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Abstract: There have been major developments in deep learning in computer vision since the 2010s.
Deep learning has contributed to a wealth of data in medical image processing, and semantic
segmentation is a salient technique in this field. This study retrospectively reviews recent studies on
the application of deep learning for segmentation tasks in medical imaging and proposes potential
directions for future development, including model development, data augmentation processing,
and dataset creation. The strengths and deficiencies of studies on models and data augmentation,
as well as their application to medical image segmentation, were analyzed. Fully convolutional
network developments have led to the creation of the U-Net and its derivatives. Another noteworthy
image segmentation model is DeepLab. Regarding data augmentation, due to the low data volume of
medical images, most studies focus on means to increase the wealth of medical image data. Generative
adversarial networks (GAN) increase data volume via deep learning. Despite the increasing types of
medical image datasets, there is still a deficiency of datasets on specific problems, which should be
improved moving forward. Considering the wealth of ongoing research on the application of deep
learning processing to medical image segmentation, the data volume and practical clinical application
problems must be addressed to ensure that the results are properly applied.

Keywords: semantic segmentation; medical image processing; deep learning; fully-convolutional
network

1. Introduction

Medical imaging has long functioned as an assistive means for diagnosis and treatment.
Advancements in technology have increased the types and qualities of medical images.
Lesion detection is one of the primary objectives of medical imaging, as the size and location
of lesions are often directly associated with a patient’s diagnosis, treatment, and prognosis.
Previously, the size and location of lesions were determined by radiologists through medical
image examination. At best, the instruments and software used were only able to enhance
the image quality by adjusting the brightness and contrast features to facilitate better
observation. Since the development of computer vision algorithms, however, researchers
have begun to utilize these algorithms in the field of medical imaging [1].

As the core of deep learning, convolutional neural networks (CNN) (Figure 1) have a
considerably long development history [2]. However, due to hardware-related limitations,
it was only in the 2010s that breakthroughs in the effectiveness of CNNs were made [3].
Meanwhile, deep learning models that meet specific targets have gradually been proposed,
from classification models, to object detection, to object segmentation. Consequently,
advancements such as the detection of lung diseases through X-ray [4], the detection of
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lesion locations [5], and segmentation have been applied in medical imaging. Due to
improvements in model performance, deep learning models have exhibited diagnostic
capabilities approximating those of clinical physicians, based on the inference of specific
datasets. However, in traditional CNN models, there are limitations to segmentation. One
of them is about the features extracted from the models. When using a smaller kernel, the
features will become more local to the original image. Global information, such as location,
may be lost. However, when using a larger kernel, the context of features may decrease [6].
Another limitation is the data availability of biomedical segmentation tasks. Due to privacy
in the medical profession, the medical data volume is often small when compared with the
data volume in other fields [6]. New models have been developed to solve these problems.
Another solution is data augmentation.

Figure 1. CNN kernel. Before input, the figure will be transformed into a signal, as shown on the
left; 0/1, for example. The arrays in the middle are called the convolutional kernel. The size of the
kernel must not be larger than the input. The neural network applies several kernels with different
weight compositions to the input to obtain feature maps, which are usually dot products, as shown
on the right. The neural network extracts a feature that can make them accomplish the tasks from
those kernels.

In this article, we will discuss the models proposed for semantic segmentation and
data augmentation techniques, as well as their current applications on clinical data.

2. Fully Convolutional Network (FCN)

One of the most-selected models for segmentation tasks is FCN (Figure 2). The
difference between FCNs and traditional convolutional neural networks is that the last
layer is not a fully connected layer that enables the model to integrate information. Instead,
the final number of output channels is modified through convolutional networks. The
main benefit of this approach is that the model has no restrictions from the full connection
layer, so the size of the input can be flexible. Table 1 shows the models used for semantic
segmentation tasks.

Figure 2. FCN. The whole neural network is composed of a convolutional neural network, which
is different from a conventional neural network, especially on the bottom 1~2 layers. The result is
at a pixel level, so the network can afford a segmentation task. FCN uses a convolutional neural
network to extract features and uses skip connections to find out the location of the feature at the
whole-map level.
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Table 1. Models for segmentation tasks.

Authors (year) Method Dataset Medical Image Performance

Ciresan et al. [7] (2012) Sliding window
convolutional network

EM segmentation
challenge Electric microscopy Warping error:

0.000420

Ronneberger et al. [6] (2015)
U-Net EM segmentation

challenge Electric microscopy Warping error:
0.000353

PhC-U373 Light microscopy IoU: 0.92
DIC-HeLa Light microscopy IoU: 0.78

Abedalla et al. [8] (2021) ResUNet SIIM-ACR 2019 Chest X-ray Mean DSC: 0.86

Wang et al. [9] (2020) SE-FCN From their
own institute

Chest X-ray MPA:0.93
DSC:0.92

Zhou et al. [10] (2020) MSDU-Net LiTS Computed tomography

Scan angle range
[0◦, 150◦]
PSNR 1: 33.18
SSIM 2: 0.9453
UIQI 3: 0.9937

Yousefi et al. [11] (2021) DDAUNet
Leiden University
Medical Center,
the Netherlands

Computed tomography Mean DSC:0.79

Cai et al. [12] (2020) MA-UNet LUNA Computed tomography
Lung: mIoU:0.96
Esophagus cancer:
mIoU: 0.65

UNet++
DeepLab (v3)

1 Peak Signal Noise Ratio, 2 Structural Similarity Index, 3 Universal Image Quality Index.

The U-Net is an example of an FCN (Figure 3) [6]. The U-Net leverages the extraction
features of convolutional networks, in which the upsampling layer and concatenation are
used to compare the features of the top layer while simultaneously retaining the features of
the bottom layer. The model is thereby able to detect the detailed and general features of
objects, thus detecting the location of objects. The U-Net can be referred to as a pixel-level
image classification method, in which the segmentation is performed through pixel-wise
classification. The U-Net architecture is briefly described as follows:

Figure 3. U-Net, derived from FCN. The result from the FCN experiment shows that the inference
will be more precise if the same level feature before downsampling is summed before the feature
goes into upsampling. U-Net applies concatenation instead of summation; however, the summation
is also used in some research.

1. The descending part is also known as the encoding region. It is composed of units
called convolutional blocks, which include convolutional and pooling layers and
are akin to those of traditional convolutional neural networks and sometimes may
include batch normalization layers. Before entering a pooling layer, features are
filtered through an activation function that determines whether the extracted features
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should be transferred to the next layer. The most common activation functions are
ReLu and sigmoid, expressed as the following equations:

S(x) =
1

1 + e−x < sigmoid > (1)

where x is the feature extracted from the CNN kernel after the weight is summed, and e is
exponential.

f (x) =
{

0, x < 0
wTx + b, x ≥ 0

< ReLu > (2)

where x is the feature extracted from the CNN kernel, w is the weight, and b is the bias.Before
passing to the next convolutional blocks, the features will be retained. While there is no
limit on the number of layers in the descending parts, it is usually set at four.

2. The ascending part is also known as the decoding region. One of the keys of its
architecture is that the size of a feature map is upscaled after passing through the
upsampling layer. Another key is that, after upsampling, the feature will be concate-
nated with the feature retained at the corresponding level in the descending part. The
ascending part mainly consists of alternating upsampling and pooling layers. In the
upsampling layer, the following methods are usually used to upscale the features:

• Nearest neighbor interpolation: The value assigned is equal to that of the
nearest pixel.

• Bilinear interpolation: The value is obtained through bilateral linear interpolation.
• Cubic interpolation: Third-degree polynomials are used to obtain values. Batch

normalization, which can still be used, undergoes activation function processing
before entering the upsampling layer.

3. Output layer: Before the result export, the feature reaching the top of the ascending
part is processed. The layer is typically a single convolutional layer and usually makes
predictions pixel by pixel. The Softmax function can be applied to the layer, as it
generates the probability distribution of the classification. If the length and width of
an original input image are x and y, respectively, then the output tensor size will be
(x,y,c), with c representing the number of classes.

4. The loss function: Cross-entropy or the dice coefficient is often used. The respective
math equations are as follows:

H(p, q) = −∑x p(x) log q(x) < cross entropy > (3)

where p(x) is the ground truth probability distribution, and q(x) is the probability distribu-
tion of the result predicted by the model.

s =
2|X ∩Y|
|X|+ |Y| < dice coefficient > (4)

where X represents the result predicted by the model, and Y is the ground truth.

2.1. Modified U-Net Models
2.1.1. Modifying Encoder

The descending part of the U-Net architecture is structurally like the feature extraction
process of CNN; hence, the feature extraction part of some CNN classification frame-
works, such as VGG or ResNet, is used to replace the convolutional block of descending
part. Jakhar et al. [13] applied a simple U-Net structure for segmentation and obtained
considerably decent results. Abedalla et al. [8] applied the ResNet model to complete
segmentation tasks.
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2.1.2. Application of Residual Block

The residual block originates from ResNet (Figure 4a) [14,15]. The core concept
is identity mapping. In the past, due to deep learning neural network stacking with
convolutional layers, there is gradient loss during backpropagation, and the weights cannot
be renewed effectively at the top layer. An identity map has two paths: one extracts features
from the CNN layer-by-layer, as traditional CNN layers do, while the other skips those
CNN layers and sums the feature extracted from the previous path before entering the next
step. The latter path is also known as a skip connection because it does not pass through
the stacked CNN layers. Features that pass through a skip connection are retained and
extracted in the lower layers. During backpropagation, the skip connection can keep the
gradient from vanishing or being lost.

Figure 4. The blocks or modules used in different neural networks for computer vision deep learning.
(a) The residual block applies a skip connection to keep the gradients from vanishing or being lost
during backpropagation. (b) The SE module assigns weights to each channel for representation and
multiples them to the corresponding feature map to increase the robustness. (c) Dilated convolution
expands the reception field to enhance its ability to process objects with blurred borders. (d) The
attention module identifies the relationships between regional features so that it detects object
borders more effectively. (e) U-Net++ block-fills the space between the encoder and the decoder with
convolutional blocks to improve performance.

The encoder–decoder architecture of U-Net is also full of stacked CNN layers in those
convolutional blocks. Even though the skip connection already existed in the original U-Net
and allowed features to be fully or partially retained before concatenation, some studies
have attempted to apply skip connections to other parts of the framework. For example,
Isensee et al. [16] modified the original U-Net with skip connections. In the proposed
model, there are two paths after reaching the next level layer in the descending part. One
path goes through the upsampling, concatenation, and CNN process as the original U-Net
did, while the other directly sums up the features of the upper CNN output. In this way,
the sensitivity of the U-Net increases.

There was a study that exclusively examined the importance of partial skip connec-
tions [17]. In this context, a long skip connection crosses between the encoder–decoder
architecture like a concatenated skip connection in the U-Net, while a short skip connection
is similar to a residual block in a CNN block. The study found that short skip connections
are more stable and efficient for weight updates, as they prevent the weight from hovering
around extreme values so that the gradient can descend in a stable manner.
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2.1.3. Application of Squeeze-and-Excitation Module

The squeeze-and-excitation (SE) (Figure 4b) module was first proposed by Hu et al. [18]
in 2017. The idea of this module is that each channel may add a different contribution in a
feature map. Therefore, weights are first submitted by each channel as a representation of
their contribution, then they are multiplied by the feature map. In this way, the signals of
more contributive channels are enhanced while others are suppressed.

Wang et al. [9] applied SE modules to both spatial and channel feature maps in U-Net
by using DenseNet as a backbone. The mean pixel-wise accuracy and Dice similarity
coefficient (DSC) were both over 90%.

2.1.4. Application of Dilated Convolution Network

A dilated convolution network (also known as an atrous convolution) (Figure 4c)
expands the convolution receptive field while retaining the number of convolution kernels.
The mathematic expression is as follows:

yi = ∑j xi+rjwj (5)

where y is the output of the dilated convolution, x is the input, and w is the kernel weight,
which can be expressed as follows:

Kd(x, y) =
{

Ko(i, j) i f x = i·α, y = i·β
0 else

(6)

A schematic diagram is shown below. The significance of this process is to increase the
receptive field of the CNN kernel to maintain the features of the larger region level as the
model goes deeper. Combined with U-Net, this process enables the model to have a more
precise prediction at the edge of the object and increases the robustness. A larger scale of
dilated CNN kernels is used for learning the location of the edge in an object while smaller
dilated CNN models are used for identifying the direction of the edge. When applied to an
object with blurred edges, high-rated dilated CNN kernels can determine whether an object
is blurry [19] while small-rated dilated CNN kernels can identify how blurred the object is.
By doing so, the model can differentiate those similar blurry objects around the target.

Xiao et al. proposed a model that combined U-Net with a dilated CNN called MSDU-
Net. In the model, features will be extracted from the input by the dilated CNN before
entering U-shaped architecture. As the layer goes deeper, the rate of the dilated CNN
(represented by r in Equation (5)) increases. As a result, the receptive field increases while
the size of the feature decreases so that it can be the same size as the feature extracted from
the upper layer of the encoder. The feature extracted from the upper layer of the encoder
and extracted from the corresponding level of the dilated CNN will be concatenated and
then transferred to the next level of the encoder [19].

In addition to detecting blurry edges, a dilated CNN kernel is capable of sharpening
the edges of an object. Zhou et al. [10] utilized a dilated CNN to attenuate the noise from
artifacts in medical imaging. Another study [20] applied dilated CNNs solely to increase
the intersection over union (IoU).

2.1.5. Application of the Attention Module

The attention module (Figure 4d) was first used in deep learning models for natural
language processing [21]. It figures out the correlation between the query and key to obtain
the weight of the value corresponding to the key, and then it sums the weight of the value
to get the attention. As a result, the attention module can capture the relationship between
texts in a region or paragraph more precisely. The mathematical equation is expressed
as follows:

ttention(Q, K, V) = So f tmax
(

QKT
√

dk

)
V (7)
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Similar concepts are now used in the computer vision field. Applying attention
modules makes the model combine the correlations of regional features, generating better
object edge detection results to improve performance.

Yousefi et al. [11] applied the attention module, combined with a dilated CNN, to the
U-Net. Attention modules were used within the convolutional block and between the skip
connections. The model was tested on a chest CT dataset for esophagus segmentation tasks,
and the AUC was 0.76. Cai et al. [12] presented a similar method in which an attention
module is placed in the decoder part and is divided into channel attention and spatial
attention to allow the model to capture the respective relevance from the channel attention
and spatial attention. In a lung and esophageal dataset, the model achieved higher IOU
than the U-Net and U-Net++ did. However, the computing speed, GPU memory, and
gradient descent may be affected when there are more parameters.

2.1.6. UNet++

The main difference between U-Net++ (Figure 4e) and U-Net in terms of architecture
is the design of the skip connection [22,23]. In U-Net++, instead of a long skip connection,
the space between the encoder and the decoder is filled with dense convolutional blocks, as
shown in Figure 2. The features transmitted between those convolutional blocks are like a
decoder–encoder and in a single direction. Meanwhile, the skip connections are connected
horizontally between these convolutional blocks, crossing up to three convolutional blocks
at most. All these skip connections are horizontal and transmitted from the encoder to
the decoder.

The computation of a convolutional block includes convolutions and activation func-
tions. If a convolutional block is not on the far-left side or at the same location as the encoder
in a traditional FCN (j > 0), the block will receive additional upsampling information from
the convolutional block in the lower layer. With this arrangement, the neural network is
akin to a combination of one encoder and multiple decoders. The equation is as follows
(Z. Zhou et al. 2018 [23]):

xi,j =

{
H
(
xi−1.j), i = 0

H(
[[

xi,k]
j−1
k=0, U

(
xi+1.j−1)]), j > 0

(8)

Another difference between the U-Net++ and U-Net is deep supervision, which
enables the model to operate in two different modes: accuracy mode and fast mode [23].
In both modes, the network generates an output (xˆ(0,i)) for each convolutional block in
the top layer. In the accuracy mode, all outputs are averaged as the final output. In the
fast mode, the model only selects one of the outputs as the final output. The selection is
based on the speed of calculation and the size of the network selected by the user. This
indicates that the network of the U-Net++ can be different between the training phase and
the inference phase. The inference model can be pruned from the trained model according
to a user’s needs. Deep supervision combines two loss functions—binary cross-entropy
and the Dice coefficient—and is expressed as the following equation:

L
(
Y, Ŷ

)
= − 1

N

N

∑
b=1

(
1
2
·Yb·logŶb +

2·Yb·Ŷb

Yb + Ŷb

)
(9)

where Y and Ŷ represent the actual and predicted probability distribution after flattening,
respectively, and N represents the batch size. To sum up, U-Net++ has an encoder–decoder
network filled with dense convolutional blocks, while different skip connections cross
between the encoder–decoder network and these convolutional blocks so that the gradient
flow could be improved; finally, deep supervision is achieved.

U-Net++ has been widely applied in several medical domains. Zhou et al. [22,23]
performed a series of experiments using the U-Net++, including histopathological, clinical–
medical, and endoscopic imaging. The IOU of the U-Net++ exceeds that of the U-Net by 3%
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to 5%, which is not affected by using various backbones (e.g., VGG, ResNet, and DenseNet).
U-Net++ contains more parameters than U-Net, but it can decrease memory usage to speed
up computation by sacrificing a little accuracy through deep supervision, which still makes
it a valuable network.

2.2. Other FCNs
DeepLab

DeepLab (Figure 5a) was first proposed by [24]. The network consists of two parts:
atrous convolution and a conditional random field (CRF). They offer solutions to two
problems. The first problem is the gradual loss of features through the downsampling
process, which can be dealt with using atrous convolution, as mentioned above.

Figure 5. Deeplab. (a) Version v1; the critical part of the network is the ASPP, or atrous convolution,
which is shown in (b).
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The other problem is maintaining the spatial stability to detect the centers of objects,
which conflicts with the spatial accuracy of the deep convolutional neural network. The
CRF combines the local features with classifiers to reinforce the edge detection ability of
the model.

It has been claimed that DeepLab possesses three benefits: speed, accuracy, and simple
architecture. DeepLab has evolved over time: v1, v2, v3, and, currently, v3+. Atrous spatial
pyramid pooling (ASPP) (Figure 5b) is included in v2, in which features are stacked together
after being filtered through atrous convolutional layers of different sizes. At present, this
method not only allows different levels of features to be retained but the center of an object
can be determined effectively as well [25].

In v3, the authors reviewed several common methods of semantic segmentation,
such as encoder–decoder, pyramid network, and ASPP in v2. The entire architecture is
readjusted first by deepening the convolutional layers, which are similar to ResNet, so as to
obtain features near the image level. To ensure that contextual information will not be lost
through striding in repeated convolution layers, atrous convolution is used instead when
output_stride reaches a certain level. The authors then reviewed ASPP by applying the
aforementioned method of increasing the layer number horizontally in the ASPP. A feature
map is then concurrently extracted through convolutions with different sizes and rates,
concatenated, and then passed through a 1 × 1 convolution before output. This method
increases the mIOU to 70–80% [26]. The output_stride is associated with accuracy but takes
up a considerable amount of computing resources.

DeepLab also possesses remarkable edge detection capabilities in medical images.
Tang et al. performed a two-stage method to accomplish liver segmentation in abdominal
CT scans [27]. A faster RCNN was used to detect the location of the liver, and the output
was then put into DeepLab for the segmentation task. This approach yielded the lowest
volumetric overlap error in the two datasets.

Wang et al. applied DeepLab v3+ to detect gastric cancer in pathology slides [28].
The results were compared with those from a SegNet and a faster RCNN. The sensitivity,
specificity, and Dice coefficient (DC) were all over 90%; in addition, the DC from DeepLab
v3+ was higher than that of those methods by 12%. Ahmed et al. [29] compared the
performance in detecting breast cancers from mammography between DeepLab and mask-
RCNN. Following the preprocessing step, in which muscles were filtered, both models
achieved an area under the curve (AUC) of more than 0.95 and a mean average precision of
0.8 and 0.75, respectively. Therefore, the authors suggest that both models can be used to
assist radiologists in effectively identifying breast cancer lesions through mammography.

3. Data Augmentation
3.1. Traditional Data Processing

Data augmentation (Figure 6) is one of the common methods of reinforcing model
performance in deep learning. It allows machines to generate images like the original
data, but independent of it—in the model’s view—so as to be used in training. Data
augmentation increases the variety of data and reduces the gap between training and
validation data to improve model robustness [30]. Rigid and non-rigid transformations are
often used in data augmentation. The former includes shifting, rotation, and flipping; the
latter includes scaling and shearing.

In medical imaging, rigid transformation is more often used for segmentation tasks
than classification tasks. Because of class imbalance, it is better to retain the original image
features for model convergence. The pattern of features might be changed in non-rigid
transformations, which may lead to poor training results, especially with a small amount
of data. In addition, if the left and right sides of an image should be detected by the model,
flipping may confuse the model.

Owing to rare data, data augmentation is quite important in medical imaging train-
ing tasks. However, there is a paucity of studies that focus on the contribution of data
augmentation [31–33].
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Figure 6. Method for data augmentation. (a) Making changes to figures, the method can usually be
separated as a rigid or non-rigid transformation. Rigid transformation geometrically changes the
original image, while non-rigid transformation changes the size or shape with respect to the original
image. (b) (Upper) The generative part of the GAN neural network yields figures that have similar
properties, which can be used to increase the data volume. (Lower) Grad-CAM shows the heatmap
of figures, which can be used for annotations, thus reducing manual workloads.

3.2. Generating Data from Models

Another way to augment data is to use deep learning models. A model is trained
to generate new data, which are not only transformed from the original data but also
the corresponding annotations. Two methods are discussed here: generative adversarial
network (GAN) and gradient-weighted class activation mapping (Grad-CAM).

3.2.1. Generating Data from GAN

A GAN consists of a generator network and a discriminator network. The aim of the
generator network is to generate an image that is hard for the discriminator to differentiate
from the real image, while the aim of the discriminator network is to differentiate the
generated image from the real image. Through the adversarial process, the generator is
able to create images that look almost real, and the discriminator is also able to detect the
subtle difference between the real and generated images [34].

GANs have been applied in medical imaging tasks, including classification [35] and
segmentation [36–38]. GAN can also be used in data augmentation. Maayan et al. [35] used
GAN to generate CT images to improve data volume. The accuracy rose to 0.85, which was
higher compared with typical data augmentation methods (0.75–0.8). Veit et al. [38] applied
GAN to data augmentation to generate non-contrast CT images based on real-contrast
CT images. The performance of the U-Net in segmentation rose from 0.916 to 0.932 (as
represented by the Dice score).

There are some limitations to GAN, the biggest of which is convergence. The balance
between the generator and the discriminator is difficult to maintain. For example, if the
discriminator is overfitted, the generator will have difficulty obtaining its convergence [39].
Therefore, this may affect the quality of the data generated by the model. If the generated
images have totally different features or patterns compared with the original data, the
purpose of the data augmentation will be lost.

3.2.2. Generating Data from Grad-CAM

It has been a question since deep learning techniques first developed as to how
neural networks actually learn. People have tried to figure out the answer by developing
methods such as visualizing convolutional networks [40] or based on a gradient point of
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view [41]. The integrated architecture is an approach called Grad-CAM. A corresponding
classification image, also known as a type of heatmap, is derived from the product of
computing the weight and the above activation, passing through the ReLu activation of
the last convolution layer [42]. This heatmap effectively displays the object to be classified.
Therefore, neural networks are perceived to be able to discriminate according to “human
thoughts”. From another perspective, Grad-CAM is more similar to judgment rules or the
domain knowledge of humans, though the thinking process in the background might not
necessarily be similar to that of a human.

The property of the heatmap in Grad-CAM, which matches targets, can be used to help
annotate in segmentation. Grad-CAM is used to obtain the approximate location and size
of an object, followed by manual modification, which makes annotation more efficient [43].

4. Clinical Datasets and Relevant Studies
4.1. Lung Lesions

Some chest lesions have been studied, including lung lesions such as pneumothorax,
lung nodules, pneumonia, cardiac lesions such as ventricle hypertrophy, and bony lesions
such as rib fractures. Except for rib fractures, there are obvious targets for segmentation in
these lesions, along with open datasets [44–46] for constructing a pretrained model so that
the training for those tasks is more likely to succeed.

Table 2 shows research on lung lesion segmentation. Singadkar et al. [47] applied an
FCN-based neural network, combined with residual blocks in the decoder section and long
skip connections between the encoder and decoder, for lung nodule segmentation in CT
scan images. They successfully reached an average Dice score of 0.95 and a Jaccard index
of 0.887. Abedalla et al. [8] utilized multiple U-Net models with different backbones in
each network for training and used a method similar to ensemble learning, in which four
models are first summated according to fixed weights and then subjected to a threshold
in order to accomplish segmentation via a pneumothorax during in inference phase. The
weights and thresholds are manually adjusted. The network achieved a DSC of 0.86 in the
2019 Pneumothorax Challenge dataset.

Table 2. Research on lung lesion segmentation.

Authors (Year) Method Medical Image Performance Notes

Wang et al. [48] (2017) CF-CNN Computed tomography DC: 0.82 Central-focused CNN: extract features
from 3D and 2D simultaneously

Wang et al. [49] (2017) MV-CNN Computed tomography DC: 0.77 Multi-scaled CNN

Maqsood et al. [50] (2021) DA-Net Computed tomography DC: 0.81
IoU: 0.76

U-Net-based, with atrous convolution
and dense connection

Meraj et al. [51] (2020) CNN Computed tomography Accuracy: 0.83 For nodule detection using PCA and
other machine learning techniques

Singadkar et al. [47] (2020) DDRN Computed tomography DSC: 0.95
ResNet-based, with deep
deconvolution (residual block at
the decoder)

Zhao et al. [36] (2020) 3D U-Net Computed tomography
3D U-Net combined with GAN for
segmentation; another CNN for
classifying nodule

Usman et al. [52] (2020) 3D U-Net Computed tomography DSC: 0.88
(consensus)

3D voxel feature, ResUNet, with
semi-automated ROI selection

Keetha et al. [53] (2020) U-Det Computed tomography DSC: 0.83 U-Net cooperates with a bidirectional
feature network (Bi-FPN)

Ozdemir et al. [54] (2020) 3D Vnet Computed tomography Sensitivity: 0.97
Combined segmentation and
classification for lung
nodule diagnosis

Hesamian et al. [55] (2019) FCN Computed tomography DSC: 0.81
Atrous convolution and residual block
in FCN combined with conditioned
random field (CRF)
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4.2. Brain Lesions

Brain lesion detection includes brain tumors, strokes, traumatic brain injuries, and
brain metastases. BraTS [56] (Figure 7a) is a brain tumor dataset with labels not only the
location and size but also the cell type of tumors, primarily low-grade and high-grade
gliomas. Magnetic resonance imaging (MRI) scans are divided into pretreatment and
posttreatment images. In addition, each patient is scanned via instruments with varying
magnetic field intensities (1.5 and 3 T) and protocols (2D and 3D). There are four major
types of MR images: T1, T1c, T2, and FLAIR. The tumor edge is difficult to identify in
segmentation tasks because of infiltrations, particularly those of high-grade gliomas, and
the variety of degrees of contrast enhancement across different MRI scans.

Figure 7. Clinical dataset for training segmentation model. (a) BraTS is a dataset for glioblastoma
multiforme. The figures show part of a case series with different MRI weights (from the left: T1, T1ce,
T2, FLAIR) and annotations (rightmost: white—perifocal edema; yellow—tumor; red—necrosis).
(b) LiTSis a dataset about liver and liver tumor segmentation. The figures show part of a case series
with annotations (upper: red—liver; white—tumor) and CT images (lower). Reference: (a) from
BRATS (Menze et al. [25,56,57]); (b) from LiTS (Bilic et al. [58]). The figures were illustrated by using
Python 3.6 from the datasets.

Table 3 shows research on segmenting brain lesions. Isensee et al. [16] attempted to
modify the structure of the U-Net architecture by using batch normalization and short skip
connections such as s residual block in ResNet instead of a traditional convolutional block.
Finally, they summated the outputs of each layer in the ascending part before entering the
output part. The Dice coefficient was superior to that of the traditional U-Net architecture.
In summary, most of the leading models in the BraTS dataset over the years have been
based on U-Net architecture. Some of them have been modified from convolutional blocks,
while others have been adjusted at the ascending part.
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The intensity of stroke lesions in CT images can change over time after examination,
especially infarction strokes. [59] In addition to CT, MRI datasets such as ISLES [60] have
been established in recent years. Models trained with those datasets not only determine
the location and region of stroke lesions but also facilitate physicians to determine the
severity of brain damage and may predict the prognosis and potential of recovery. Zhang
et al. [61] developed a multi-plane neural network structure to segment stroke lesions from
diffusion-weighted magnetic resonance images. In contrast with the direct usage of 3D
neural networks, they applied three neural networks that correspond to images on three
different planes—axial, coronal, and sagittal—then integrated them into a multi-angle
neural network, which is called a multi-plane fusion network. This neural network offers
both segmentation and detection functions and can retain the original information from the
input. Based on images from three different planes, the edges of lesions can be identified
more accurately. The authors achieved a Dice coefficient of 62.2% and a sensitivity of 71.7%
in the ISLES dataset.

Table 3. Research on brain lesion segmentation.

Authors (Year) Method Medical Image Performance Notes

Brain tumor

Havaei et al. [62] (2016) Deep CNN Magnetic resonance images DC 1: 0.88
Cascade architecture using
pre-output concatenation

Pereira et al. [63] (2016) CNN-based Magnetic resonance images DC: 0.88 Patch extraction from an image
before entering the CNN

Isensee et al. [16] (2018) 3D U-Net Magnetic resonance images DC: 0.85
Modified from U-Net;
summation for
multi-level features

Xu et al. [33] (2020) U-Net Magnetic resonance images DC: 0.87 Attention-U-Net

McKinley et al. [64] (2018) deepSCAN Magnetic resonance images

Mean DC
ET 2: 0.7
WT 3: 0.86
TC 4: 0.71

Bottleneck CNN design;
dilated convolution

Stroke

Wang et al.[65] (2016)
Deep Lesion
Symmetry
ConvNet

Magnetic resonance images Mean DSC 5: 0.63
Combined unilateral (local) and
bilateral (global) voxel descriptor

Monteiro et al. [66] (2020) DeepMedic Computed tomography Differs according
to size

Three parallel 3D CNNs for
different resolutions

Zhang et al. [61] (2020) U-Net Magnetic resonance images DSC: 0.62
IoU 6: 0.45 FPN for extraction first

1 Dice coefficient, 2 enhanced tumor, 3 whole tumor, 4 tumor core, 5 Dice similarity coefficient, 6 intersection
over union.

4.3. Abdomen
Abdominal Organ Segmentation

The solid organs in the abdomen such as the liver, kidneys, spleen, and pancreas,
as well as lower abdomen organs such as the prostate, have more prominent edges and
distinct intensity values compared with the background, which is usually fat or peritoneum.
Thus, they are obvious targets for segmentation. Convincing results could be achieved
with traditional computer vision techniques [67,68]. Regarding the urinary bladder, due
to its prominent edges, despite being a hollow organ, segmentation tasks could still be
accomplished with trained models (particularly in the case of a distended bladder) [69].
There is a wealth of data focusing on abdominal organ segmentation [70–72]. In recent
years, the application of deep learning for segmentation tasks has been considerably
robust [73,74].
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5. Abdominal Lesion Segmentation

Relevant studies on abdominal tumor segmentation mostly focus on the liver, kidneys,
prostate, and urinary bladder. Manjunath et al. [75] trained a U-Net model with ResNet
as the backbone to segment the liver and liver tumors from CT images and achieved a
DSC of 96.35 and an accuracy of 99.71% in the liver tumor segmentation (LiTS) dataset [58]
(Figure 7b). Vorontsov et al. [76] developed an FCN network trained from LiTS and a local
dataset and made inferences to segment metastatic liver lesions from colorectal cancers in
another set of CT scan images from several local hospitals. Despite experiencing limitations
such as small data volume and the wide spread of patient origins, the model achieved a
positive predictive value of over 80% for lesions larger than 1 cm. Liang et al. [77] applied a
square-window CNN to segment pancreatic cancers. The model was trained from the multi-
phased MRIs of 27 patients, with extraction and augmentation from 245,000 normal and
230,000 abnormal patch images. The model was tested on the images of 13 patients, and it
achieved a DSC of 0.73, thus solidifying it as an assistive means for radiation oncologists to
ascertain the gross tumor volume. Pellicer-Valero et al. [78] purposed a Retina U-Net trained
from two MRI datasets to analyze the prostate and tumors and to predict their Gleason
grade group. Chen et al. [79] applied the 3D AlexNet for prostate cancer segmentation and
achieved an accuracy of 0.92 and a DSC of 0.977.

In 2016, Cha et al. [80] conducted a pilot study to evaluate whether deep-learning
neural networks can segment urinary bladder tumors in CT images and further assess the
treatment outcomes. The results showed that the assessment of tumor size changes from
the model was not inferior to those derived from humans according to the World Health
Organization (WHO) and the Response Evaluation Criteria in Solid Tumors (RECIST)
guidelines [81]. The authors subsequently conducted a study that combines radiomic fea-
ture analysis [82], whereby lesions are segmented by the deep learning model to determine
changes in tumor size in contrast-enhanced CTs before and after treatment. Conclusively,
the method offers higher accuracy for determining tumor volume, but it is not necessarily
superior to human judgment for determining treatment efficacy. Nonetheless, the model
can be used as an effective tool for radiologists in diagnosis. Table 4 summarizes the
research on the segmentation of abdomens mentioned above.

Physicians choose different tools for examination according to the location of tumors
and, therefore, obtain quite different images from traditional image scopes. For example,
endoscopy is used for gastrointestinal tumors. Unlike CT or MRI images presenting the
lesion from a general anatomy point of view, endoscopic images only present the lesion in
the regional field via the scope passing through the lumen, such as when using endoscopic
ultrasound (EUS) to diagnose pancreatic tumors. The endoscopic images are generated
in real-time, so they are like streams instead of slices of images. Physicians can still get
snapshots that they are interested in, but, in general, it has no regular interval between
the snapshot images as CT or MRI images do. For this reason, it is better to perform
tumor segmentation in real-time, as with the stream, where the results are displayed to
the physician. Li et al. [83] trained a U-Net to segment EUS-observed GIST tumors, which
are derived from the gastric stroma. The authors made some modifications to the model
to address the problems of shadowing and size differences, which often appear in EUS
imaging. The model achieved a DSC of over 0.9 in the test data. Tonozuka et al. [84] used a
U-Net to segment pancreatic tumors in EUS and achieved a median IoU of 0.77. The results
were affected by unclear tumor margins but not by respiratory movements.
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Table 4. Research on abdomen segmentation.

Authors (Year) Method Medical Image Performance Notes

Abdominal organ Differs between organs
Landman et al. [85] (2018) FCN Magnetic resonance images DSC 1: 0.56–0.93

Gibson et al. [86] (2018) Dense V-Networks Computed tomography DC 2: 0.76–0.9
High-resolution activation
maps; batch-wise
spatial dropout

Kim et al. [73] (2020) 3D U-Net
Atlas-based Computed tomography DC: 0.60–0.96

DC: 0.15–0.81

Multi-organs were tested;
the U-Net result could be
comparable to that of
an interobserver

Kart et al. [74] (2021) nn-UNet Magnetic resonance images DC: 0.82–0.9
Abdominal tumor

Abdel-Massieh et al. [87] (2010) CV 3 method Computed tomography Overlap error: 0.22 Gaussian blurring;
isodata threshold

Abd-Elaziz et al. [88] (2014) CV method Computed tomography Error rate: 0.002–0.012
Regional pixel
growing and
morphological processing

Manjunath et al. [75] (2021) ResUNet Computed tomography DSC: 0.96
Replacing convolutional
blocks with
residual blocks

Vorontsov et al. [76] (2019) FCN Computed tomography

DSC per lesion:
(automated)
<10 mm: 0.14
10–20mm: 0.53
>20 mm: 0.68

Two-step segmentation:
the first is FCN for livers,
and the second is FCN for
lesions in livers

Liang et al. [77] (2020) Square-window
based CNN Magnetic resonance images DSC: 0.73 on the test set

Pellicer-Valero et al. [78] (2021) Retina U-Net Magnetic resonance images DSC: (prostate) 0.915

Two 3D CNNs: the first
one takes a T2-weighted
MRI as the input, and the
second one takes an MRI
and the output from the
first one as inputs

Chen et al. [79] (2020) 3D AlexNet Magnetic resonance images DSC: 0.97
Li et al. [83] (2020) MRBS-U-Net Endoscopic ultrasound DSC: 0.92

1 Dice similarity coefficient, 2 Dice coefficient, 3 computer vision.

6. Discussion

There have been major advancements in the application of deep learning for medical
imaging segmentation since the development of the U-Net architecture. Meanwhile, FCN-
related studies and techniques are making the model more robust. We think there are two
major points to make sure the model is successfully trained:

(1) Data. Sufficient data are necessary for model convergence. In addition, well-
defined task objectives lead to clear data labeling, while domain knowledge is critical to
maintaining label consistency. To prevent class imbalance, labeled data should be sufficient
and should not be skewed toward a particular class [89]. However, class imbalance is a
common problem in semantic segmentation. U-Net may overcome this problem [6]. While
researchers have investigated other models or approaches to deal with data problems, the
best way is still to ensure the data structure [90–92], which requires the assistance of data
scientists or software to evaluate the distribution of the class of the label. The data quality
should also be involved. To achieve this, the production of data should be consistent, and
unnecessary interferences and irrelevant information should be removed so that the model
will not learn from the information that has nothing to do with what the model should
learn during training.

(2) Model type. Due to the nature of segmentation tasks, full convolution networks
are currently the solution. Edge detection of the object may be a key point for future
developments. In addition to model architecture, loss function is also important. The
literature has shown that, in addition to model structure modifications, adjustments of loss
function have also been used to raise the performance of the model [22,23].
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On the other hand, from the perspective of clinical medicine, there are still some
obstacles to research:

(1) Poor data volume. Patients are a relatively small population compared with the
whole human population. In addition, data security and privacy policies lead to insufficient
data influence, making it challenging to establish an effective dataset.

(2) Inconsistency in data quality between medical institutes. Due to differences be-
tween examination procedures, instruments, and image processing methods, the images
generated by those institutes may vary in terms of contrast, brightness, or resolution. These
issues may occur between and even within medical institutes.

(3) The low reliability of machine-assisted diagnostic tools is perceived by clinical
workers. The results of previous research suggest that making image-based diagnoses
using deep learning models is not inferior to experienced physicians or experts in certain
circumstances. Moreover, the model may even effectively compensate for less-experienced
clinicians [93]. Nevertheless, there are different procedures and protocols in each medical
department, which results in two issues: Whether a model can be seamlessly integrated
into an environment, and whether the system can be acceptable with an inserted model.
The solutions to these issues hinge on the collaboration between medical professionals,
information professionals, and researchers. The inclusion of multidisciplinary professionals
is crucial for expediting the process.

One of the directions for future developments in semantic segmentation is federated
learning, which was initially an approach proposed by Google for smartphone keyboard
input prediction [94]. Numerous medical departments can train the model on their own
dataset to contribute weights to the final model. The data do not need to pass through a
platform, so the patient information is secure, and the model is able to obtain diverse and
large data volumes as well. However, there may be some problems. One of them is the
variety of data volumes. Medical institutes that can provide larger data volumes would
make greater contributions to the model. If the gap in data volumes between institutes is
too large, such that most of the data are provided from one or only a few institutes, the
model will have a similar or even worse performance than those only trained on their
own dataset, which will lower their willingness to participate. Another problem is cost-
effectiveness. The weights are contributed by each medical institute, and how the gradient is
backpropagated significantly affects the performance. By using general averaging methods,
hospitals possessing higher data volumes may contribute more weights, which results in a
model that is biased toward hospitals, affecting the model’s generalization. By using other
methods, it may benefit only those providing fewer data instead. Since those institutes
owning larger data volumes will be more likely to make larger investments in maintaining
the dataset, the cost-effectiveness problem will become a key concern. The differences
between the imaging qualities of each medical institute will also raise concerns about
the performance of generalization [95]. Thus, there are still some obstacles needed to be
overcome in federated learning.

7. Conclusions

In this review, we reviewed several FCN models for their applications in medical
image segmentation. There have been an increasing number of advancements since the
development of U-Net: some frameworks deal with blurred objects, and other frameworks
are good at detecting object burdens.

Despite the lower accessibility of medical data, they are still applicable to train models
with critical data augmentation. We summarized two main skills for data augmentation:
figure transformation and the GAN network. Although Grad-CAM may not generate
figures from original images, it can assist in labeling by generating heatmaps of images.

Furthermore, we also reviewed studies related to model performance in clinical
datasets. Generally, the proposed models showed good performance in testing datasets,
and even in some clinical images collected by researchers. However, model performance re-
mains a challenge after deployment. To overcome the gap between the dataset performance



Diagnostics 2022, 12, 2765 17 of 21

and clinical practice, more local data should be collected to train new models or to perform
transfer learning with pre-trained models. In addition, it is necessary to constantly improve
the model through cooperation with data scientists, data analysts, and clinical practitioners.
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