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Abstract: The phase diagram of a given polymer solution is used to determine the solution’s
electrospinnability. We constructed a phase diagram of an aqueous solution of atactic poly(N-
isopropylacrylamide) (a-PNIPAM) based on turbidity measurements and the rheological properties
derived from linear viscoelasticity. Several important transition temperatures were obtained and
discussed, including the onset temperature for concentration fluctuations T1, gel temperature Tgel,
and binodal temperature Tb. On heating from 15 ◦C, the one-phase a-PNIPAM solution underwent
pronounced concentration fluctuations at temperatures above T1. At higher temperatures, the ther-
mal concentration fluctuations subsequently triggered the physical gelation process to develop a
macroscopic-scale gel network at Tgel before the phase separation at Tb. Thus, the temperature
sequence for the transition is: T1 < Tgel < Tb~31 ◦C for a given a-PNIPAM aqueous solution. Based on
the phase diagram, a low-temperature electrospinning process was designed to successfully obtain
uniform a-PNIPAM nanofibers by controlling the solution temperature below T1. In addition, the
electrospinning of an a-PNIPAM hydrogel at Tgel < T < Tb was found to be feasible considering
that the elastic modulus of the gel was shown to be very low (ca. 10–20 Pa); however, at the jet
end, jet whipping was not seen, though the spitting out of the internal structures was observed with
high-speed video. In this case, not only dried nanofibers but also some by-products were produced.
At T > Tb, electrospinning became problematic for the phase-separated gel because the enhanced gel
elasticity dramatically resisted the stretching forces induced by the electric field.

Keywords: physical gelation; phase separation; phase diagram; electrospinning; nanofibers

1. Introduction

Electrospinning is a convenient process for producing polymeric fibers with submi-
cron diameters. The nanofibers of different polymers can be readily obtained for various
applications by using this technique [1–4]. In general, semi-dilute solutions with a suffi-
cient entanglement density are required to yield bead-free fibers [5,6]. However, for some
polymer solutions, such as aqueous solutions of poly(N-isopropylacrylamide) (PNIPAM),
the successful production of bead-free fibers is difficult to achieve [7,8]. This processing
difficulty is attributed to the complex phase behavior of PNIPAM/H2O at an ambient
temperature of 20–33 ◦C. A previous study on the electrospinning of PNIPAM aqueous
solutions at ambient temperature showed that broken fibers of short lengths were observed
on the collector [7]. Moreover, the cross-sections of as-spun PNIPAM fibers appear to be
dog-bone-like and/or ribbon-like rather than the desired circular shape. The formation
of a ribbon-like cross-section is often attributed to the intermediate stage of skin/core jet
morphology with a solid-like skin that encloses the fluid core during electrospinning [9].
Hence, this proposed mechanism is widely applicable to polymer solutions with volatile
solvents, such as chloroform and THF, because of rapid solvent evaporation at the jet/air
interface. However, further investigation is needed for cases when non-volatile solvents
are used, such as in the case of the present PNIPAM aqueous solutions.
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When electrospinning is performed at temperatures that are close to the phase separa-
tion temperature (or gel temperature), non-uniformity in polymer concentration along the
spinline is expected, thus causing difficulties in electrospinning. Once the flow-induced
concentration fluctuations are further enhanced [10], the uniform stretching of the electro-
spinning jet becomes infeasible. Then, jet portions containing a polymer-lean phase with a
low entanglement density can be easily fractured by the electrical field-induced stretching
forces, thereby yielding short fibers on the grounded collector after solvent evaporation.
Based on these arguments, investigating the rheological properties and the related phase
diagram of PNIPAM/H2O solutions is required before electrospinning can be used to
successfully produce long fibers.

PNIPAM is a thermoresponsive polymer that has attracted increasing attention in
practical applications for smart materials and biomaterials [11,12]. PNIPAM is water-soluble
at low temperatures but becomes water-insoluble at elevated temperatures, thus exhibiting
the phase behavior of a lower critical solution temperature (LCST). The mechanism of
the phase separation of PNIPAM/H2O has been extensively investigated in the past five
decades [13–25]. Based on a review paper [14], the LCST of PNIPAM is ~31 ◦C with a critical
concentration of 16 wt%. At temperatures lower than LCST, PNIPAM dissolves in water
and possesses an expanded chain conformation because of the formation of the “hydrogen
bond bridge” developed by the bound water molecules around hydrophobic isopropyl
moieties. The hydration of hydrophobic moieties has been often reported for amphiphilic
polymers, such as proteins. Then, once the temperature is above the LCST, the free energy
change of mixing becomes positive, thus giving rise to solution phase separation.

The formation of the hydrogen bond bridge (or water shell) plays a key role in the LCST
behavior of PNIPAM aqueous solutions. Okada and Tanaka proposed a “pearl-necklace”
model of PNIPAM chains to successfully predict the square-shaped phase boundary [16].
In the pearl-necklace chain model, the backbone of a PNIPAM chain is composed of two
different segments: one is hydrophilic, sheathed with bound water by the fully hydrated
amide groups, and the second is in the absence of the bound-water shell; the former exhibits
an extended chain conformation (the necklace), while the latter exhibits a random-coiled
chain conformation (the pearl). Therefore, understanding the interplay of bound water
and free water molecules along long PNIPAM chains is crucial to further grasp the LCST
behavior of PNIPAM. The results of the dielectric relaxation spectrum described by Ono
and Shikata [26] indicated that the “hydrogen bond bridge” remains dynamically stable up
to a temperature of 30 ◦C, thereby suggesting that the “necklace” portion of the PNIPAM
chain is well-protected and is unaffected at T ≤ 30 ◦C. This finding seems to be consistent
with the θ temperature at ~30.59 ◦C measured by Kubota et al. [27]. In the past five decades,
various advanced techniques have been used to derive the phase transition temperature
of PNIPAM/H2O solutions [28–32]. Interested readers may refer to a recent review article
that provides an in-depth discussion of the phase diagram [14].

Despite extensive studies, the phase separation behavior of PNIPAM/H2O is still
elusive [14]. The formation of physical gels is known [8,14,33,34], but the gel structure
and gelation mechanism are not yet fully studied. Rheometry has been validated to
feasibly trace the subtle structure variation of polymer solutions because physical gelation
occurs [35,36]. During the evolution of gelation, the enhanced elasticity of a polymer
solution can be detected by rheological measurements [37]. Meanwhile, in our recent
work, we unambiguously validated the development of thermoreversible physical gels of
a-PNIPAM/H2O solutions at elevated temperatures lower than Tb using atactic PNIPAM
(a-PNIPAM) with a high molecular weight of 6.58 × 105 g/mol [38]; the gel point was
readily determined by the Winter-Chambon criterion with the rheological data obtained
from an isothermal frequency sweep test. It should also be noted that gel formation occurs
through a liquid-solid transition and that the formation of a “macroscopic physical gel”
tends to significantly deteriorate solution spinnability.

In general, a one-phase homogeneous solution with uniform properties is more de-
sirable than a phase-separated solution for electrospinning to obtain uniform nanofibers.
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However, it should be noted that “flow-induced” phase separation in an electrospinning jet
is also likely to occur for a one-phase solution, provided that the stretching rate of the jet is
higher than the intrinsic relaxation rate of the polymer solution [10]. A new fiber formation
mechanism was recently proposed based on flow-induced phase separation in the spin-
line [39]. During electrospinning, a polymer solution is delivered at a given flow rate into a
capillary (i.e., needle) connected to a high-voltage source. At a critical voltage such that the
induced electric stress is sufficiently high to outweigh surface tension, the liquid meniscus
at the capillary end forms a conical shape known as a Taylor cone. Moreover, a charged
jet is ejected from the cone apex to develop a tapered straight jet. The straight jet (several
millimeters long) is affected by the jet-whipping process at its end because of “bending
instability” [4,40]. During jet whipping, most of the solvent is subsequently removed, thus
leaving charged solid fibers to be collected by a grounded collector. The governing variables
to determine the morphology and diameter of electrospun fibers can be generally classified
into two groups [1–3,6,41], namely, solution properties (e.g., viscosity, conductivity, and
surface tension) and processing parameters (e.g., applied voltage, tip-to-collector distance,
and solution flow rate).

Previous studies focused on the direct relationship between the governing variables
and fiber diameter, but the phase behavior of electrospinning solutions remains largely
unexplored. Therefore, this study was mainly aimed to construct the phase diagram of
a-PNIPAM aqueous solutions based on rheological properties and cloud points. We suc-
ceeded in preparing round a-PNIPAM fibers from aqueous solutions by carefully selecting
the appropriate temperature for electrospinning.

2. Results and Discussion

In general, one-phase solutions with sufficient entanglement densities are required to
obtain a stable cone-jet electrospinning mode for a continuous electrospinning process to ob-
tain uniform nanofibers. Thus, both a phase diagram and information on the entanglement
concentration (φe) must be obtained for a given polymer/solvent pair before electrospin-
ning. In this regard, this paper is organized in the following order. First, we determine the
binodal temperature from turbidity measurements, and then we use zero-shear viscosity
measurements to derive the φe. Second, we discuss the rheological data of G′(ω) and G′′(ω)
based on the isothermal frequency sweep to determine the gel point (Tgel) based on the
Winter-Chambon criterion. Then, based on our rheological results, a mechanism of physical
gelation is proposed. Afterward, we construct a phase diagram for the present system, thus
serving as the guideline for the subsequently discussed electrospinning. Finally, the effects
of solution status (by varying the solution temperatures) on the electrospinning process
were investigated and are discussed.

2.1. Determination of Binodal Temperature and Entanglement Concentration

Figure 1 shows the cloud point (Tcp) measured at different heating rates, from which
the binodal temperature of the given solution was derived from the y-axis intercept via
linear extrapolation to the zero heating rate. Herein, Tb was found to decrease with
increasing polymer concentration (φw); the derived values of Tb were 32.2 and 30.4 ◦C for
the 1 wt% and 10 wt% solutions, respectively. Thus, based on the turbidity measurements,
the transparent sample was validated at T < 30 ◦C regardless of the φw studied in this work.

In addition, the measured values of the complex viscosity of the a-PNIPAM aqueous
solutions at 10 ◦C and different frequencies are presented in Figure 2a, from which the
zero-shear viscosity η0 was derived from the constant η* in the low-frequency region, that
is, the Newtonian flow region. It should be noted that all the studied solutions (4–14 wt%)
at 10 ◦C were in the one-phase solution state (discussed later). Figure 2b shows the log–log
plots of η0 vs. the polymer concentration to determine the φe of the studied a-PNIPAM
solutions; the slope increased at low φw and finally reached a constant slope of 4.79, thus
suggesting the entrance of an entangled solution region. In this manner, φe was derived
from the incipient concentration at 8 wt%, above which the relationship of η0 ∝ φw

4.79
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was maintained. The derived exponent was near the theoretical value of 4.7 for entangled
polymers in the θ solvent. Our results showed that φe was about 8 wt%, which was
independent of the solution temperature provided that the a-PNIPAM aqueous solution
was in the one-phase state [38].
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Figure 1. Plots of the cloud point Tcp at different heating rates for a-PNIPAM/H2O of different
concentrations φw. The binodal temperature was derived from the extrapolated temperature at the
zero heating rate.
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Figure 2. (a) Complex viscosity of a-PNIPAM/H2O of different concentrations measured at 10 ◦C;
(b) log-log plot of η0 vs. φw used to determine the entanglement concentration φe.

Figure 3 shows the concentration dependence of η0 measured at three selected tem-
peratures of 10 ◦C, 20 ◦C, and 25 ◦C. As expected, η0 increased with increasing polymer
concentration at a given temperature, and η0 was larger at 10 ◦C than that at 20 ◦C. How-
ever, at 25 ◦C, an anomalous increase in solution viscosity was seen for solutions with a
concentration higher than 6 wt%. The solution viscosity of the 9 wt% solutions at 25 ◦C
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was even larger than that at 10 ◦C. Thus, these results indicate that chain structures at 25 ◦C
in the a-PNIPAM/H2O solution may have been changed to alter its rheological properties.
The anomalous feature arose because of the physical gelation caused by the enhanced chain
associations, as φw was high.
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2.2. Determination of Gel Point (Tgel)

Isothermal frequency sweep tests for selected a-PNIPAM aqueous solutions were
carried out at different temperatures with a small temperature increment. Figure 4 shows
the G′′(ω) and G′(ω) curves for the 10 wt% solution at 20 ◦C, 24 ◦C, 27 ◦C, and 29 ◦C. The
a-PNIPAM/H2O solutions were homogeneous at 20 ◦C since terminal flow was reached in
the low ω region, where G′ ∝ ω2.0 and G”∝ ω1.0 were verified. At a higher temperature
of 24 ◦C, the exponent for the G′(ω) curve in the low ω region was reduced to 1.1; the
exponent was further reduced to close to zero at 27 ◦C, thus exhibiting a modulus plateau
at ω ~0.1 rad/s. The frequency-independent region of the G′ plateau was extended to
ω = 1.0 rad/s at 29 ◦C; the equilibrium plateau modulus Ge was estimated to be about
13 Pa. More importantly, four-order magnitude increases in G′ were evident in the low ω
region, as the temperature was changed from 20 ◦C to 29 ◦C (<Tb = 30.4 ◦C). In contrast,
the G′′(ω) curve merely showed a moderate increase in the low ω region. The presence of
Ge at 29 ◦C indicated the formation of a macroscopic gel of the a-PNIPAM/H2O mixture
at this elevated temperature (e.g., 29 ◦C). Hence, significant variations of chain structures
occurred in the transparent a-PNIPAM sample of 10 wt% in the small temperature interval
of 20–29 ◦C, as revealed by the dramatic changes in the rheological properties. To derive
the gel temperature (Tgel) at which the incipient macroscopic gel was developed, a rigorous
approach was required.
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At the gel point (GP), the dynamic modulus of G′ and G” exhibit a power law frequency
dependence [36,42]:

G′(ω) ∝ G′′ (ω) ∝ ωn for 0 < ω < 1/λ0 (1)

and a loss tangent that is independent of frequency,

tan δc = tan(nπ/2) (2)

where n is the critical relaxation exponent and 1/λ0 denotes the crossover frequency to
some faster dynamics (e.g., entanglement region and glass transition) [43]. With a series
of frequency sweeps, the Winter-Chambon criterion defined by Equations (1) and (2)
was unambiguously applied to identify the GP, at which the macroscopic network was
incipiently developed. Based on Equation (2), the plots of tan δ (= G′′/G′) as a function
of temperature, with the frequency as a parameter, are shown in Figure 5, in which the
crossover of the curves marks the gel point. Thus, the 10 wt% solution reached its gel
point at 25.5 ◦C with a corresponding tan δc of 2.35, thus giving rise to an n value of 0.76.
Similar analyses have been carried out to determine the corresponding values of n and Tgel
for other a-PNIPAM solutions of different concentrations [38]. Our work showed that the
derived values of n were independent of the φw, while Tgel decreased with increasing φw,
being 29.5 ◦C and 25.0 ◦C for the 5 wt% and 12 wt% solutions, respectively.
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Figure 5. Plot of tan δ vs. temperature for the 10 wt% solution measured at different frequencies ω to
determine the crossover point according to the Winter-Chambon criterion (Equation (2)).

To validate the critical gel behavior, frequency sweep tests for the 7 wt% solutions
were repeatedly performed at its derived Tgel for a time period of 12 h. Figure 6 shows
the obtained results for four sets of data on G′(ω) and G′′(ω) measured at 0.5, 4, 10, and
12 h after Tgel was attained. The superimposed data reveal that the critical gel behavior
was unchanged, thus re-confirming that the G′(ω) and G′′(ω) curves followed Equation (1)
with an n value of about 0.75. Thus, the critical gel behavior was maintained over the long
period of at least 12 h.
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Tgel for the 7 wt% solution, according to Equation (1).
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As shown above, the physical gelation of a-PNIPAM/H2O was found to involve
interchain associations used to enhance the elastic response of G′(ω). More importantly,
the derived Tgel was lower than the Tb of the corresponding solutions of 5–12 wt%; similar
gelation behavior was reported in a binary mixture of isotactic-rich PNIPAM and H2O [34]
using the ball-dropping method.

An a-PNIPAM hydrogel can be well-described by the Winter–Chambon criterion, thus
suggesting that self-similar structures of branched chains are progressively developed be-
fore the GP and eventually form a macroscopic 3D network at the GP. Based on percolation
theory, in the close vicinity of the GP, the zero-shear viscosity η0 of the sol in the pregel

regime can be described by a scaling law [36]: η0 ∼
∣∣∣T − Tgel

∣∣∣−s
, with s being a positive

exponent. Thus, interchain associations may enhance the η0 of an a-PNIPAM pregel solu-
tion at an elevated temperature before Tgel. In other words, there is a critical temperature,
above which profound interchain association occurs and leads to the development of highly
branched chains, thereby altering the viscoelastic properties of the pregel solution.

To determine the critical temperature needed to reach the pregel regime, a temper-
ature sweep test was performed to detect subtle variations of G’ at a low heating rate of
0.2 ◦C /min, as shown in Figure 7. The shapes of the measured G’ curves were similar
for all tested solutions. For the 5 wt% solutions, upon heating from 15 ◦C, G′ gradually
decreased with increasing temperature until 27.5 ◦C, at which an upturn was observed.
The continuous decrease in G′ was attributed to an enhanced chain mobility at high temper-
atures. On the other hand, the upturn of the G′ curve indicates that the solution structure
was altered. The initial temperature at which G′ upturns is denoted as T1 to indicate
the onset variation of the solution structure and, therefore, the beginning of the pregel
regime. Remarkably, a continuous and significant increase in G′ with a four-order mag-
nitude enhancement at the temperature range of 27–34 ◦C was observed due to physical
gelation and phase separation. With increasing φw, T1 was decreased; the derived T1 was
about 22 ◦C for the 12 wt% solution. Therefore, we conclude that the one-phase solution
underwent pronounced concentration fluctuations at temperatures above T1. The thermal
concentration fluctuations subsequently triggered the physical gelation process to develop
a macroscopic-scale gel network at Tgel.
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concentrations during a temperature sweep test at a heating rate of 0.2 ◦C/min and applied frequency
of 5 rad/s.
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The derived phase diagram of the a-PNIPAM aqueous solutions is shown in Figure 8,
with T1 and Tgel derived from linear viscoelasticity and Tb derived from turbidity. Both
the Tgel and Tb were taken from [33]. Depending on the composition and temperature,
four domains can be identified in the phase diagram: (I) T < T1, the one-phase solution;
(II) T1 < T < Tgel, the pregel solution; (III) Tgel < T < Tb, the transparent gel; and (IV) T > Tb,
the opaque phase-separated gel.
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Figure 8. Phase diagram of a-PNIPAM/H2O solutions.

To further explore the large strain behavior of the a-PNIPAM hydrogel, we performed
startup shear experiments on the 9 wt% and 12 wt% samples at a temperature 1 ◦C higher
than their corresponding Tgel. For both gels, a constant shear rate

.
γ of 0.05 s−1 was applied

up to a strain of 30 (γ, =
.
γt). Figure 9 shows the strain dependence of the growing shear

stress (σ+). For the 9 wt% gel, a power law dependence of σ+ on γ was seen in the initial
region up to the strain of 100%, at which the linear viscoelastic limit persisted. Further
increases in the applied strain led to strain hardening; σ+ finally reached a peak at γ = 2360
and then decreased. Thus, the a-PNIPAM network ruptured at an extremely high strain—a
breaking strain much higher than the chemical gels of polydimethylsiloxane (~1000%) [44]
and poly (vinyl alcohol) hydrogel (1500%) [45] at their GPs. For the 12 wt% a-PNIPAM
networks, similar strain hardening with a higher breaking strain of 3000% was observed.
The high breaking strain of an a-PNIPAM network may indicate the existence of a low
density of gel junctions with functionality f ≥ 3, as shown in our previous work [38].
Moreover, the lifetime of a gel junction must be longer than the time scale of an applied
shear rate (~20 s). These results suggest the existence of strong bonding energy in the
gel junctions that resist junction breaking before network rupture at high shear strains
of 24–30. Thus, a-PNIPAM hydrogel exhibits strong junction strength and demonstrates
permanent elasticity at Tgel < T < Tb. This is in great contrast with the transient gel of
telechelic PNIPAM [46], which is exclusively involved with van der Waals force within
micellar junctions.
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Figure 9. Startup of shear experiment of 9 wt% and 12 wt% a-PNIPAM hydrogels at a temperature
1 ◦C higher than their Tgel. For both gels, a constant shear rate of 0.05 s−1 was applied up to a
strain of 30.

It should also be noted that the extremely high elongation at break of the a-PNIPAM
hydrogel may support its practical application as a 3D printing and injectable biomate-
rial [47].

2.3. Proposed Mechanism of the Formation of a Gel Junction (Coupled Pearls)

In physical gelation, gel junctions are part of a temporary crosslink via the micro-
crystalline region, hydrogen bonding, phase-separated micro-domains, and so on. Consid-
ering that a-PNIPAM is a non-crystalline polymer along with the fact that Tgel < Tb for the
present water solution, the “bonds” that firmly connect the a-PNIPAM chains must mainly
be relevant to inter-amide hydrogen bonding.

Based on dielectric relaxation measurements, Ono and Shikata [26] found that the
relaxation time for the dehydration process of bound water molecules (i.e., τex for the
process of bound water 
 free water) is about 23 ps, which is sufficiently longer than
the rotational relaxation of bulk water molecules (i.e., τw for bulk water 
 free water) of
8.3 ps. After a residence time of 23 ps, the water molecules hydrated to suitable sites of
–CONH– could be readily replaced by free water molecules belonging to the bulk water
phase. From a dynamic point of view, the slow exchange process of dehydration may
effectively preserve hydration since 1/τex < 1/τw, i.e., free water in correspondence to
dehydrated water is readily replenished from the bulk water phase. These results imply
that the hydrated NIPAM monomeric units (i.e., the “necklaces” referred to in the pearl-
necklace chain model [16]) are safely protected by bound water molecules from exposing
their amide groups to the surrounding medium.

There are no dehydrated NIPAM units in the hydrophilic necklaces used for the
cooperative hydration of bound water [16] (Figure 10a). On the one hand, it is difficult for
two crossing necklaces to form a gel junction. On the other hand, interchain association
is likely to occur between two contacting pearls in which dehydrated segments reside
and possess a long enough lifetime to develop coupled pearls via inter-amide hydrogen
bond formation. The contacting of the pearls, driven by a hydrophobic interaction, is the
first step, followed by “pearl coalescence” that reduces the total hydrophobic surface to
eventually develop a “coupled” pearl (Figure 10b). Meanwhile, in the overlapping region
of the “coupled pearls”, an inter-amide hydrogen bond (HB) becomes able to develop a
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firm interchain connection [48]. Figure 10 also illustrates an irreversible physical reaction
pathway from part (a-1) to (a-2) and from (a-2) to (b). The irreversible process is stochastic
and driven by the gain of free energy brought about by the reduction in enthalpy because of
the hydrophobic interaction and inter-amide hydrogen bonding, which outweigh the cost
of the free energy caused by the translational and rotational entropy loss of the segments,
accompanied by the process from (a-1)→(a-2)→(b).
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Figure 10. Proposed formation of a physical junction: (a) Two a-PNIPAM chains are connected
via the hydrophobic interaction of the “pearls” in the overlapping region (red circles, reacted) to
form “coupled pearls”; the hydrophilic necklaces contain the fully H-bonded amide groups with
3 bound water molecules, while the hydrophobic pearls contain the dehydrated amide groups with
less than 3 bound water molecules; (b) enlargement of the “coupled pearls” to illustrate the collapsed
chain segments to highlight the interchain association via inter-amide hydrogen bonding. (a-1) and
(a-2) show the reaction pathway of the two contacting pearls that gradually overlap and eventually
develop the inter-amide HBs in (b).

Based on this proposal, the interpenetration of two pearls of neighboring chains in the
overlapping region seems crucial to initiate interchain association, followed by a sequential
reaction of inter-amide bonding in the coupled pearls to form a strong bond. It should
be noted that a junction with two paths to a gel network, that is, f = 2, only extends the
length of the network strands. The functionality of the junction should be f ≥ 3 for an
effective junction to connect the elastically active strands (Figure 11). Thus, a chain with
three or more pearls could serve as an effective junction to support external deformation.
Through the reaction of the coupling pearls of a-PNIPAM chains in a series, multimers and
self-similarly branched chains are developed at elevated temperatures.
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2.4. Electrospinning of a-PNIPAM/H2O Solutions at 10 ◦C

A one-phase polymer solution is preferred for a continuous process of electrospinning
to produce uniform nanofibers. Schoolaert et al. [8] obtained uniform PNIPAM fibers
by controlling the environmental parameters (e.g., temperature and humidity) without
addressing the phase diagram of PNIPAM/H2O solutions. Based on the phase diagram
(Figure 8), a-PNIPAM/H2O solutions are in the one-phase solution regime at 10 ◦C when
φw is lower than 15 wt%. On the contrary, at room temperature (around 25 ◦C), a-PNIPAM
solutions with φw > 8 wt% may enter the pregel regime; some even develop macroscopic
gel when φw > 12 wt%. The formation of branched structures and/or physical crosslinks
in an electrospinning solution may lead to difficulty in performing the electrospinning
process, which produces complicated fiber morphology. To resolve this problem, it is
best to maintain an electrospinning solution temperature of lower than T1. In this work,
a thermal jacket was used to maintain the solution temperature (Tsolution) by circulating
water at a controlled temperature to fulfill this goal. The environmental temperature was
also controlled at about 18 ◦C. The schematics for the low-temperature electrospinning are
shown in Figure 12.
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2.4.1. Concentration Effect

It has been concluded that the diameter of as-spun fibers decreases with decreasing
φw [5,6]. However, there is a minimum φw, below which the entanglement density in a solu-
tion is insufficient to support electric stretching forces, thereby yielding non-uniform fibers
with subsidiary structures of beads or barbs along them. Another plausible mechanism to
produce beaded fibers (or barbed fibers) is associated with “flow-induced phase separation”
in the spinline provided that the electric stretching rate is higher than the relaxation rate of
a given polymer solution [39]. In any case, it was desirable to find the minimum φw of the
present a-PNIPAM/H2O solution that produced bead-free fibers by controlling the three
processing parameters (applied voltage V, flow rate Q, and tip-to-collector distance H).

A processing window (V vs. Q) at a constant H of 21 cm was initially constructed to
determine the common processing parameters used to subsequently electrospin a-PNIPAM
solutions with different φw. Based on the processing window, the following parameters
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were applicable to all the solutions (φw = 7–14 wt%) studied to achieve a stable “cone-
jet” electrospinning mode: Q = 0.1 mL/h, V = 13 kV, and H = 21 cm. When using these
processing parameters, the electrospinning process was stable for more than 1 h. SEM
images of the collected fibers are shown in Figure 13; the inset shows a higher magnification.
Fiber structures with symmetric beads (spindles) and asymmetric barbs were still observed
at φw = 8 wt% (= φe). The number of spindle and barbs and their sizes were decreased for
the a-PNIPAM fibers electrospun from the 9 wt% solutions. To obtain bead-free a-PNIPAM
fibers, a minimum concentration of 10 wt% was required, thus giving rise to an φw/φe
value of 1.4. This finding is consistent with the previous suggestion that sufficient chain
entanglements in a given solution are generally required to produce uniform fibers [5].
Meanwhile, for the a-PNIPAM electrospun from the 14 wt% solutions, the as-spun a-
PNIPAM fibers possessed an average fiber diameter of 600 ± 180 nm, based a collection of
200 fibers. Thus, by carefully controlling the temperature and polymer concentration for
electrospinning, round a-PNIPAM fibers with a diameter of 450–600 nm were successfully
derived from the entangled solutions.
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Figure 13. SEM images of fibers electrospun from a-PNIPAM aqueous solutions at different concen-
trations of (a) 8, (b) 9, (c) 10, and (d) 14 wt%. (Q = 0.1 mL/h, V = 13 kV, H = 21 cm, Tsolution = 10 ºC.)

It is known that beaded fibers and/or barbed fibers are obtained as φ* < φw < φe,
where φ* is the overlap concentration, at which the random coils of neighboring polymer
chains start to overlap one another. As φw < φ*, particulates are primarily produced on
the grounded collector; in other words, the electrospinning is degenerated and becomes
electrospraying [6,41].

2.4.2. Flow Rate Effect

For a given solution of φw, the diameter of as-spun fibers (df) depends on the interplay
of the processing parameters (V, Q, and H). There are several scaling laws used to describe
the relation between df and the processing parameters [6]. In general, df is decreased with
decreasing Q and an enhanced electric field strength of V/H (thereby increasing V and/or
decreasing H). Among these parameters, Q is the most important in determining the fiber
diameter for a given polymer solution [41]. To explore the Q effect, the 12 wt% a-PNIPAM
solution at 10 ◦C was used for electrospinning at different Q, ranging from 0.05 mL/h to
0.2 mL/h, by fixing V = 17 kV and H = 21 cm. The fiber morphology of the as-spun fibers is
shown in Figure 14, together with a histogram of the measured fiber diameters. It should
be noted that bead-free fibers were obtained. The average fiber diameters electrospun from
Q = 0.05, 0.1, 0.15, and 0.2 mL/h were 371 ± 123, 603 ± 146, 647 ± 206, and 670 ± 169 nm,
respectively. The results show that df was approximately doubled, with a four-fold increase
in Q from 0.05 mL/h to 0.2 mL/h.
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Figure 14. SEM images and diameter distributions of a-PNIPAM fibers electrospun at a given
flow-rate of (a) 0.05, (b) 0.1, (c) 0.15 and (d) 0.2 mL/h. (12 wt% solution, V= 17 kV, H= 21 cm,
Tsolution= 10 ºC.).

2.5. Electrospinning of a-PNIPAM/H2O Solution at Different Temperatures

To explore the effect of solution temperature (Tsolution), the 10 wt% a-PNIPAM solution
was used for electrospinning by holding Tsolution at constant temperatures of 10 ◦C, 20 ◦C,
23 ◦C, 25 ◦C, 26 ◦C, and 28 ◦C. Based on Figure 8, these selected Tsolutions covered the phase
domains of (I) one-phase solution (e.g., 10 ◦C, 20 ◦C, and 23 ◦C), (II) pregel (e.g., 25 ◦C), and
(III) transparent gel (e.g., 26 ◦C and 28 ◦C) given that T1 and Tgel were 24.5 ◦C and 25.5 ◦C,
respectively. Figure 15 shows the morphologies of the Taylor cone and straight jet during
electrospinning, and SEM images of collected a-PNIPAM fibers are displayed in Figure 16
for comparison. For the 10 wt% solutions in the one-phase state, the stable cone-jet electro-
spinning mode could be maintained to continuously produce nanofibers. Dried a-PNIPAM
nanofibers were obtained on the grounded collector. As Tsolution was increased from 10 ◦C
to 20 ◦C and 23 ◦C, the measured df values were 570 ± 150, 580 ± 160, and 700 ± 190 nm,
respectively. The abrupt increase in fiber diameter at Tsolution = 23 ◦C was unexpected
because the solution viscosity decreased with increasing temperature before reaching the
pregel domain (T > T1). However, this may suggest that flow-induced phase separation
also plays a role in the process, as the interchain associations were slightly enhanced to
dramatically reduce the relaxation rate of the solution with branched-chain structures.
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An unstable electrospinning mode was seen as at Tsolution ≥ 25 ◦C, at which the
10 wt% a-PNIPAM/H2O mixture was either in the pregel state or in the transparent gel
state. In these states, gel elasticity played a dominant role during electrospinning in
resisting electrical stretching. Figure 15 shows that the viscoelastic droplet, adhering to
the needle end (dashed line), was elongated enough to eject one main jet (or two) at its
bottom section that subsequently ejected branched sub-jets. It is intriguing to notice that jet
whipping was not seen at the end of the branched jet. Instead, the internal structures in
the branched jet were directly spat out, eventually producing nanofibers on the grounded
collector. In other words, jet whipping is not a prerequisite process to produce the as-spun
fibers. As the electrospinning was continuous, the elongated droplet became longer, and
some sections of the jet became thinner; eventually, the thinnest section broke. On the
one hand, as the jet was broken, the pending droplets and remaining jet were reduced
in size without interrupting the electrospinning process; hence, dried a-PNIPAM fibers
were continuously produced on the grounded collector. On the other hand, the broken
part of the charged jet driven by electric forces under the electric field quickly flew to
reach the collector. Considering that solvent evaporation was very limited, the broken
jet was still wet after arriving at the collector. Therefore, splashing was readily seen on
the grounded collector, along with dried fibers. Some previously deposited dried fibers
may have been dissolved because of the splashing of the wet jets, as shown by the dotted
regions in Figure 16. These results are in contrast with those in the stable cone-jet mode,
which only produced dried fibers on the grounded collector.

To enable the better observation of the jet-breaking event, a high-speed video with a
frame rate of 3000 fps is provided in Supplementary Materials Video S1, from which four
snapshots are shown in Figure 17 to reveal details. The imbalanced electric forces, induced
by the surface charges and the electric field, were significantly increased and vigorously
vibrated the “droplet-jet”, thus leading to the jet rupture.
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We conclude that the continuous electrospinning of transparent a-PNIPAM gel at 28 ◦C
is feasible, despite the fact that a steady state of “cone-jet” morphology is never possible and
the production of by-products is inevitable. The feasibility of electrospinning an a-PNIPAM
gel is attributed to the gel’s low elastic modulus (Ge ~13 Pa at 29 ◦C; see Figure 4d), which
means that its crosslinking density is extremely low. For the ultra-soft gel of an a-PNIPAM
hydrogel to be processed, the as-spun fibers must possess an average diameter of about
740 ± 330 nm. Accordingly, the a-PNIPAM fibers electrospun from the hydrogel at 28 ◦C
possessed a larger df and a wider fiber distribution compared to that obtained from a
one-phase solution at 10–23 ◦C. The enhanced elasticity of an electrospinning solution
resists the stretching stress induced by an electric field, thereby yielding thicker fibers.
Furthermore, continuous electrospinning becomes problematic if an a-PNIPAM hydrogel is
in the phase-separated state (domain IV, Figure 8), likely because gel elasticity is so high
that it dramatically resists stretching electrical forces.

3. Conclusions

Understanding the rheological properties of an electrospinning solution and its related
phase diagram is necessary to realize the better morphology control of as-spun fibers.
In a temperature range of 25–31 ◦C, semi-diluted a-PNIPAM aqueous solutions were
found to exhibit a sol–gel transition and LCST-type phase separation. Moreover, even in a
thermodynamically stable solution at a temperature slightly lower than T1, the solution
possibly underwent flow-induced concentration fluctuation and phase separation. Hence,
these phase transitions, if occurring in the spinline, will interfere with or even interrupt
a solution’s processibility because of the formation of a complex fluid with physical gels
and/or a phase-separated structure. Therefore, selecting a suitable processing temperature
for solution electrospinning is the most important issue to address in the process. In
this study, we constructed the phase diagram of an a-PNIPAM aqueous solution that can
serve as a guideline for electrospinning. When electrospun at temperatures lower than T1,
entangled solutions were found to produce essentially uniform a-PNIPAM nanofibers with
a diameter of 450–600 nm.

In addition, the a-PNIPAM hydrogel was found to possess a low elasticity of 10–20 Pa
and an extremely high elongation at break (2400–3000%) at ambient temperature. These
properties facilitate its potential application as a 3D printing and injectable biomaterial.

4. Materials and Methods
4.1. Solution Preparation and Properties

a-PNIPAM was obtained from Scientific Polymer Products Inc. (Ontario, NY, USA).
The meso diad content was determined to be 48% from a 1H-NMR spectrum by using
an ECZ-400S spectrometer (JEOL Ltd., Tokyo, Japan) with DMSO-d6 as a solvent at
423 K. The weight-average molecular weight and polydispersity were determined to
be 6.58 × 105 g/mol and 1.49, respectively [38]. De-ionized water was used as a solvent to
prepare the electrospinning solutions. Different amounts of polymers and solvents were
vigorously mixed at 10 ◦C for three days to prepare the one-phase solutions of different con-
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centrations, followed by storage in a freezer at 5 ◦C prior to measurements. Cloud points
were derived from turbidity under an optical microscope [38]. Upon heating from 10 ◦C at
a fixed rate of 0.05, 0.2, 0.5 and 1.0 ◦C/min, transmitted light intensity was measured as a
function of temperature. For a given heating rate, the cloud point temperature (Tcp) was
derived from the onset temperature of turbidity.

The linear viscoelastic properties of the a-PNIPAM solutions were measured with
a rheometer (ARES) by using a cup-and-bob fixture under a small-amplitude oscillatory
shear mode [38]. To reveal the phase transition, an isothermal frequency sweep test was
performed to obtain the frequency (ω) dependence of the storage modulus G′(ω) and
loss modulus G”(ω). During the frequency sweep, the appropriate strain amplitude was
applied according to the preliminary strain sweep test to ensure the conditions of linear
viscoelasticity and sufficient torque for data collection. The complex viscosity η* was then
calculated using the equation [G′(ω)2 + G′′ (ω)2]0.5/ω.

4.2. Electrospinning and Fiber Morphology

A thermal jacket was used to enclose the electrospinning solution to control the solu-
tion temperature (Ts) by using circulating water at different temperatures. Electrospinning
was performed in a specific room with an environment temperature of about 18 ◦C. The
polymer solution with a determined temperature (10–30 ◦C) was delivered by a syringe
pump (Cole–Parmer, Vernon Hills, IL, USA) at a controlled flow rate of (Q) through PTFE
tubing into the stainless needles (Hamilton, outer diameter = 0.64 mm). A high electri-
cal voltage (Bertan, 205B, USA) was applied to the needles. To construct a needle-plate
electrode configuration, we used a steel net (30 × 30 cm2) to collect electrospun fibers at
a tip-to-collector distance of 21 cm below the needle tip. The morphologies of the Taylor
cone and electrospinning jet were monitored by using a high-speed video system. The
morphology and diameter of as-spun fibers were observed and measured with a scanning
electron microscope (SEM, Hitachi S4100, Tokyo, Japan).

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/gels8110716/s1, Video S1: high-speed video of the electrospinning jet.
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