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Abstract: Objectives: Assessing implant stability is integral to dental implant therapy. This study
aimed to construct a multi-task cascade convolution neural network to evaluate implant stability
using cone-beam computed tomography (CBCT). Methods: A dataset of 779 implant coronal section
images was obtained from CBCT scans, and matching clinical information was used for the training
and test datasets. We developed a multi-task cascade network based on CBCT to assess implant
stability. We used the MobilenetV2-DeeplabV3+ semantic segmentation network, combined with an
image processing algorithm in conjunction with prior knowledge, to generate the volume of interest
(VOI) that was eventually used for the ResNet-50 classification of implant stability. The performance
of the multitask cascade network was evaluated in a test set by comparing the implant stability
quotient (ISQ), measured using an Osstell device. Results: The cascade network established in this
study showed good prediction performance for implant stability classification. The binary, ternary,
and quaternary ISQ classification test set accuracies were 96.13%, 95.33%, and 92.90%, with mean
precisions of 96.20%, 95.33%, and 93.71%, respectively. In addition, this cascade network evaluated
each implant’s stability in only 3.76 s, indicating high efficiency. Conclusions: To our knowledge,
this is the first study to present a CBCT-based deep learning approach CBCT to assess implant
stability. The multi-task cascade network accomplishes a series of tasks related to implant denture
segmentation, VOI extraction, and implant stability classification, and has good concordance with
the ISQ.

Keywords: dental implants; implant stability; CBCT; ISQ; deep learning; cascade network

1. Introduction

Implant stability refers to the healing of a dental implant [1], and the success of
implant restoration directly depends on the clinician, the control of implant stability, and
the prediction of changes in implant stability [2]. In clinical treatment, implant stability
is often assessed using resonance frequency analysis (RFA) [3], which can be converted
into an implant stability quotient (ISQ), with a higher ISQ value indicating higher implant
stability and more extensive osseointegration [4]. Generally, the ISQ of dental implants
ranges from 40 to 80 [5]. ISQ measurement requires twisting a Smartpeg into the implant
and measuring it with an Osstell device, which is not possible during submerged healing.

Imaging techniques are widely used to assess the mass of alveolar bones, but there are
many limitations to using conventional periapical radiographs and panoramic radiographs
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when assessing implant stability, as they do not provide information on the buccolingual
alveolar bone, and bone loss on the buccolingual side of the implant precedes the mesial-
distal side [6]. Assessment of the peri-implant osseointegration region (the bone–implant
interface) using cone-beam computed tomography (CBCT) can be performed to effectively
assess implant stability [7]. However, it requires the assistance of a specialized radiologist,
and there is the possibility of errors in individual subjective judgments. Artificial intel-
ligence may be an effective solution, especially convolutional neural networks (CNNs),
which are specialized artificial neural networks that use convolution in at least one layer
instead of matrix multiplication. CNNs are mainly used to process pixel data and in im-
age recognition and processing [8]. The main applications of CNNs to CBCT images are
semantic segmentation [9], feature extraction [10], and diagnosis [11].

With the development of deep learning, several CBCT image segmentation methods
have been developed. For example, the MS-D-based CNN can be used for the classification
identification and segmentation of teeth and jaws in CBCT [12]. Liu et al. [13] achieved
detection and pixel-level detection of mandibular third molars and mandibular neural
canals based on U-net segmentation and classification of the M3–MC relationship using
ResNet-34. In addition, deep learning for disease diagnosis using CBCT has shown excellent
results [11]. Some scholars have combined pre-trained DenseNet models with pathological
information to construct a deep learning method for detecting transmissive lesions of
jawbones through CBCT images [14].

To the best of our knowledge, the usefulness of CNN for the prediction of implant
stability remains to be explored, having been explored in no prior studies. This study
combined prior knowledge with a cascade network and proposed a deep learning model
to assess implant stability for the first time. First, we had the multi-task cascade network
perform implant denture segmentation using the MobilenetV2-DeeplabV3+ model; this
was combined with an image processing algorithm in conjunction with osseointegration
theories [15] to generate a volume of interest (VOI) to feed to the ResNet-50 model for
implant stability classification. Through this study, we hope to validate the potential for
CNNs to guide and provide direction for dental implant therapy.

2. Materials and Methods
2.1. Surgical Protocol and Resonance Frequency Analysis

This study was conducted in accordance with the Declaration of Helsinki and re-
cent TRIPOD guidelines for prediction model development and validation. This study
was approved by the Ethics Committee of the Third Affiliated Hospital of Guangzhou
Medical University (2022-093). All participants signed an informed consent form prior
to inclusion. Clinical data, including CBCT images and ISQ values for the same period,
were acquired from July 2021 to June 2022 from 41 patients who requested dental implant
therapy at the Department of Stomatology of the Third Affiliated Hospital of Guangzhou
Medical University, including 23 males and 18 females (for a total of 55 implants). The
inclusion criteria were as follows: (1) age 18 years or older, (2) patients with indications for
implants, and (3) provision of written informed consent. The exclusion criteria were as fol-
lows: (1) severe periodontal disease; (2) the need for complex bone augmentation surgery;
(3) possible severe distortion or scattered artifacts in the CBCT images due to orthodontic
treatment or metal restorations; and (4) maxillofacial contraindications to implant surgery,
such as a history of radiation therapy, severe diabetes, or hypertension.

All implants were placed using the conventional implant surgery protocol at least
6 weeks after extraction, and implants of the Strauman Dental Implant System were
placed. CBCT was performed immediately and 3 months after implant placement, and
measurements were taken using an Osstell device (Osstell AB, Sampgatan, Goteborg,
Sweden) to measure ISQ values. Buccal lingual and proximal–distal mesial ISQ values
were measured, and the mean values were recorded to ensure reproducible measurements.
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2.2. CBCT Image Acquisition and Image Pre-Processing

CBCT was performed using NewTomVG (FSV: 90 kV; mAs: 12.92; CTDIvoi: 1.61 mGy;
exposure time: 3.6 s), and the data were stored in DICOM format. All personally identifiable
information was removed using anonymization. The CBCT data were imported into
NewTom NNT 9.0.0 and reconstructed according to the sagittal arch, with a thickness of
0.3 mm to cross-sectional images vertical to the arch. In total, 20,488 cross-sectional images
of the arch and 779 implant images were obtained.

For the 779 coronal section implant images, an experienced radiologist used the data
annotation software Labelme (Windows 5.0.1, MIT, Cambridge, MA, USA) to annotate the
images containing implant dentures (Supplementary Figure S1).

2.3. Estimation of Sample Size

To determine the test set sample size, we calculated the sample size using the single-
arm diagnostic trial sample estimation formula in PASS 15 (Power Analysis and Sample
Size Software, 2017; NCSS, LLC, Kaysville, Utah, USA, ncss.com/software/pass). Based
on the training set results, a sensitivity of 95%, a specificity of 88%, and an α of 0.05, the
test set required at least 133 images. We randomly selected 20% of the entire dataset as
the test set, and the final sample size was 155 images each for the binary and quaternary
classification test sets and 150 images for the ternary classification test set.

2.4. Construction of a Multi-Task Cascade Network

The cascade network (Figure 1) constructed in this study consists of the following
modules: (A) a MobilenetV2-DeeplabV3+ implant recognition and segmentation network,
(B) a VOI extractor combined with prior knowledge, and (C) a ResNet-50 implant stability
classification network. In the test set, cross-sectional images of the entire dental arch
were fed into the trained MobilenetV2-DeeplabV3+ network; and only the implant cross-
sectional images in which the implants were segmented were output. Based on the semantic
segmentation results, the image of the peri-implant osseointegration region as VOI was
obtained by combining implant information (e.g., implant length and tooth position). The
VOI was finally fed into the trained ResNet-50 network, and the ISQ classification results
were output. Finally, we observed the accuracy and efficiency of the cascade network in
the binary, ternary, and quaternary ISQ classification test sets.

2.4.1. Construction of the MobilenetV2-DeeplabV3+ Implant Recognition and
Segmentation Network

Most semantic segmentation networks comprise encoding and decoding blocks. The
encoding block progressively downsamples the input image, whereas the resolution of the
feature map is reduced step-by-step to capture deeper feature information. The decoding
block is used for upsampling the small-sized feature map to generate a segmentation result
with the exact resolution of the original image. DeeplabV3+ uses the same “encoding
block, decoding block” construction, using a modified Xception network [16], applying
depth-separated convolution [17], and incorporating batch normalization(BN) [18] and
ReLU [19] to improve feature extraction.

In the encoding block, atrous spatial pyramid pooling (ASPP), which performs par-
allel cavity convolution (atrous convolution) on the initial effective feature layers that
are compressed four times, is used for feature extraction by parallel convolution with
different ratios, followed by concat merging, and finally compressing the features using
1 × 1 convolution. In the decoding block, low-level features underwent 1 × 1 convolution
to reduce the number of channels. High-level features were upsampled four times bilin-
early and then linked to the corresponding low-level features. The features are linked or
refined by the feature layers by 3 × 3 convolution, and quadruple bilinear upsampling is
performed.

https://www.ncss.com/software/pass/
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bined segmentation results with clinical information extensions to obtain the VOI image; (g) impor-
tation of the VOI into the ResNet-50 network to output classification results. CBCT, cone-beam com-
puted tomography. 
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Figure 1. (a) Workflow of the multi-task cascade network; (b) CBCT image reconstruction;
(c,d) cross-sectional image input to the MobilenetV2-DeeplabV3+ network and output implant
dentures segmentation image. The green section represents the implant dentures; (e,f) a VOI extrac-
tor, combined segmentation results with clinical information extensions to obtain the VOI image;
(g) importation of the VOI into the ResNet-50 network to output classification results. CBCT, cone-
beam computed tomography.

In this study, we improved the above DeeplabV3+ network at the network level as
follows: at the backbone network level, we replace the original version of the Xception
backbone network to MobilenetV2 [20], considering the potential need for this study to
operate in embedded devices. The entire MobilenetV2 consists of an inverted residual block
as the core component; the inverted residual block network structure is spindle-shaped,
first up-dimensioned by 1 × 1 convolution, then by deep separable convolution, and finally
down-dimensioned. The residual edges for the tensor superposition link the inputs and
outputs of each block. MobilenetV2 performed a total of four down-samplings during the
feature extraction process. The feature maps generated after the first two down-samplings
were completed were further used as low-level features, while those generated after all
down-samplings were completed were used as high-level features. The ASPP part is
consistent with the decoder part and DeeplabV3+ (Figure 2).

2.4.2. Training of the MobilenetV2-DeeplabV3+-Based Implant Recognition and
Segmentation Network

To prevent model overfitting and positive and negative sample imbalances, online
augmentation was used to expand the dataset by panning, rotating, and flipping each batch
of data. Moreover, we used focal loss to solve the problem of a serious imbalance in the
ratio of positive and negative samples in one-stage target detection, which reduces the loss
function to reduce the weight of negative samples during training. Meanwhile, we loaded
MobilenetV2 pre-training weights, which were trained using the ImageNet dataset [21].



Diagnostics 2022, 12, 2673 5 of 12

Diagnostics 2022, 12, x FOR PEER REVIEW 5 of 12 
 

 

and finally down-dimensioned. The residual edges for the tensor superposition link the 
inputs and outputs of each block. MobilenetV2 performed a total of four down-samplings 
during the feature extraction process. The feature maps generated after the first two 
down-samplings were completed were further used as low-level features, while those 
generated after all down-samplings were completed were used as high-level features. The 
ASPP part is consistent with the decoder part and DeeplabV3+ (Figure 2). 

 
Figure 2. Network architecture of MobilenetV2-DeeplabV3+. 

2.4.2. Training of the MobilenetV2-DeeplabV3+-based Implant Recognition and  
Segmentation Network 

To prevent model overfitting and positive and negative sample imbalances, online 
augmentation was used to expand the dataset by panning, rotating, and flipping each 
batch of data. Moreover, we used focal loss to solve the problem of a serious imbalance in 
the ratio of positive and negative samples in one-stage target detection, which reduces the 
loss function to reduce the weight of negative samples during training. Meanwhile, we 
loaded MobilenetV2 pre-training weights, which were trained using the ImageNet dataset 
[21]. 

The MobilenetV2-DeeplabV3+ was trained for 50 epochs. The specific implementa-
tion and associated parameters used in the training process were as follows: batch size of 
16, initial learning rate of 5 × 10−4, and an input image resolution of 256 × 256. To accelerate 
the convergence of the network in the expected direction and avoid oscillations at the na-
dir attachment, we also used the stepLR learning rate decay function with a gamma of 
0.94. The learning rate decreases once for each completed epoch of training. We used 
Adam as an optimizer to feature a fast convergence at the beginning of training. The 
downsampling multiplier for the backbone network was 8. The final training used cross-
entropy loss + dice loss as the loss function, because dice loss exhibits good performance 
for scenarios with a severe imbalance between positive and negative samples, and the 
training process focuses more on the mining of foreground regions. 

2.4.3. Prior Knowledge-Based VOI Extractor 
The output of the MobilenetV2-DeeplabV3+ semantic segmentation network is the 

implant denture segmentation image, which is also used as the input of the VOI extractor. 
The processing flow of the VOI extractor is as follows. First, the pixels belonging to the 

Figure 2. Network architecture of MobilenetV2-DeeplabV3+.

The MobilenetV2-DeeplabV3+ was trained for 50 epochs. The specific implementation
and associated parameters used in the training process were as follows: batch size of 16,
initial learning rate of 5 × 10−4, and an input image resolution of 256 × 256. To accelerate
the convergence of the network in the expected direction and avoid oscillations at the nadir
attachment, we also used the stepLR learning rate decay function with a gamma of 0.94.
The learning rate decreases once for each completed epoch of training. We used Adam as
an optimizer to feature a fast convergence at the beginning of training. The downsampling
multiplier for the backbone network was 8. The final training used cross-entropy loss +
dice loss as the loss function, because dice loss exhibits good performance for scenarios
with a severe imbalance between positive and negative samples, and the training process
focuses more on the mining of foreground regions.

2.4.3. Prior Knowledge-Based VOI Extractor

The output of the MobilenetV2-DeeplabV3+ semantic segmentation network is the
implant denture segmentation image, which is also used as the input of the VOI extractor.
The processing flow of the VOI extractor is as follows. First, the pixels belonging to the
implant are hidden according to the segmentation result. Since the bone mass around
the implant is highly correlated with implant stability [22], we obtained the implant and
surrounding bone images by extending the segmented edge horizontally by 5 pixels.
According to the tooth position, all implant images placed in the mandible were flipped so
that all implant apexes were on top, and the implant neck and abutment faced downward.
Subsequently, the implant and peri-implant tissue images were extracted by cropping them
according to the implant length. Finally, the images of the peri-implant osseointegration
region were obtained and used as the VOI feed to the next stage.

2.4.4. Construction of the ResNet-50-Based Implant Stability Classification Network

To overcome the problem of low learning efficiency and accuracy degradation, we
used ResNet-50 [23] as a classification neural network. ResNet directly introduces a layer
of data from several previous layers into the input part of the later data layers by skipping
multiple layers. One of the preceding layer lines partially contributes to the content of the last
feature layer. The benefit of residual connection is that it allows the raw information from the
lower levels to be passed directly to the subsequent higher levels, allowing the higher levels to
focus on residual learning and avoiding accuracy degradation (Supplementary Figure S2).
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ResNet-50 has two modules: Conv Block and Identity Block, where the Conv Block
input and output dimensions are different, so they cannot be connected in successive series,
and their role is to change the dimension of the network. The identity block input and
output dimensions were the same, and could be connected in series to deepen the network
(Supplementary Figure S3). For the different classification modes, the number of neurons
in the last fully connected layer was set to category (Figure 3).
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2.4.5. Training of the ResNet-50-Based Implant Stability Classification Network

In this study, the 779 VOI images generated in the VOI extractor section were used
as the dataset for the classification neural network. We designed three ISQ classification
modes. The first is a binary classification with ISQ 65 demarcations. The second is a ternary
classification with ISQ 60, 70 as the demarcation, and the third is a quaternary classification
with ISQ 50, 60, 70 as the demarcation. The dataset was replicated using three different
ISQ classification patterns. Each replica was then randomly divided into training and test
sets with a ratio of 8:2. Random data augmentation and freeze/unfreezing of the model
structure were used to perform training.

The training process was based on a pre-trained model, and the first 50 epochs were
trained with a frozen backbone, which was then unfreezed to train another 950 epochs.
The specific implementation and related parameters used in the training process were as
follows: an input image resolution of 64 × 64, a cosine dynamic learning rate, an initial
learning rate of 1 × 10−3, a minimum learning rate of 1 × 10−5, and an Adam optimizer.
ResNet-50 uses cross-entropy as the loss function.

2.5. Model Performance Evaluation and Statistical Analysis

Two deep learning methods were used in this cascade network: implant segmentation
and ISQ classification. The following validation criteria were used to verify the model’s
performance. The pixel accuracy (PA), mean pixel accuracy (mPA), and intersection over
union (mIoU) were used to evaluate the semantic segmentation model. The performance
of different ISQ classification models was evaluated by recall, accuracy, and confusion
matrices; based on the confusion matrix, the multi-classification was converted into binary
classification to evaluate the sensitivity, specificity, accuracy, PPV, NPV, and F1 scores
between groups in the model. Statistical analysis and data visualization were performed
using R (version 3.6.3) and the R package ggplot2 (version 3.3.3).

3. Results
3.1. Performance of Implant Identification and Segmentation Based on MobilenetV2-DeeplabV3+

Table 1 shows the performance of MobilenetV2-DeeplabV3+ applied to the edge seg-
mentation of implant dentures. After evaluating the test set, the MobilenetV2-DeeplabV3+
network exhibited good segmentation performance, with mIoU achieving 94.4%, mPA
96.76%, average recall of 96.87%, average precision of 97.33%, and accuracy of 99.76%.
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Table 1. Performance of implant identification and segmentation based on MobilenetV2-DeeplabV3+.

Performance Mean Implant Background

mIoU 0.9440 0.8904 0.9976
PA 0.9676 0.9363 0.9989

Recall 0.9687 0.9383 0.9991
Precision 0.9733 0.9478 0.9987

mIoU, intersection over union; PA, pixel accuracy.

3.2. Classification Performance of Implant Stability Based on ResNet-50

The trained ResNet-50 model was tested on different classification test sets. We found
that 149 out of 155 images were correctly classified in the binary classification test set, with
an accuracy of 96.13%, a precision of 96.20%, and a mean recall (mRecall) of 96.06%. The
ternary classification test set had 150 images, and 143 images were correctly predicted with
95.33% accuracy, 95.33% precision, and 95.37% mRecall. The quaternary classification test
set had 155 images, and 141 images were correctly predicted with 92.90% accuracy, 93.71%
precision, and 93.01% mRecall.

The prediction results of each classification test set are shown in Figure 4a–c. The
horizontal coordinates show different classification test sets. The vertical coordinates
represent the actual ISQ value. The box plots the distribution interval of the positive
predicted values in each test set, the median, quartiles, and other indicators, and the violin
plot depicts the distribution status of the positive predicted values and numerical density.
We used the points on the upper or lower edges of the box plot to represent the negative
predictive values.
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We produced confusion matrices (Figure 4d–f) based on the classification results. We
converted the multi-classification into binary classification to retrieve various metrics,
including the accuracy, sensitivity, specificity, PPV, NPV, and F1 scores, as shown in Table 2.
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Table 2. Classification performance of implant stability based on ResNet-50 in different modes.

One-vs.-Rest Classification Sensitivity Specificity PPV NPV F1

Binary Classification as model outputs
65–100 vs. 0–64 0.9753 0.9459 0.9518 0.9722 0.9591

Three Classification as model outputs
0–59 vs. others 0.9592 0.9804 0.9792 0.9804 0.9692

60–69 vs. others 0.9444 0.9792 0.9623 0.9691 0.9534
70–100 vs. others 0.9574 0.9612 0.9184 0.9802 0.9379

Four Classification as model outputs
0–49 vs. others 0.9259 1.0000 1.0000 0.9844 0.9630

50–59 vs. others 0.9630 0.9920 0.9286 0.9920 0.9458
60–70 vs. others 0.9245 0.9800 0.9608 0.9608 0.9427

70–100 vs. others 0.9565 0.9533 0.8980 0.9549 0.9272

NPV, negative predictive value; PPV, positive predictive value; F1, F1 score.

3.3. Time Costs

The entire implant stability evaluation process is shown in Figure 1, and the entire
cascade network was subjected to time-consuming tests. The test platform was an Intel
Core i5-11400F CPU and NVIDIA RTX3060 GPU. We randomly selected 20 implants from
the dataset, performed ISQ prediction on their cross-sectional images, and recorded the
time taken to complete all ISQ predictions for each implant. The above procedure was
performed for 10 rounds, and the results showed that ISQ prediction of all cross-sectional
images of one implant was completed every 3.76 s, on average.

4. Discussion

Implant stability is a process that dynamically changes with bone remodeling after
implant placement. Using medical imaging techniques to assess the peri-implant bone can
assist in the assessment of implant stability. For example, fractal analysis can be used to
assess peri-implant bone tissue healing and trabecular bone structure using ultrasound [24].
It can also be applied to panoramic films to assess implant stability [7]. In this study, we
proposed—for the first time—a multitasking cascade network based on CBCT to assess im-
plant stability by identifying and segmenting implants in whole dental arch cross-sectional
images using the MobilenetV2-DeeplabV3+ network. We then combined osseointegration
theory and segmentation results to extract VOI on cross-sectional images. Finally, the depth
residual network Resnet-50 was used for ISQ classification. The evaluation results in the
test set show that Resnet-50 performs well in the task of ISQ classification.

The ISQ is a globally standardized method for calculating implant stability. According
to the literature, ISQ values greater than 70 are considered as having high stability, 60 to 69
are considered as having moderate stability, and values below 60 are considered as having
low stability [25–27]. The ITI International Consensus provided clinical recommendations
for implant loading protocols. Specifically, the suggestions were that the ISQ should be
greater than 60–65 for single implant loading and greater than 60 for implant ISQ for
overdenture restorations in edentulous patients [28]. A prerequisite for the immediate
restoration of a single implant is a primary stability ISQ greater than 65 [29], and for
immediate loading implants, an ISQ greater than 70 is recommended [30]. Based on the
clinical significance of implant stability, to evaluate the network’s diagnostic performance,
the output was classified using a binary classification with an ISQ of 65 as the cut-off, a
ternary classification with ISQ cut-offs of 60 and 70, and a quaternary classification with
ISQ cut-offs of 50, 60, and 70.

The training of deep learning models is carried out through a large number of image
and label correspondences, with no human intervention during this period. However, deep
learning in medical image processing by introducing prior knowledge often achieves better
performance and has higher interpretability. For instance, Zheng et al. [31] introduced
an anatomical knowledge-based score function into the U-Net’s objective function using
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CBCT images to achieve good performance. Moreover, Li et al. [32] started from a priori
knowledge, using the retina’s structural properties around the optic nerve papillae, and
employed neural graph networks to capture the spatial structural relationships of medical
images. Moreover, a two-level segmentation network framework, assisted by multiscale
graph networks, was designed to improve the segmentation performance of deep learning
networks [32].

The influence of peri-implant bone on implant stability is well known, and can be
inferred from peri-implant bone density, volume, and cortical thickness on CBCT [33]. To
avoid the noise caused by redundant image information that interferes with the resultant
classification network, it is necessary to remove the background, the implant superstructure,
and the bone tissue on the buccolingual side away from the implant, because these are
not relevant to implant stability. Accordingly, we extracted additional feature information
manually and excluded the effects of noise.

The diagnosis of medical images is essentially a computer vision problem, but it often
has many unique industry-specific issues. The lack of data is one of the factors limiting
the development of deep learning for medical-aided diagnoses. For such problems, the
migration of a trained model on a task (source domain) to another task (target domain) [34]
is a good solution. In this study, we modified the original deeplabV3+ architecture by
changing its original backbone to MobilenetV2, freezing the backbone of the pre-trained
model loaded with ImageNet during the training process, and training only the layers
outside the backbone. Out of the total number of parameters of approximately 580 W,
approximately 181 W parameters were untrained. In addition, in the ResNet-50 implant
stability classification network, we loaded the pre-trained model of ImageNet. We then
froze the backbone for the first 50 epochs of training, and then unfroze the backbone for the
other 950 epochs. Eventually, the model achieved satisfactory accuracy.

End-to-end means that the parameters that need to be determined in the original steps
are learned jointly, rather than in steps. The key to end-to-end learning is whether there
is sufficient data to directly learn complex functions to map from x to y [35]. The most
significant advantages of end-to-end learning are its simplicity and the fact that it does not
require a complex process to be designed [36]. In contrast, in end-to-end models, it is more
difficult to determine how the components of the model contribute to the end goal, which
leads to a reduction in the interpretability of the overall architecture. In addition, it is more
challenging to incorporate a priori knowledge into the end-to-end model, which prevents
us from providing direction or limiting the learning of the entire network based on clinical
experience.

The idea of multitask learning provides an alternative solution to our research. Multi-
task learning can learn multiple tasks simultaneously by sharing models, and can improve
data efficiency, reduce overfitting by sharing representations, and perform fast learning
by using auxiliary information [37]. We refer to the design idea of multi-task cascade
networks, where the output of each task-specific branch is appended to the following
task-specific input, forming a “cascade” of information flow by combining MobilenetV2-
DeeplabV3+-based implant recognition and segmentation. The automated prediction of
implant stability was achieved by cascading the MobilenetV2-DeeplabV3+ implant iden-
tification and segmentation network, the VOI extractor with prior knowledge, and the
ResNet-50 network.

Although high accuracy was obtained for the test set, there are still some limitations.
First, we only used one brand of implant, and different implant systems have different
implant designs and surface treatments, which have different effects on implant stability.
Moreover, because the deep learning method hinders its interpretability, medical diagnostic
systems must be transparent and interpretable to gain the trust of doctors and patients. In
future research studies, additional datasets from different implant systems will be collected
to improve the generalization of our multitask cascade network, and to develop better
visualization efforts to improve its interpretability. Second, the current diagnostic model
only assesses immediate implant stability. We aimed to predict changes in implant stability
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over time by tracking the relationship between changes in CBCT images and implant
stability during implant bone healing.

5. Conclusions

This study represents a successful first step towards showing that that deep learning
methods may be potentially useful for implant stability measurement. In addition, we
were able to construct a cascade network that had good concordance with the ISQ value
measured using the Osstell device.
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//www.mdpi.com/article/10.3390/diagnostics12112673/s1, Figure S1: The image labeling process
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