machine
learning diagnostic approach via CMR left atrial, right atrial and right ventricular quanti-
fied strain and general cardiac functions. The novel findings of the present study are as
follows: (i) supervised machine learning accurately differentiates CA within a cohort of
HCM patients and CTRL subjects, (ii) larger datasets cumulatively contribute towards dis-
criminative performance, (iii) LV-EF and RV-EF remain important feasible clinical predictors
of CA due to their routine availability.

4.1. Machine Learning vs. State-of-the-Art

A recent left ventricular multiparametric assessment of 41 CA and 45 HCM patients
found the diagnostic accuracy-associated AUC to be 82% for percentage normal myocardial
strain, 81% for atypical LGE and 94% for the combination of both [6]. A further multi-
center-based study observed a diagnostic accuracy-associated AUC of LGE to be as high
as 95% [28]. Moreover, the combination of deep learning and LGE–CMR presented good
diagnostic accuracy (88%) in CA patients [29]. The power of machine learning elucidated
throughout this study detected 90.9% (AUC 0.996) of CA patients based on 41 variables
and 82% (AUC 0.962) of CA patients based on the 10 best variables. These findings suggest
that the diagnostic accuracy of our machine learning-based approach is able to compete
with diagnostic accuracies of the state-of-the-art methods without the incorporation of LGE
left ventricular tissue characterization or even left ventricular deformation analysis. LGE
and the associated evaluation of the left ventricular myocardium play a pivotal role in
the differential diagnostic of the hypertrophic phenotype. However, the administration
of gadolinium poses a risk, especially for patients with advanced renal insufficiency. For
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example, patients with systemic amyloidosis may suffer from renal impairment after
progressive amyloid infiltration. Thus, gadolinium administration may be contraindicated,
consequently reducing the discriminative power of a CMR examination.

4.2. Application of Machine Learning in Cardiac Imaging

The recent integration of machine learning has presented promising gadolinium-free
aspects for CA diagnostics. For example, Huang et al. highlighted the potential diagnostic
function of texture analysis. A diagnostic accuracy of 82.2% was observed based on seven
texture features of the widely available T2-weighted images for CA differentiation from
HCM in a similar hypertrophy subgroup using the machine learning algorithm [30]. A
similar principle has been applied for native T1 mapping for accurate differentiation
between HCM patients and patients with hypertensive heart disease achieving a maximum
diagnostic accuracy of 82% [31]. Further non-CA diagnostic developments showed that
integrating artificial intelligence in automated chamber quantification for left ventricular
strain may detect cardiotoxic remodeling following breast cancer treatment [32]. Moreover,
AI-derived strains identified left ventricular global longitudinal strain as a strong predictor
of major adverse cardiac events prediction [33]. These observations reiterate the enhanced
diagnostic performance of artificial intelligence in non-contrast cardiac wall deformation
analysis or myocardial texture assessment. The novelty of our study is underscored by the
use of multi-chamber strain diagnostics for CA, without incorporation of the left ventricle or
contrast agent, which has not been clinically established. Recent studies have substantiated
that amyloidotic infiltration of the myocardium exacerbates cardiac deformation at both the
atrial [11,13] and ventricular level [6,15]. This allows for anticipation of a unique cardiac
strain profile associated with amyloidotic cardiomyopathy. In the era of increasingly
automatized endo- and epicardial contouring, software-based strain evaluation using four-,
two-chamber and short-axis cine sequences, multi-chamber volumetrics and strain can be
efficiently quantified.

4.3. Classifier Algorithms

The choice of classifier algorithm is constantly challenged, as performance is depen-
dent on the complexity and distribution of the dataset. Our results showed that diagnostic
accuracy varies depending on the classifier used. In this case, utilizing the SVM linear is
simpler and more efficient than RBF, although it results in lowered diagnostic performance
as data is not always linearly separable. Although RBF shares advantages with KNN, it
often remains superior by overcoming the space complex problem. The power of the RBF
kernel lies in its ability to map points in higher-dimensional spaces, which appears best
suited for our dataset.

As anticipated, higher diagnostic accuracies are obtained with the 41-variable model;
however PCA-associated reduction to a quarter of the variables comes at a cost of only an
8.9% loss in diagnostic accuracy. Thus, depending on the time and effort for parameter
quantification the appropriate model can be selected. Moreover, the majority of features
in the PCA model were based on left and right atrial strain parameters. Impairment of
nearly all functional phases for left and right atrial longitudinal strain appears to be a
further valuable discriminative characteristic contributing towards diagnostic accuracy,
as previously observed for the left atrium [11]. Additionally, visual characteristics such
as atrial enlargement, interatrial septal thickening and atrial dysfunction are generally
associated with CA rather than HCM phenotype [14]. These morphological differences
appear to be associated with greater atrial strain impairment in CA patients compared
to HCM patients. The PCA model highlights their importance in disease discrimination,
supported by recent studies [11,13]. Moreover, LV-EF and RV-EF remain strong discrimi-
natory diagnostic features for CA differentiation in agreement with recent studies [15,30].
Ultimately, amyloid infiltration of the myocardium appears to induce greater impairment
of sarcomere function than the genetic disorder of HCM for chamber RA, LA and RV.
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4.4. Clinical Outlook

Integration of machine learning in medical diagnostics will increase in the future as its
efficiency for processing large clinical datasets cannot be matched by human cognition. We
present an exemplary study in which supervised machine learning of multi-chamber MRI
quantified volumetrics and strain data achieved CA prediction for a 41- and 10-variable
dataset. Depending on the classifier algorithm employed, diagnostic accuracies ranged
from fair to excellent [34]. In this study, the hyperparameters were considered as the default
value used by SVC which fits the model and returns the “best fit” hyperplane for the data.
Future perspectives may include tuning the hyperparameters via grid search to optimize
the choice of algorithms to ultimately raise their diagnostic performance further.

5. Limitations

This study is based on a retrospective single-center observational design with typical
limitations. The cohorts were not matched, although only healthy subjects above the age
of 50 years were included in an attempt to provide greater homogeneity. Moreover, this
approach remains an unsupervised algorithmic model. The extent to which this model is
applicable in an unsupervised setting is not established. Furthermore, the cohort primarily
includes CA patients in advanced stages of the disease and cannot account for early-stage
disease detection. Algorithms cannot establish a cause–effect. They can however recognize
numerical patterns that emerge from large datasets in order to deliver supportive output
to the physician in clinical practice. However, this remains a preliminary study, which
requires validation using larger datasets and further risk assessment. Risk assessment can
be conducted using a multicriteria decision analysis (MCDA) [35,36].

6. Conclusions

Machine learning for a large and a small dataset of RA, LA and RV cardiac strains
and functional parameters presents competitive diagnostic accuracies for CA detection
when compared to the state-of-the-art methods. The observations of our scientific challenge
may introduce new perspectives in non-contrast CMR diagnostics with the potential of
clinical decision-making support. The support vector machine algorithm using a radial
basis function kernel was found to be the most efficient subheading algorithm achieving
competitive diagnostic accuracies under supervised conditions.
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