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Abstract: Cervical cancer is the fourth most common type of cancer in females worldwide. Infection
with a human papillomavirus is crucial to the etiopathogenesis of cervical cancer. The natural
trajectory of HPV infection comprises HPV acquisition, HPV persistence versus clearance, and
progression to precancer and invasive cancer. The majority of HPV infections are cleared and
controlled by the immune system within 2 years, but some infections may become quiescent or
undetectable. The persistence of high-risk HPV infection for a longer period of time enhances the risk
of malignant transformation of infected cells; however, the mechanisms responsible for the persistence
of infection are not yet well-understood. It is estimated that 10–15% of infections do persist, and the
local microenvironment is now recognized as an important cofactor promoting infection maintenance.
Extracellular vesicles (EVs) are small membrane vesicles derived from both normal cells and cancer
cells. EVs contain various proteins, such as cytoskeletal proteins, adhesion molecules, heat shock
proteins, major histocompatibility complex, and membrane fusion proteins. EVs derived from
HPV-infected cells also contain viral proteins and nucleic acids. These biologically active molecules
are transferred via EVs to target cells, constituting a kind of cell-to-cell communication. The viral
components incorporated into EVs are transmitted independently of the production of infectious
virions. This mode of transfer makes EVs a perfect vector for viruses and their components. EVs
participate in both physiological and pathological conditions; they have also been identified as one
of the mediators involved in cancer metastasis. This review discusses the potential role of EVs in
remodeling the cervical cancer microenvironment which may be crucial to tumor development and
the acquisition of metastatic potential. EVs are promising as potential biomarkers in cervical cancer.

Keywords: extracellular vesicles (EVs); HPV infection; cervical cancer

1. Cervical Cancer and HPV Infection

Cervical cancer is the fourth most common type of cancer in females worldwide [1].
Infection with a human papillomavirus (HPV) plays a pivotal role in the etiopathogenesis
of cervical cancer. Human papillomaviruses belong to the Papillomaviridae family, a small
group of nonenveloped viruses (of which over 200 types have been identified), with a
genome in the form of a circular double-stranded DNA. HPV infection is the most common
type of sexually transmitted disease. HPV causes about 5% of all cases of cancer globally,
and approximately 3–3.5% of these cases are caused by HPV16 [2–4]. High-risk HPV
(hr-HPV) mucosal viruses (predominantly types 16, 18, 31, 33, and 35) have been related
with various cancers, including cervical cancer [5]. HPVs are characterized by tropism to
the skin and the mucosa; the function of high-risk HPVs is primarily realized through the
E6 and E7 oncoproteins [5].

Prominent expression of the E6 and E7 oncoproteins deregulates the cell cycle, en-
hances cell division, inhibits apoptosis, and promotes the gathering of genetic errors due to
ineffective DNA repair, leading to the development of malignancies. The E6 oncoprotein
creates a complex with the E6AP ubiquitin ligase and the p53 protein, blocking apoptosis
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by proteasomal degradation. The E7 oncoprotein connects to pRB (which functions as a
tumor suppressor), releases the E2F transcription factor from the pRB/E2F complex, and
leads to cell cycle deregulation. Oncoproteins E6 and E7 also affect cytokine expression and
activation of signaling pathways (PI3K/AKT, Wnt, and Notch) [6–8]. The natural trajectory
of HPV infection comprises HPV infection persistence or healing, HPV genome integration,
and progression to precancer and invasive cancer [9]. The majority of HPV infections
(about 90%) are cleared and controlled by the immune system within 2 years; however,
some infections may become quiescent (latent) or undetectable [10]. The persistence of
hr-HPV infection for longer than 6 months enhances the risk of malignant transforma-
tion of the infected cells [1], but the mechanisms responsible for infection persistence are
not yet well-understood. It is estimated that 10–15% of infections persist [1], and the
local microenvironment is now recognized as an important cofactor promoting infection
maintenance [11–13].

2. Extracellular Vesicles (EVs): Nomenclature and Classification

Extracellular vesicles (EVs) are spherical membrane-derived particles that are released
by almost all types of cells, including tumor cells. EVs are produced throughout the normal
lifespan and during certain conditions that promote activation such as viral infection, stress,
and proliferation. According to the nomenclature established by the ISEV (International
Society of Extracellular Vesicles) in 2018 [14], EVs are classified according to the subtypes
that mirror their physical characteristics, biochemical composition, or origin. EVs are also
grouped according to their size into small EVs (<100 or 200 nm, previously called exosomes)
or medium/large EVs (>200 nm, previously known as mi-crovesicles or ectosomes). The
density of EVs is roughly 1.11–1.2 g/mL [15]. The classification is based on the biochemical
composition of EVs and includes the expression of proteins derived from the endolysosomal
compartment, such as tetraspanins (CD9, CD53, CD63, CD81, and CD82); proteins of the
ESCRT complex (Alix, TSG101); chaperones; and a variety of plasma membrane-derived
molecules of parental origin. Exosomes are a type of EVs formed as intraluminal vesicles
that are released to the extracellular space after the fusion of late endosomes with the
plasma membrane [16]. Microvesicles/ectosomes are released by the budding of the
plasma membrane and may share its characteristics. EVs released from dying cells are
called apoptotic bodies; however, their relative size (from 50 nm to 2 µm) and composition
differ from those of other EVs [17]. Recently, very small particles (<50 nm) have been
described and named exomeres [18].

3. Cargo and Fate of EVs

EVs carry lipids, proteins, carbohydrates, RNA, and DNA derived from the donor
cells [19–24]. Zhang reported more than 50,000 proteins, 164,000 mRNAs, and 12,000 miRNAs
present in EVs of different origins [24]. The data concerning the ssDNA and dsDNA content
of EVs are limited [25,26].

The cellular components of EVs do not simply reflect the parental cell content. Instead,
it appears that EVs are actively loaded with cargo [26] according to the cell activation status
and EV subtype. For example, EVs derived from cervical cancer cell lines (mostly HPV+)
are enriched with miRNAs in comparison to their parental cells [27]. However, there is
no proof of HPV miR expression within these EVs. Protection of the cargo in the lumen
of membrane vesicles, which are stable in biological fluids, is a conserved phenomenon
for the transfer between cells. In this context, EVs seem to have many traits in common
with viruses; for example, both originate from the endosomal system (viruses enter it via
endocytosis or membrane fusion) and are surrounded by a lipoprotein membrane. EVs,
particularly small EVs, released from virus-infected cells may contain viral proteins and
nucleic acids, which are loaded into them in the endosome via the ESCRT pathway or
interaction with tetraspanins [28].

The presence of virions in small EVs has been noted through an elegant theory called
“The Trojan Horse”, which uses HIV as an example [29]. The Trojan Horse hypothesis
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assumes that viruses can use the exosome biogenesis pathway to release virus-loaded
vesicles (infectious) in exosomal vesicles. Interestingly, this phenomenon is used by
both enveloped (e.g., HIV, influenza, and SARS-CoV-2) and nonenveloped (HAV and
HPV) viruses. In the latter case, the replicative viral structures can be “quasi-enveloped”
(e.g., “cloaked” inside EVs) [30]. EVs loaded with viruses may be directly infective as
proven for HBV, HIV, and EBV [31] in parallel with replicative viral particles. The examples
of virus-derived components detected in EVs are presented in Table 1.

On the other hand, viruses and small EVs are similar in size (<400 nm) and may
be copurified from the infected cells (using the physical properties of the vesicles only),
which makes research of the different types of vesicles difficult. Virus particles are similar
in density (the density of HIV-1 particles is 1.16–1.18 g/mL) to EVs [32]. Ludwig et al.
revealed that small EVs isolated from HPV+ and HPV− cell lines are morphologically
indistinguishable [33]; however, the differences in their miR profiles are significant [33].
Tong et al. presented a total of 32 miRNAs that were differentially expressed between HPV+
and HPV− exosomes; miR-1306-5p, -193b-5p, -92b-3p, -92b-5p, -365b-3p, -125a-3p, and
let-7b-5p were enriched with HPV+ exosomes in comparison to HPV– exosomes [27].

All types of EVs transport their content from the parental to the recipient cells, con-
stituting a mode of “cell-to-cell” communication [20,34–37]. EVs bind cells and are either
engulfed by them or are fused with the membrane of recipient cells. Endocytosis has been
proposed as the primary mechanism of EV uptake from the microenvironment; however,
the specific type of this phenomenon is debatable (endocytosis mediated by clathrins,
caveolin-dependent; lipid raft-mediated endocytosis; phagocytosis or micropinocytosis)
and depends on the recipient cells [38,39]. Cells can internalize EVs at the same time
through different mechanisms with different efficiency.

Table 1. Virus-derived components in extracellular vesicles.

Virus Viral Components
Detected in EVs Source of Samples Reference

HTLV-1 Tax HTLV-1+ cell lines C8166-45
and MT2 Jaworski, 2014 [40]

HIV-1

Unspliced RNA
TAR RNA

HIV-1-infected cell lines
Patients’ sera

Columba Cabezas, 2013; Narayanan,
2013 [41,42]

Nef, Gag HIV-infected Jurkat cell line
Patients’ plasma

Madison, 2015; Fang, 2007; Raymond,
2011 [43–45]

vmiR-88, vmiR-99 Patients’ plasma Bernard, 2014 [46]

CMV gB protein CMV-infected HUVEC cells Walker, 2009 [47]

HSV1 miR-H5, miR-H3,
miR-H6 HSV-infected cell lines Kalamvoki M et al. [48]

EBV

LMP1 (latent
membrane protein 1) EBV-infected cell lines Flanagan, 2003 [49]

BGLF2 protein EBV-infected cell lines Sato, 2022 [50]

HPV E6/E7 oncogenes
HPV DNA

Cervical cancer cell lines,
cervical scrape samples

Ranjit, 2020; Kannan, 2017; Mata-Rocha,
2019; Ludwig, 2018 [33,51–53]

HCV

RNA (complete
genome)
miR-122

HCV core proteins

Patients’ sera
HCV-infected cell lines

Longatti, 2015; Bukong, 2014;
Ramakrishnaiah, 2013 [54–56]

HBV
RNA

HBV miRNA
HBV proteins

HepG2 cell line
Patients’ sera
Patients’ sera

Kouwaki, 2016; Yang, 2017a; Yang,
2017b [57–59]

HAV RNA
Viral protein pX HAV-infected cell lines Longatti, 2015; Jiang, 2020 [54,60]
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4. Extracellular Vesicles, HPV Infection, and Cervical Cancer

EVs play an important role in both physiological and pathological processes. They
have also been identified as one of the mediators involved in cancer metastasis [61–63]. The
remodeling of the cancer microenvironment is thought to be crucial to the development of
the tumor and the acquisition of metastatic potential. Crosstalk between cancer processes
and the cancer microenvironment enables microenvironment remodeling. It has been dis-
covered that tumor-derived EVs can be captured by stromal cells, leading to the conversion
to a tumor-associated microenvironment prone to tumor development [64]. In a study of
highly metastatic breast cancer cells, exosomes were found to participate in stromal cell
education [65]. In a study using fluorescent protein imaging, Liang et al. provided direct
evidence of the transfer of exosomes from highly metastatic breast cancer cells to adjacent
cancer cells and lung tissue cells both in vitro and in vivo. These findings confirmed that
EVs derived from metastatic cancer cells are involved in the education of stromal cells
through an intercellular communication pathway whereby fibroblast exosomes mobilize
autocrine Wnt–PCP signaling to drive the invasive behavior of cancer cells [66].

Zhang et al. demonstrated that a coculture of Langerhans cells with EVs derived from
oncoprotein E7-expressing cells suppresses surface CD40 expression and the intracellular
proinflammatory cytokine IL-12p40 subunit in Langerhans cells; this coculture also inhibits
cytotoxic T cell response. Such an observation proves that EVs derived from HPV-infected
cells can suppress the local immune response, thus participating in the persistence of the
HPV infection [13].

Khan et al. reported that an HPV18-infected cell line (HeLa) derived from cervical
adenocarcinoma tissues released EVs containing survivin, a member of the inhibitory
apoptosis protein family; the mRNA encoding survivin has been detected in HeLa cell
lines [67,68]. Khan et al. found that extracellular survivin can enhance cellular proliferation
and survival as well as tumor cell invasion when released from exosomes to the extracellular
space in patients with cervical cancer (HeLa) [67]. Moreover, the amount of survivin
increased significantly in the basal state, after proton irradiation, and in the stress-induced
state. Survivin may also be involved in the induction of chemoresistance in other receptor
cells [68]. It was concluded that survivin liberated to the microenvironment by EVs may
play an important protumorigenic role [63,68].

Honegger et al. assessed the E6/E7 presence in extracellular vesicles originating from
the HeLa cell line, but these proteins were not found [69]. Ranjit et al. examined the
E6/E7 proteins in extracellular vesicles derived from the CaSki cell line. In this study,
E6 was identified, while the E7 oncoprotein was not [51]. The delivery of the E6/E7
oncogenes by EVs affects the miRNA profile of cervical cancer cell lines. For example,
E6/E7 are required to express miR-17-92 which downregulates the expression of the
antiproliferative p21 gene [70]. EVs are absorbed by cancer cells, which thereby gain more
proliferative properties, thus becoming resistant to therapy. This effect may arise through
the transference of oncogenes and the induction of microenvironment remodeling. The
composition of EVs may be modified by virus-infected cancer cells, with the enrichment of
oncogenes and factors such as survivin.

Oncogenic HPV DNA was demonstrated to be transported from cancer cells to fi-
broblasts [71]. Honegger et al. showed that inhibition of the endogenous HPV18 E6/E7
oncogene expression leads to alterations in the content and number of EVs released from
HeLa cervical cancer cells. Intracellular survivin protein levels are strongly lowered on the
suppression of the endogenous HPV18 E6/E7 expression, suggesting that viral oncogenes
play an important role in the maintenance of survivin protein accumulation in HPV-positive
cancer cells [69]. Moreover, the authors observed that the increase in small EV release
in HPV-positive cervical cancer cells is attended by the initiation of senescence due to
the suppression of the endogenous viral oncogene expression as a senescence trigger [69].
They also noted that cervical cancer cells release a similar number of small EVs [72,73].
Furthermore, Saha and Liang showed that Wnt proteins occur in vivo together with some
exosomal markers; thus, WNT proteins might be transferred by small EVs [66,74]. The
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authors also showed that circulating small EVs derived from patients with cervical cancer
are able to functionally affect fibroblast differentiation by Wnt2B via small EV-dependent
secretion. As a result, the profile of stromal fibroblasts was changed into that of cancer-
associated fibroblasts through the WNT/beta catenin signaling pathway, thus increasing
the migration and proliferation of these cells. This process influences the remodeling of the
cancer microenvironment [66].

Zhang et al. found that HPV16 E7 increased EV production from murine and human
keratinocytes. Moreover, the EVs shed from these cells exerted an immune regulatory
function on the neighboring Langerhans cells. The Langerhans cells and T cells cocultured
with these EVs suppressed antigen-specific cytotoxicity [13].

Iuliano et al. analyzed the expression of inflammatory mediators in HPV-positive cells
in primary human foreskin keratinocytes and keratinocytes transduced by E6 and E7 from
mucosal HPV16 or cutaneous HPV38 genotypes. They demonstrated that the expression
of inflammatory cytokines, such as IL-1α, IL-1β, and IL-6, was downregulated in K16
and K38 cells, while TNF-α was upregulated in the same cells. Apart from the E6 and
E7 oncoproteins’ influence on p53 and pRB, they were shown to repress NF-κB signaling.
It has been suggested that NF-κB suppression mediated by viral oncogenes plays a key
role in the induction of escape from immune recognition. In addition, it has been shown
that HPV can alter the production of chemokines and influences leukocyte trafficking to
the skin by suppressing CCL20/MIP-3α. The authors further observed that HPV-positive
cells released EVs derived from CCL20/MIP-3α mRNA [75]. HPV16 E6 and E7 sup-
pressed the expression of CCL2/MCP-1 in cervical epithelial cells as well as in epidermal
cells [76]. HPV E6 and E7 can alter not only microRNA expression, but the mRNA content
within EVs [75].

Thakur et al. demonstrated that exosomes derived from tumors with double-stranded
DNA and exosomal DNA represent the entire genome and reflect the mutational status
of the parental tumor cells. The authors underlined the potential role of these EVs as a
circulating biomarker for the early detection of cancer and metastases [77]. Moreover,
Thippabhotla et al. observed extracellular vesicles derived from 3D and 2D cultures. The
molecular load of the EVs and the form of secretion varied, reflecting their origin cell
status independently of the culture or conditions [78]. This observation confirms that the
development of EVs is an active process reflecting the changes in the microenvironment or
in the cells of origin; miRNA carried by EVs is transferred to the recipient cells (neighboring
or distant cells) and is responsible for the alteration of their function.

5. The Potential Role of Extracellular Vesicles as Biomarkers in Patients with
Cervical Cancer

Cervical cancer-derived EVs seem to be a hallmark of the important steps in cancer
progression, namely angiogenesis, migration, and invasion. Identification of the molecules
contained in EVs would allow their use as markers of cancer disease progression, viral
integration, and infection. Apart from identifying the proteins mentioned above, the
promising results direct attention to microRNAs (miRNAs), the noncoding RNA molecules
that regulate gene expression. Numerous oncogenic microRNAs have been observed in
association with cervical cancer cells [79,80]; miR-21 and miR-146a have been found to
promote cell growth, migration, and invasion in patients with cervical cancer [81,82]. Liu
et al. studied EVs purified from cervicovaginal lavage samples obtained from cervical
cancer patients. They demonstrated that these EVs contained high levels of microRNA-21
and microRNA-146a in comparison to the samples obtained from noncancer patients [83].
HPV infection seems to contribute to the upregulation of both miR-21 and miR-146 in
cervical tissue. The highest expression levels of miR-21 and miR-146a were observed in the
EVs found in the cervicovaginal lavage of both the cancer patients and the HPV-positive
healthy women. Cervical cancer-associated miR-21 and miR-146a were secreted from
the cancer tissue within cervicovaginal exosomes, indicating their potential to become a
cervical cancer biomarker [83].
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Higher levels of both let-7d-3p and miR-30d-5p were identified in EVs derived from
the plasma of cervical cancer patients compared to the levels found in healthy volunteers
and precancerous patients. The authors concluded that exosomal let-7d-3p and miR-30d-5p
are valuable diagnostic biomarkers for the noninvasive screening of cervical cancer and
its precursors [84].

Pan et al. noted the downregulation of both MeCP2 and MBD2 mRNA expression in
cervical cancer tissues. MBD2 and MeCP2 are targets of miR-221 and miR-222, both of which
are upregulated in cervical cancer tissue and cell lines. They observed that upregulated
miR-221/222 promote cervical cancer by repressing MBD2 and MeCP2 [85]. In addition,
the expression of miR-221-3p was detected in exosomes derived from cervical cancer cell
lines [86]; microRNA-221-3p was shown to correlate with microvascular density in cervical
squamous cell carcinoma patients. It was observed to be significantly overexpressed
in human cervical squamous cell carcinoma tissues derived from patients with lymph
node metastases compared to patients without metastases. The phenomenon of epithelial–
mesenchymal transition (EMT) was promoted by miR-221-3p expression; it stimulated
cell migration and invasion in vitro and the promotion of lymph node metastases in vivo.
MiRNAs are regulated by transcription factors; twist homolog 2 (TWIST2) was the main
transcription factor connecting to miR-221-3p. The inhibition of miR-221-3p was found
to reduce the promotion of EMT and decrease cell migration and invasion mediated by
TWIST2 [87]. Wei et al. discovered EVs in cervical cancer patients that transport miR-221-3p
from cancer cells to vessel endothelial cells and promote angiogenesis by downregulating
thrombospondin-2 (THBS2). The authors concluded that cervical cancer-derived exosomal
miR-221-3p could potentially become a diagnostic biological marker and a therapeutic
target for cervical cancer progression [88].

MiR-125a-5p has been identified in normal tissue. In breast cancer tissue, hepatocel-
lular cancer tissue, and their cell lines [89], miR-125a-5p had a decreased expression [90].
In lung cancer patients, an upregulation of miR-125a-5p induced cancer cell apoptosis
through the activation of p53 [91]. The inhibition of miR-125a-5p in hepatocellular cancer
patients increased the expression of MMP11 and the vascular endothelial growth factor
A (VEGFA) protein [92]. Exosomal miR-125a-5p expression levels were examined in the
tissues of cervical cancer patients and found to be significantly lower than those in the
healthy controls. Thus, exosomal miR-125a-5p seems to be a potential biomarker for cervical
cancer diagnosis [93].

Long noncoding RNAs were identified in cervicovaginal lavage-derived EVs from cer-
vical cancer patients and in HeLa-derived exosomes (CC-NDA1, HOTAIR, TUG1, MALAT1,
MEG3, GAS5.132, EXOC7, lincRNA-p21, and HNF1A-AS1). These exosomes are involved
in cancer proliferation, metastasis, invasion, apoptosis, migration, and EMT and may im-
pact resistance to treatment; thus, they could become noninvasive biomarkers for the early
diagnosis of cervical cancer [94].

A novel therapy could target the extracellular survivin released by the exosomes
described above. As Li et al. summarized, there are five potential therapeutic strate-
gies that involve survivin: inhibitors disrupting survivin interactions with its partner
proteins; inhibitors affecting survivin homodimerization; inhibitors decreasing survivin
gene transcription; inhibitors inducing survivin mRNA degradation; and survivin-based
cancer immunotherapy [95].

Virus-modified EVs may participate in the remodeling of the cancer microenvironment
into proangiogenic and immunosuppressive, promoting cell migration and invasion by trans-
ferring oncogenic factors to the adjacent cells [63,96]. Potentially, EVs obtained by a noninva-
sive method, such as biopsy, might serve as a biomarker of cancer advancement [63,96].
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