Skip to main content
. 2022 Oct 26;12(11):2595. doi: 10.3390/diagnostics12112595
Algorithm 1: The Proposed Stacking Model
  • 1.

    Start

  • 2.

    Input data: Input training dataset X={xi,yi}i=1m

  • 3.

    Output data: Stacking classifier output result.

  • 4.

    Pre-process the input data

  • 5.

    Set all the model architecture according to the input data

  • 6.

    Train all the base classifiers

  • 7.

    for t = 1 to T   do

  • 8.

    learn outputt based on X

  • 9.

    end for

  • 10.

    Generate new dataset of the base classifiers

  • 11.

    For i=1 to m do

    Xbc={xbc ,yi}  where xbc= {output1(xi),outputT(xi) }

  • 12.

    end for

  • 13.

    Learn SVM as a mate classifier in the proposed model

  • 14.

    Learn yi base on Xbc

  • 15.

    Generate the final output Yi

  • 16.

    End