Skip to main content
. 2022 Nov 16;12(11):2815. doi: 10.3390/diagnostics12112815

Table 4.

Evaluation comparison results for blood cell identification via the proposed BCNet against the latest deep learning works in the literature.

Reference Data Methods Az. (%)
Zhao et al., 2017 [44] Cell vision, ALL-IDB, Jiashan CNN, SVM, and random forest 92.80
Journal et al., 2021 [66] Collected, BCCD data set Two DCNN 95.17
(Precession)
Acevedo et al., 2019 [32] Private CNN + Transfer learning 96
Qin et al., 2018 [29] Private CNN 76.84
Ma et al., 2020 [40] BCCD DCGAN + Transfer learning 91.7
Baydilli and Atila 2020, [67] LISC Capsule network 96.86
Rui Liu et al., 2022 [37] HPBC Transfer Learning 96.83
The proposed BCNet HPBC images BCNet 98.51