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Abstract: Background: Hospitals face a significant problem meeting patients’ medical needs during
epidemics, especially when the number of patients increases rapidly, as seen during the recent
COVID-19 pandemic. This study designs a treatment recommender system (RS) for the efficient
management of human capital and resources such as doctors, medicines, and resources in hospitals.
We hypothesize that a deep learning framework, when combined with search paradigms in an
image framework, can make the RS very efficient. Methodology: This study uses a Convolutional
neural network (CNN) model for the feature extraction of the images and discovers the most similar
patients. The input queries patients from the hospital database with similar chest X-ray images. It
uses a similarity metric for the similarity computation of the images. Results: This methodology
recommends the doctors, medicines, and resources associated with similar patients to a COVID-19
patients being admitted to the hospital. The performance of the proposed RS is verified with five
different feature extraction CNN models and four similarity measures. The proposed RS with a
ResNet-50 CNN feature extraction model and Maxwell–Boltzmann similarity is found to be a proper
framework for treatment recommendation with a mean average precision of more than 0.90 for
threshold similarities in the range of 0.7 to 0.9 and an average highest cosine similarity of more
than 0.95. Conclusions: Overall, an RS with a CNN model and image similarity is proven as an
efficient tool for the proper management of resources during the peak period of pandemics and can
be adopted in clinical settings.

Keywords: recommender system; COVID-19; CNN model; feature extraction; ResNet-50;
Maxwell–Boltzmann similarity

1. Introduction

SARS-CoV-2 coronavirus was first discovered and reported in Wuhan, China, in 2019
and has spread globally, causing a health hazard [1–3]. On 30 January 2020, the World
Health Organization labelled the outbreak a Public Health Emergency of International
Concern, and on 11 March 2020, it was declared a pandemic. COVID-19 has varied
effects on different people. The majority of infected patients experience mild to moderate
symptoms and do not require hospitalization. Fever, exhaustion, cough, and a loss of
taste or smell are all common COVID-19 symptoms [4]. Loss of smell, confusion, trouble
breathing or shortness of breath, and chest discomfort are some of the major symptoms
that lead to serious pneumonia in both lungs [1,4–6]. COVID-19 pneumonia is a serious
infection with a high mortality rate. The signs of a COVID-19 infection progressing into
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dangerous pneumonia include a fast pulse, dyspnea, confusion, rapid breathing, heavy
sweating, and pulmonary embolism [7,8]. It induces serious lung inflammation, as seen in
lung microscopy [9]. It puts strain on the cells and tissue that cover the lungs’ air sacs. The
oxygen for breathing is collected and supplied to the bloodstream through these sacs. Due
to injury, tissue breaks off and blocks the lungs [10]. The sacs’ walls might thicken, making
breathing extremely difficult.

The most prevalent method of diagnosing individuals with respiratory disorders is
chest radiography imaging [11–13]. At the beginning of COVID-19, a chest radiography
image appeared normal, but it gradually altered in a fashion that may be associated with
pneumonia or acute respiratory distress syndrome (ARDS) [11]. Figure 1 depicts the pro-
gression of chest X-ray images for a 45-year-old person infected with COVID-19. Roughly
15% of COVID-19 patients require hospitalization and oxygen therapy. Approximately 5%
of people develop serious infections and require a ventilator.
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During the peak period of infection transmission, having enough oxygen and a ven-
tilator is also a major challenge for hospitals [14,15]. As a result, hospitals and medical
practitioners are under a lot of stress trying to deal with critical patients who have been
admitted to hospitals [16]. They concentrate on providing good care to individuals who
are hospitalized so that the mortality rate can be lowered, and the patients can recover
quickly. However, hospitals’ capability to provide adequate treatments to hospitalized
patients is sometimes limited by the availability of doctors and resources. In this scenario,
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a recommender system (RS) using machine learning (ML) approaches might be used to
administer the best treatment while working with limited resources [17,18]. As the mortal-
ity rate and recovery rate of seriously hospitalized COVID-19 patients generally depend
upon the amount of infection in the lungs [19–21], the radiographic lung images of those
patients can be used to recommend proper treatment in terms of a doctor, medicine, and
other related resources.

From the perspective of the RS’s implementation, a new patient’s chest X-ray image
is sent to the proposed system, and doctors, medicines, and resources are recommended
for that patient. The proposed system assumes that the database consists of lung images
and other information such as the name of the doctor assigned, medicines, and resources
provided, such as intensive care unit (ICU), oxygen therapy, and ventilators. The COVID-19
patients who were admitted to the hospital in the past successfully recovered from the
hospital. It uses a collaborative filtering method to find similar COVID-19 patients to new
COVID-19 patients using image similarity. The proposed approach uses convolutional
neural networks (CNN) for feature extraction [22–24] from images and utilizes those feature
vectors for similarity computation.

The proposed collaborative RS uses image similarity to produce recommendations, as
image similarity is a popular and efficient technique in image-based RS [25–27]. Traditional
image-based RS recommends images for a given input query image. The novelty of the
proposed RS is that it recommends some metadata information such as doctors, medicines,
and resources for a given input query such as a chest X-ray image. The proposed system
is built around two hypotheses. The first hypothesis states that the proposed system’s
performance is dependent on the feature extraction technique used by CNN models. The
second hypothesis states that the proposed system’s performance is also affected by the
similarity measure used for similarity computation. Higher similarity assures a more
accurate recommendation. The chest X-ray images are compared based on their feature
vectors. The CNN model is used to effectively extract feature vectors from chest X-ray
images. The combination of a robust search strategy and the best feature selection approach
may make the RS more powerful for efficient and accurate recommendations. Figure 2
represents the global system representation of the proposed approach. The proposed
system can be analyzed as a combination of an online and an offline system. The offline
system is responsible for the feature extraction process from the images, and the online
system handles the recommendation process. The web-based system is equipped with a
performance module that calculates accuracy based on the known reference values in the
test dataset.

In particular, the objectives of this article include: (i) to propose an efficient RS system
for COVID-19 based on chest X-ray images to address the impact of an RS on the efficient
handling of situations in hospitals during the peak period of a pandemic with limited
resources; (ii) to use multiple CNN models to construct an RS using COVID-19 chest X-ray
images; (iii) to propose a unique design by embedding four kinds of search paradigm in the
CNN-based framework; (iv) comparative data analysis of different similarity measure in
the RS framework, providing metadata which includes doctors, medicines, and resources;
(v) finally, to mitigate the impact of an RS in the healthcare domain through improved
services and efficient resource management.

The remainder of this study is as follows: Section 2 includes the discussion of RS, CNN,
the feature extraction process, measures for similarity computation, and studies related to
the proposed work. The proposed model is explained in Section 3, and the experimental
evaluation is discussed in Section 4. Section 5 focuses on future scope, and the article is
concluded in Section 4.
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2. Background Literature

Many researchers have presented various models employing traditional machine
learning approaches in the past for the identification of COVID-19 using radiography
images [2,28]. Zimmerman et al. [29] reviewed many cardiovascular uses of machine
learning algorithms, as well as their applications to COVID-19 diagnosis and therapy. The
authors in refs. [30,31] proposed image analysis tools to classify lung infection in COVID-19
based on chest X-ray images and claimed that artificial intelligence (AI) methods have
the potential to improve diagnostic efficiency and accuracy when reading portable chest
X-rays. In ref. [19], the authors established an ensemble framework of five classifiers such
as K-nearest neighbors (KNN), naive Bayes, decision tree, support vector machines (SVM),
and artificial neural network for the detection of COVID-19 using chest X-ray images.
Ref. [32] describes a method for detecting SARS-CoV-2 precursor-miRNAs (pre-miRNAs)
that aids in the identification of specific ribonucleic acids (RNAs). The method employs
an artificial neural network and proposes a model with an estimated accuracy of 98.24%.
The proposed method would be useful in identifying RNA target regions and improving
recognition of the SARS-CoV-2 genome sequence in order to design oligonucleotide-based
drugs against the virus’s genetic structure.

Due to the unprecedented benefits of a deep CNN in image processing, it has been
successfully utilized by various researchers for the identification and accurate diagnosis of
COVID-19. In ref. [20], the authors proposed a deep learning (DL) model for the detection
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of COVID-19 by annotating computed tomography (CT) and X-ray chest images of patients.
In ref. [33], various DL models such as ResNet-152, VGG-16, ResNet-50, and DenseNet-121
were applied to radiographic medical images for the identification of COVID-19 and were
compared and analyzed. To overcome the lack of information and enhance the training
time, the authors also applied transfer learning (TL) techniques to the proposed system.
A voting-based approach using DL for the identification of COVID-19 was proposed in
ref. [34]. The proposed method makes use of CT scan chest images of patients and utilizes
a voting mechanism to classify a CT scan image of a new patient. Various DL algorithms
for identifying COVID-19 infections from lung ultrasound imaging were reviewed and
compared by the authors in ref. [35]. The proposed method adopts four pre-trained models
of DL such as InceptionV3, VGG-19, Xception, and ResNet50, for the classification of a lung
ultrasound image. In ref. [36], the authors compared the results of using CNNs pre-trained
with ML-based classification algorithms. The major purpose of this research was to see how
CNN-extracted features affect the construction of COVID-19 and non-COVID-19 classifiers.
The usefulness of DL learning algorithms for the detection of COVID-19 using chest X-ray
images is demonstrated in ref. [37]. The proposed approach was implemented using 15
different pre-trained CNN models, and VGG-19 showed a maximum classification accuracy
of 89.3%. In ref. [38], an object detection approach using DL for the identification of
COVID-19 in chest X-ray images was presented. The suggested method claims a sensitivity
of 94.92% and a specificity of 92%.

Many kinds of research have also been conducted in the past using image segmentation,
image regrouping, and other hybrid techniques for accurate diagnosis of COVID-19 [39]. In
ref. [40], the authors proposed an innovative model using multiple segmentation methods
on CT scan chest images to determine the area of pulmonary parenchyma by identify-
ing pulmonary infiltrates (PIs) and ground-glass opacity (GGO). In ref. [41], the authors
proposed a hybrid model for the detection of COVID-19 using feature extraction and
image segmentation techniques to improve the classification accuracy in the detection of
COVID-19. In ref. [42], a hybrid approach of feature extraction and CNN on chest X-ray
images for the detection of COVID-19 using a histogram-oriented gradient (HOG) algo-
rithm and watershed segmentation methodology was proposed. This proposed hybrid
technique showed satisfactory results in the detection of COVID-19 with an accuracy of
99.49%, sensitivity of 93.65%, and specificity of 95.7%. In ref. [43], the authors came up with
a new way to determine COVID-19 in images of chest X-rays using image segmentation
and image regrouping. The proposed approach was found to outperform the existing
models for the identification of COVID-19 in terms of classification accuracy with a lower
amount of training data. In ref. [44], the transfer learning technique was used in conjunc-
tion with image augmentation to train and validate several pretrained deep Convolutional
Neural Networks (CNNs). The networks were trained to classify two different schemes:
(i) normal and COVID-19 pneumonia and (ii) normal, viral, and COVID-19 pneumonia
with and without image augmentation. The classification accuracy, precision, sensitivity,
and specificity for both schemes were 99.7%, 99.7%, 99.7%, and 99.55% and 97.9%, 97.95%,
97.9%, and 98.8%, respectively. The high accuracy of this computer-aided diagnostic tool
can significantly improve the speed and accuracy of COVID-19 diagnosis. A systematic
and unified approach for lung segmentation and COVID-19 localization with infection
quantification from CXR images was proposed in ref. [45] for accurate COVID-19 diagnosis.
The proposed method demonstrated exceptional COVID-19 detection performance, with
sensitivity and specificity values exceeding 99%.

RS has also been useful in combating the COVID-19 pandemic by making recom-
mendations such as medical therapies for self-care [46], wearable gadgets to prevent the
COVID-19 outbreak [47], and unreported people to reduce infection rates by contact trac-
ing [48], among others. An RS based on image content was proposed in ref. [25] that
employed a random forest classifier to determine the product’s class or category in the first
phase and employed the JPEG coefficients measure to extract the feature vectors of the
photos in the second phase to generate recommendations using feature vector similarity.
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A neural network-based framework for product selection based on a specific input query
image was provided by ref. [26]. The suggested system employed a neural network to
classify the supplied input query image, followed by another neural network that used the
Jaccard similarity measure to find the most comparable product image to that input image.
In ref. [27], the authors developed a two-stage DL framework using a neural network
classifier and a ranking algorithm for recommending fashion images based on similar input
images. Traditional RS frequently faces a significant challenge in learning relevant features
of both users and images in big social networks with sparse relationships between users and
images, as well as the widely different visual contents of images. Refs. [49–51] presented a
strategy for solving this data sparsity problem in content-based and collaborative filtering
RS by importing additional latent information to identify users’ probable preferences.

The majority of previous research in RS based on computer vision was conducted
for the e-commerce domain, with only a few works carried out for the healthcare domain,
according to the literature. It was also revealed from the literature that image similarity is
one of the successful techniques used for designing RS in computer vision. Furthermore,
the efficacy of computer vision in RS in providing solutions for combating the COVID-19
pandemic has yet to be investigated. In this context, we suggest a health recommender
system (HRS) that uses image similarity and collaborative filtering to provide treatment
suggestions for COVID-19.

3. Methodology
3.1. Recommender System

RS is a software program that aids in the personalization of users and is based on the
principle of information filtering [52]. RS has the following formal definition: Let P represent
the set of all users, and Q represent the set of all items that can be recommended. Let t be a
utility function that measures the usefulness of item q to user p, i.e., t: p × q→ S, where S is
an ordered set. The items q′ ∈ Q that maximize the user’s utility will then be recommended
for each user p ∈ P. As a result, ∀p ∈ P, qp

′ = arg maxq∈Q t (p, q) may be stated more
formally. RS can be broadly divided into four types, as shown in Figure 3.
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Content-based RS or cognitive RS provides recommendations based on a comparison
of the items’ content with a user profile [53,54]. Collaborative RS collects preferences or
taste information from the collaborated users to produce automatic predictions regarding
the user’s interests [55,56]. Memory-based and model-based are the two different categories
of a collaborative RS. A memory-based collaborative RS makes use of all the data to provide
recommendations based on user or item similarity, whereas model-based collaborative
filtering RS entails creating a model based on all of the data in order to detect similari-
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ties between users or items for recommendation purposes. Hybrid RS combines two or
more recommendation algorithms in different ways to take advantage of their different
strengths [57,58]. A knowledge-based RS intelligently filters a group of targets to fulfil
the user’s preferences. It assists in overcoming the difficulties of both collaborative and
content-based RSs [59,60].

An RS used in health applications to analyze patients’ digital data and filter out the best
information according to their profile is known as a health recommender system (HRS) [61,62].
HRS can be thought of as a decision-making system that plays a big role in society by advising
patients on suitable disease treatments and doctors on good disease diagnoses.

3.2. Convolutional Neural Network

A CNN is a powerful DL tool for image processing and recognition [63]. The funda-
mental architecture of a CNN contains three distinct types of layers: convolutional, pooling,
and fully connected, as shown in Figure 4.
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3.2.1. Convolutional Layer

The basic layer of CNN is the convolutional layer, which has the responsibility of
extracting features and recognizing patterns in input images. The CNN extracts low-
level and high-level features by passing images from the training dataset through a filter
comprised of feature maps and kernels [23]. The convolutional layer’s output can be
expressed in the following way:

qr
s(m, n) = ∑c ∑x,y pc(x, y)gs

r(u, v), (1)

where qs
r (m, n) is the convolution layer, and pc (x, y) is an element of the input image

tensor pc, multiplied by the gs
r(u, v) index of the sth convolutional kernel sr of the rth layer

element-wise.

3.2.2. Pooling Layer

The pooling layer, or the down-sampling layer, gathers comparable data in the vicinity
of the feature layer and generates the dominating response inside this layer. The pooling
process aids in the extraction of a group of features that are invariant to xi, and it can be
defined as Equation (2).

Yr
S = tj (QS

r), (2)

where for the sth input feature-map Qs
r, Yr

Sconveys the pooled feature-map of the rth layer.
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3.2.3. Fully Connected Layer

The fully connected layer is utilized for classification at the end of the CNN network.
This layer takes the features that have been collected at different stages of the network as the
input and then analyses and compares those features to the results from all the other layers.

3.2.4. Activation Function

The activation function modifies the weighted sum input of one node for a given layer
and uses it to activate that node for a certain input. The activation function assists in the
learning of feature patterns by acting as a decision function. ReLU is one of the most widely
used activation functions due to its ability to handle the gradient problem in CNN models.
Mathematically, the ReLU activation function can be defined as follows:

ReLU(x) =
{

0, x < 0
x, x ≥ 0

(3)

3.2.5. Batch Normalization

Batch normalization is used for the normalization of the output of the preceding layers,
which can assist with issues such as internal covariance shifts in feature maps. The equation
for the batch normalization of transformed feature map Qr

s can be defined as shown in
Equation (4).

Br
s =

Qr
s − µb√

σb
2+ ∈

(4)

where Br
s denotes the normalized feature map, and Qr

s represents the input feature map.
The mean and the variance of the feature map are represented by µb and σb

2, respectively.
ε is used to deal with the numerical instability caused by division by zero.

3.2.6. Dropout and Flatten Layer

Dropout is a technique for adding regularization to a CNN network, which establishes
generalization by omitting some connections at random. After removing some random
connections, the network design with the lowest weight value is chosen as a close approxi-
mation of all the suggested networks. The Flatten layer transforms the pooled feature map
into a one-dimensional array that is passed as a single feature vector to the next layer.

3.3. Feature Extraction Methods

CNN is widely used in computer vision for feature extraction because it can discover
relevant features from images without requiring human interaction and is computationally
efficient. There are various models of CNN for the feature extraction process. In this study,
we tested the performance of our proposed system with two specific CNN models, namely:
the residual neural network (ResNet) and the visual geometry group (VGG). We used three
different versions of ResNet, namely ResNet-50, ResNet-101, and ResNet-152, and two
versions of VGG, namely VGG-16 and VGG-19. The detailed architectures of both ResNet
and VGG are described in the following subsections.

3.3.1. ResNet

ResNet is an artificial neural network that can solve the problem of training very deep
networks using residual blocks [64]. Several COVID-19-related publications have been
tried using ResNet or the Hybrid nature of ResNet [65–67]. The basic architecture of a
ResNet network is shown in Figure 5.

A ResNet model with these residual blocks is shown in Figure 6. A direct connection
in the ResNet model can skip some layers and is known as a “skip connection”, which
is the heart of the model. The model produces a different output due to this skipped
connection. When the connection is not skipped, the input X is multiplied by the weights
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of the following layer, and a bias term is added to this. Therefore, Equation (5) can be used
to describe the model’s output function.

H(x) =
{

f (x + b), without skip connection
f (x), with skip connection

. (5)
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Double or triple-layer skips with nonlinearities (ReLU) and batch normalization are
used in most ResNet models [64]. An additional weight matrix can be utilized, and
such models are termed “Highway Nets.” We used three variations of ResNet, namely
ResNet-50 [68], ResNet-101 [69], and ResNet-152 [70].

3.3.2. VGG Net

VGG Net is a traditional CNN model composed of blocks, each consisting of 2D
convolution and max pooling layers. The basic architecture of a VGG Net is shown in
Figure 7. It was created to improve the performance of a CNN model by increasing the
depth of the model. The VGG16 and VGG-19 are the two versions available. VGG-16
and VGG-19 include 16 and 19 layers of convolution layers, respectively. The VGG Net
architecture serves as the foundation for cutting-edge object recognition models. The VGG
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Net, which was created as a deep neural network (DNN), outperforms baselines on a
variety of tasks and datasets. Small convolutional filters are used to build the VGG network.
VGG-16 [71] and VGG-19 [72] are two different versions of VGG that we used to test our
proposed system.
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3.3.3. Similarity Measures

The similarity measure is a means of determining how closely data samples are related.
It plays an important role in computer vision by aiding in the comparison of two images
by determining their feature vector similarity [64,74]. The proposed model uses the cosine
similarity measure to compute the similarity between two feature vectors to find the most
similar images to the input image, which are further utilized for the recommendation process.

3.3.4. Cosine Similarity Measure

The similarity between two vectors using cosine similarity can be calculated as follows:

CosSim(U, V) =
U·V

||U||||V|| =
∑n

i=1 UiVi√
∑n

i=1 Ui
2
√

∑n
i=1 Vi

2
(6)

where U and V represent two vector components. The cosine similarity is measured on a
scale of 0 to 1, with 0 representing no similarity and 1 representing 100% similarity. All the
other values in the range [0, 1] show the equivalent percentage of similarity.

3.3.5. Euclidean Distance Similarity Measure

The Euclidean similarity between image vectors U and V can be calculated as follows:

EucSim(U, V) =
√

∑n
i=1(Ui −Vi)

2. (7)

The Euclidean similarity is also measured on a scale of 0 to 1, with 0 representing no
similarity and 1 representing 100% similarity. All other values in the [0, 1] range reflect the
equivalent percentage of similarity.

3.3.6. Jaccard Similarity Measure

Jaccard similarity is a popular proximity measurement that is used to determine the
similarity between two objects. The Jaccard similarity is calculated by dividing the number
of observations in both sets by the number of observations in either set. It is also graded
on a scale of 0 to 1, with 0 indicating no similarity and 1 indicating complete similarity.
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All other values in the [0, 1] range correspond to the same percentage of similarity. The
similarity between two vectors using Jaccard similarity can be calculated as:

JacSim(U, V) =
|U ∩V|
|U ∪V| . (8)

3.3.7. Maxwell–Boltzmann Similarity Measure

The Maxwell–Boltzmann similarity is a popular similarity measure for document
classification and clustering [75]. It is calculated using the overall distribution of feature
values and the total number of nonzero features found in the documents. The difference
between the two documents is represented by the following:

D(U, V) ≈ log
ND
GD

, (9)

where,

ND =


0.5 ∗ ∑(Uk −Vk)

2 i f Uk and Vk > 0
λk

q ∗ 0.5 ∗ ∑(Uk)
2 i f Uk > 0 and Vk = 0

λk
q ∗ 0.5 ∗ ∑(Vk)

2 i f Vk > 0 and Uk = 0
0 Otherwise

(10)

and

GD =


tnz i f Uk and Vk > 0
tnzu i f Uk > 0 and Vk = 0
tnzv i f Vk > 0 and Uk = 0

0 Otherwise

, (11)

where,

tnz = the total number of nonzero attributes,
tnzu = the total number of features of U having nonzero items,
tnzv = the total number of features of V having nonzero items,
0 < λ < 1, k denotes features, and q denotes the number of present–absent pairs.

The Maxwell–Boltzmann similarity is calculated from the value of D as follows:

MaxwellBoltzSim(U, V) =
1

1 + D
. (12)

3.4. Proposed Model

In general, computer vision-based RSs are based upon the assumption that a user
submits or picks an image of a product, and the user is then provided with similar prod-
ucts/images [25]. The proposed method slightly deviates from this assumption as it extracts
features from past COVID-19 patients’ chest X-ray images and recommends some metadata
information related to treatment alternatives based on these images.

The proposed framework is aimed at providing emergency solutions to hospitals
during the COVID-19 pandemic using the information of past COVID-19 patients who
have successfully recovered from the hospital. Therefore, it also assumes that the hospital
database used to implement the proposed RS contains the chest X-ray images of COVID-19
patients who have recovered from the hospital along with the metadata (associated infor-
mation) such as doctors who have investigated the patient, medicine, and resources (ICU,
oxygen mask, and ventilator) provided to the patient. The architecture or the local system
for the proposed RS is shown in Figure 8 and consists of two major phases: fine-tuning
CNN models for feature learning (Phase-1) and recommendation (Phase-2). Phase 1 of the
system is an offline system, while phase 2 is an online system.
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The overall algorithm of the proposed framework is also provided in Algorithm 1.
The algorithm illustrates the basic workflow of the proposed system. The system takes
the chest X-ray image of a new patient as the input and recommends doctors, medicine,
and hospital resources as the output. It uses a CNN model to extract the feature vectors
of the input chest X-ray image and all the chest X-ray images of past COVID-19 patients
stored in the hospital database. It uses a similarity measure to compute the most similar
COVID-19 patients to a new patient and utilizes the metadata associated with them for the
recommendations, which is represented in the testing protocol from step 5 to step 11 in the
algorithm. The pre-processing and the training of the chest X-ray images are explained in
the training protocol with steps from 1 to 4 in the algorithm.

Algorithm 1: The Overall Algorithm of the Proposed System

Training Protocol for Feature Extraction using deep learning

1. Obtain the chest X-ray images of COVID-19 as training data.
2. Crop those chest X-ray images at random to 224 × 224 and rotate them at random by 30◦.
3. Input the transformed chest X-ray images obtained in step 2 into the CNN classifier for

fine-tuning and begin the training of the model.
4. When training is completed, extract the desired output layer features and save the model.
Testing Protocol using Similarity Measure

5. Obtain the chest X-ray images from the database of previous COVID-19 cases.
6. Resize the chest X-ray images from the COVID-19 database to 225 × 225 and perform a

centre crop of 224 × 224.
7. Extract and store the feature vectors of chest X-ray images from the database using the

pre-trained CNN model.
8. Calculate the similarity of the query image feature vector with all the stored database

feature vectors.
9. Find the top-k similar feature vectors in the database, where k is a positive integer.
10. Retrieve the chest X-ray images with their records of meta-data from the database,

corresponding to the top-k similar feature vectors obtained in step 6.
11. Recommend the doctors, medicines, and resources present in the retrieved meta-data

records to the new patient as the output.
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(A) Phase 1 (Offline System): Fine Tuning for Feature Learning

In phase 1, the proposed method learns to extract infection features from COVID-19
patients’ chest X-ray images based on image characteristics. A CNN model is trained to
learn these features by classifying these chest X-ray images into respective lung condi-
tion categories (one of which should be COVID-19) as present in the training data. The
architecture of a CNN model consists of two components: (1) feature vector extractor and
(2) classifier [24,76], as shown in Figure 9.
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Several convolution layers are followed by max pooling and an activation function
in the feature extraction process. Typically, the classifier is made up of fully connected
layers. The proposed approach uses a fine-tuning method, which is more commonly used
in radiology research. It involves not only replacing the pre-trained model’s fully connected
layers with a fresh set to retrain them on the given dataset but also using backpropagation to
fine-tune some of the layers in the pretrained convolutional base. The binary cross-entropy
loss function was used for optimization in the training of the CNN models [67,77]. The
binary cross entropy loss can be defined by the following equation:

Loss = − 1
N ∑N

i=1 yi. log(p(yi.)) + (1− yi.). log(1− p(yi.)). (13)

During training, the ReLU activation function and its variations are also used because
they can solve the problem of vanishing gradients, which often happens in CNN models.
Before training the model for feature learning, the suggested method utilizes specific image
transformations or augmentation, as shown in phase 1 [78,79]. This allows the model to
be more adaptable to the huge variation in the region of interest (lungs) within the image,
with less emphasis on its location, orientation, and size. Models that are trained with
data transformations are more likely to improve CNN’s performance on image datasets
and make them more general. In this phase, any efficient CNN model, such as VGG or
ResNet, may be trained. The trained model weights are then saved, and the fine-tuned
convolutional base is then employed in phase 2 to extract features. Steps 1 to 4 of the
proposed algorithm shown in Figure 9 describe phase 1.

(B) Phase 2 (Online System): Recommendation

Phase 2 of the proposed approach is used for providing recommendations based on the
features obtained from X-ray images using the fine-tuned convolutional base from phase 1,
which acts as a feature extractor in phase 2. The metadata associated with each image in the
database is utilized to provide recommendations such as doctors, medicines, and resources.
For recommendation, the system utilizes similar patients from the database who have the
same type of infection in the chest due to COVID-19 as that of the patient corresponding to
the input query chest X-ray image. In doctor recommendation, it recommends doctors who
have already successfully treated similar patients to the patient corresponding to the input
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query chest X-ray image. In medicine recommendation, the system recommends medicines
that have already been consumed by previously recovered patients who had similar chest
infections. For resource recommendations, it recommends emergency resources such as
oxygen masks, ventilators, and ICU if required by the patient in the future so that the
hospital can arrange those resources beforehand. Phase 2 of the proposed method is again
divided into two sub-phases: (1) feature vector extraction and (2) similarity-based retrieval.

3.4.1. Feature Vector Extraction

The elements or patterns of an object in an image that assist in identifying it are
called “features.” Feature extraction is a step in the dimensionality reduction process,
which divides and reduces a large collection of raw data into smaller groupings. It aids
in extracting the most useful information from higher-dimensional data by choosing and
merging variables into features, hence minimizing the amount of data. These features are
easy to use and describe real data collection uniquely and accurately.

CNNs excel in extracting complex features in the form of feature vectors that depict
the image in great detail, learning task-specific features while being extremely efficient [80].
Therefore, the proposed method uses CNN-based feature extractors obtained from phase 1 to
extract features of the infection present inside the chest X-ray images of COVID-19 patients.

Feature vector extraction is applied both to the input query image and the chest X-ray
images of COVID-19 patients present in the hospital database. Steps 5 to 10 of the proposed
algorithm describe the feature vector extraction process. However, the extracted feature
vectors are further exploited for similarity-based retrieval.

3.4.2. Similarity-Based Retrieval

The extracted feature vectors of the input query image and the chest X-ray images of
recovered COVID-19 patients present in the database obtained from the previous step are
further utilized to retrieve similar images for a given input query image. The system utilizes
the cosine similarity measure to find the top-k similar patients for a given query patient,
where k is a positive integer. The system further utilizes those top-k similar patients to
provide various recommendations such as doctors, medicines, and resources to the patient
corresponding to the given input chest X-ray image. The doctors, medicines, and resources
allotted to those similar patients are recommended to the query patient. Steps 11 to 14
summarize the workflow of the proposed system (Figure 10). In the results section, we
present the results for the two hypotheses of our proposed system.
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4. Experimental Protocol

To verify the efficacy of the proposed approach, the experimental environment, dataset
description, pre-processing of the datasets, and the related results of the experiments are
discussed in this section.

4.1. Experimental Environment

The details of the computing resources used for the implementation of the proposed
system are shown in Table 1.

Table 1. Computer resources.

Software and Hardware Specifications

Operating System Debian GNU/Linux 9 (stretch)

CPU Intel(R) Xeon(R) CPU @ 2.00GHz

GPU GPU—Tesla P100 16GB

Language Python 3.9

RAM 16 GB

Disk 645 GB

4.2. Dataset Description

We employed two datasets, including the chest X-ray images of COVID-19 patients,
for the implementation and performance evaluation of our proposed model. The detailed
descriptions of the datasets are provided in Table 2. The “Dataset for Training and Verifi-
cation (DFTV)” was used for to train the CNN models and was also used for the analysis
of the model’s performance. It was split into training, validation, and test sets using the
K5 protocol in the ratio of 8:1:1 before training the models. In total, 16,932 images are
used for training, and 2116 images are used for testing. For the performance analysis of
our proposed recommendation model, all the images of the COVID class in this dataset
were also taken again separately and split into five different subsets of equal size, namely
DFTV-1, DFTV-2, DFTV-3, DFTV-4, and DFTV-5. The second dataset, “Dataset for Cross
Verification (DFCV)”, was used as a dataset for cross-verification of the system’s perfor-
mance on completely new data unseen by the CNN models. It was also split into five
subsets of equal size, namely DFCV-1, DFCV-2, DFCV-3, DFCV-4, and DFCV-5.

Table 2. Description of datasets.

DFTV DFCV

Dataset Name COVID-19 Radiography Database COVID-QU-Ex Dataset

Dataset link Link1 [81] Link2 [45]

Dataset size 781 MB 329 MB

Dimensions 299 × 299 256 × 256

Number of Images 21,165 11,956

Number of Classes 4 1
DFTV: Data set for Training and verification, DFCV: Data set for Cross Validation.

4.3. Data Pre-Processing

In phase 1 of the proposed approach, the images underwent certain image transforma-
tions, as mentioned in Step 2 of the algorithm. First, the images were randomly cropped
and resized to 224 × 224 and then randomly rotated by 30 degrees before going into the
CNN model for training. In phase 2 of the approach, the query and the database images
were pre-processed before feature extraction took place. The chest X-ray images were first
resized to 225 × 225 and then cropped to size 224 × 224, facilitating the input to ResNet
and VGG architectures.
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5. Results and Performance Evaluation

The results of the proposed system were compartmentalized based on the system’s two
phases. The performance of offline (Phase-1) and online (Phase-2) systems was assessed
using different CNN models and similarity measures.

5.1. Results

The results were obtained for the two phases of the proposed system. In phase 1,
the results were determined by fine-tuning the CNN model. In phase 2, the results were
recorded and obtained from the recommendation process. The results were obtained by
considering both the DFTV and DFCV datasets.

Phase 1: Fine Tuning for Feature Learning—Offline System
In phase 1 of the proposed system, the CNN model was fine-tuned, and the model

was saved for further use in phase 2. Training was optimized using the stochastic gradient
descent (SGD) optimizer through a binary cross-entropy loss function on the DFTV dataset.
Figure 11 depicts the result of these fine-tuned CNN models, as found in the test split of
the dataset DFTV. The metrics used in the results are defined in the following equations.

Precision =
TP

TP + FP
, (14)

Recall =
TP

TP + FN
, (15)

F1− score = 2
(

Precision ∗ Recall
Precision + Recall

)
, (16)

Accuracy =
TP + TN

Size o f the dataset
, (17)

where,
TP is the true positive, and this is when the model correctly predicts the positive class.
TN is the true negative, and this is when the model correctly predicts the negative class.
FP is the false positive, and this is when the model incorrectly predicts the positive class.
FN is the false negative, and this is when the model incorrectly predicts the negative class.

From Figure 11, it is found that the weighted precision, recall, and f1-score of all
the CNN models are between 0.90 and 0.95. The average weighted precision, recall, and
f1-score of all five CNN models are 0.938, 0.936, and 0.936, respectively.

Phase 2: Recommendation—Online System
The final weights of the fine-tuned CNN model obtained from phase 1 were used in

phase 2 for feature extraction. The weights were used for the feature extraction of both the
query image and the database images. The similarity of the feature vector corresponding to
the input query image was determined concerning all the feature vectors corresponding to
the database images. The four similarity measures, namely, cosine similarity, Euclidean
distance similarity, Jaccard similarity, and Maxwell–Boltzmann similarity, were considered
for evaluating the performance of the proposed system. The results were obtained by
taking all the images of the COVID-19 class present in each dataset. For each dataset, 80%
of these images were considered hospital database images, i.e., chest X-ray images of past
recovered COVID-19 patients of the hospital. The feature vectors were already extracted
and stored in the backend, and the remaining 20% of images were considered new input
query images, i.e., chest X-ray images of new patients. For each query image, the similarity
with every database image was calculated, and the top-k images from the hospital database
having the highest similarity were retrieved, where k is the number of recommendations.
A” threshold value (T)” of similarity was decided to identify relevant similar images for
each query image. A retrieved database image was considered relevant when it had a
similarity greater than or equal to the threshold value, as defined in Equation (18).

Relevant recommendation = retrieved database image with cosine similarity ≥ T. (18)
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We varied this threshold value between 0.7 and 0.95 to analyze different scenarios.
This threshold value represents the minimum similarity of image features in the chest X-ray
needed for the recommended medicines, doctors, and resources to be considered valid.
This threshold value may be fixed after consulting a medical professional for practical use.

For the input query set, the average of the highest similarity corresponding to the
most similar image (top-1) concerning each query was calculated and was referred to as
the average highest similarity (AHS) of our proposed method, as shown in Appendix A.
Tables A1 and A2 depict the average highest similarity as observed on various datasets
using different similarity measures and CNN models for feature extraction.

The performance of the different similarity measures can be analyzed from the graphs
shown in Figure 12. From Figure 12, it is observed that the mean of AHS of all the datasets
for Maxwell–Boltzmann similarity is maximum. The performance of the Cosine similarity
measure is nearer to Maxwell–Boltzmann similarity. The composite means and standard
deviation of AHS considering all the datasets for all the models are represented in Figure 13.
The performance of the different CNN models was further analyzed, considering Maxwell–
Boltzmann similarity.

The mean average precision (MAP@k) metric was used to evaluate the performance of
phase 2 (online system) of the proposed RS, which is defined in the following Equation (19).

MAP@k =
1
N ∑N

n=1
1
k ∑n

m=1(P(m)× rel(m)), (19)

where N denotes the total number of users or the length of the input query set, k denotes
the number of recommendations made by the recommender system, and P(m) denotes
the precision up to the first m recommendations. rel(m) is a relevance indicator function
for each recommended item, returning 1 if the mth item is a relevant recommended chest
X-ray image, with a similarity higher than the threshold value T, and 0 otherwise. To check
the performance of our proposed RS, we determined the MAP@k for k = 5 and k = 10. The
values obtained for MAP@k for k = 5 and k = 10 using the five CNN feature extraction
models are listed in Appendix A and are shown in Tables A3 and A4, respectively.

The performance of the models was analyzed through the graphs represented in
Figures 14 and 15. From the graphs, it was observed that the performance of the proposed
RS varies according to the different feature extraction methods through the different CNN
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models. The proposed RS implemented with the ResNet-50 feature extraction model
provided the highest MAP@k with k = 5 and k = 10 for all the datasets with higher threshold
values of similarity. The proposed RS with the ResNet-50 feature extraction CNN model had
the highest MAP of more than 0.90 for the threshold similarities in the range of 0.7 to 0.9.
Therefore, it confirmed the first part of the hypothesis that the performance of the proposed
RS depends upon the feature extraction technique through CNN models. It was also
found that this framework provides better performance for the DFCV, which follows the
performance obtained from DFTV.
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To analyze the effect of the similarity measures on the performance of the proposed
system, we found the MAP@5 for both the DFTV and DFCV datasets using the Resnet-50
CNN model. We used the Resnet-50 CNN model as it is the best-performing model for
our datasets. The results obtained are shown in Table 3. It was also observed from Table 3
that the MAP@5 was at its maximum using the Maxwell–Boltzmann similarity. Hence,
the MAP@k depends upon the similarity measure used for similarity computation, which
reveals another part of the hypothesis of our proposed system. We also validated our two
hypotheses in the performance evaluation section.

Table 3. Mean average precision @5 for DFTV and DFCV datasets using the Resnet-50 CNN model.

Datasets EDSM JCSM CSSM MBSM

DFTV-1 0.50127 0.62346 0.91724 0.94827

DFTV-2 0.52037 0.63658 0.93586 0.9731

DFTV-3 0.54386 0.66215 0.95034 0.97068

DFTV-4 0.49873 0.61384 0.92586 0.95224

DFTV-5 0.50012 0.61931 0.93793 0.96413

DFCV-1 0.53247 0.64034 0.95282 0.98328

DFCV-2 0.49771 0.61241 0.93517 0.98129

DFCV-3 0.51023 0.62011 0.94387 0.98495

DFCV-4 0.53387 0.63286 0.95672 0.9839

DFCV-5 0.53218 0.65238 0.96458 0.98861

5.2. Performance Evaluation

The proposed study used two performance metrics, (i) the ROC curve and (ii) the
figure of merit (FoM), to validate the performance of the proposed system. The ROC curves
for the performance of the different CNN models are shown in Figure 16. The ROC curve
represents the ability of the CNN models in feature extraction so that the predicted value of
the recommended image matches the gold standard. The performance of the CNN models
was analyzed with the area under the curve (AUC) and the corresponding p-value, as
shown in Table 4. The Resnet-50 model was found to outperform other CNN models with
an AUC.

Table 4. AUC and p-value for the CNN models.

SN CNN Model AUC p-Value

1 VGG-19 0.915 p < 0.001

2 VGG-16 0.968 p < 0.001

3 Resnet-152 0.977 p < 0.001

4 Resnet-101 0.978 p < 0.001

5 Resnet-50 0.980 p < 0.001

The performance of the CNN models was also analyzed through FoM. The FoM is
defined as the error’s central tendency and can be defined as follows:

FoM = 100−
[(

W
N

)
× 100

]
, (20)

where W is the number of images incorrectly classified according to the GT, and N is the
total number of images present in the test sample. Table 5 displays the FoM values for the
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proposed RS with different CNN models and Maxwell–Boltzmann similarity measures in
comparison to the GT. Hence, the two results of the ROC curve and FoM values found in
Tables 4 and 5 validate that the performance of the proposed RS varies according to the
different CNN models used for feature extraction. This, in turn, validates the first part of
our hypothesis.
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Table 5. FoM was observed for the CNN models.

SN CNN Model FoM (%)

1 VGG-19 91.12

2 VGG-16 96.23

3 Resnet-152 97.04

4 Resnet-101 97.84

5 Resnet-50 98.38

We also determined the FoM values considering the four similarity measures keeping
the CNN model fixed. We considered Resnet-50 as the best-performing CNN model
observed from the previous results. The FoM values obtained using Resnet-50 and the four
similarity measures are shown in Table 6. It was found that the FoM was at its maximum
for Maxwell–Boltzmann similarity and varied according to the similarity measure used in
the system. This result validates the second part of our hypothesis that the performance of
the proposed RS depends upon the similarity measure used for similarity computation.
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Table 6. FoM was observed for the similarity measures.

SN CNN Model FoM (%)

1 JCSM 42.74

2 EDSM 58.39

3 CSSM 97.26

4 MBSM 98.38

5.3. Running Time Comparison

Table 7 shows the time consumed by the proposed RS with each of the five CNN
feature extraction algorithms. It is the average of multiple runs that have been expressed in
seconds. The working setup to conduct experimentation is shown in Table 1. The running
time of the proposed RS was calculated as the time required for the feature extraction of
an input query image supplied to the proposed RS, its similarity calculation with all the
images in the hospital database, and the retrieval of top-k similar images. The average
running time of the proposed RS implemented with the CNN feature extraction models
was compared and is represented in Figure 17. The bars in the figure represent the average
running time of each RS with different CNN models. It was observed that the running time
of the proposed RS is primarily dependent upon the size of the hospital database and is
also affected by the type of feature extraction model.

Table 7. Average running time obtained for the CNN models.

Average Running Time (in Seconds)

Datasets ResNet-50 ResNet-101 ResNet-152 VGG-16 VGG-19

DFTV 0.037 0.063 0.061 0.041 0.034

DFCV 0.098 0.101 0.103 0.094 0.092
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5.4. Statistical Tests

The proposed study performed the validations of the two hypotheses designed for
the proposed system. To assess the system’s reliability and stability, the standard Mann–
Whitney, paired t-test, and Wilcoxon tests were used. When the distribution was not normal,
the Wilcoxon test was used instead of the paired t-test to determine whether there was
sufficient evidence to support the hypothesis. MedCalc software (Osteen, Belgium) was
used for the statistical analysis. To validate the system proposed in the study, we provided
all of the MAP@k values for k = 5 and k = 10 against various models of RS with different
CNNs. The results of the Mann–Whitney, paired t-test, and Wilcoxon test are shown in
Table 8.

Table 8. Results of statistical tests.

Models Mann–Whitney Paired t-Test Wilcoxon Test

M1 vs. M2 p < 0.0001 p < 0.0001 p < 0.0001

M1 vs. M3 p < 0.0001 p < 0.0001 p < 0.0001

M1 vs. M4 p < 0.0001 p < 0.0001 p < 0.0001

M1 vs. M5 p < 0.0001 p < 0.0001 p < 0.0001

M2 vs. M3 p < 0.0001 p < 0.0001 p < 0.0001

M2 vs. M4 p < 0.0001 p < 0.0001 p < 0.0001

M2 vs. M5 p < 0.0001 p < 0.0001 p < 0.0001

M3 vs. M4 p < 0.0001 p < 0.0001 p < 0.0001

M3 vs. M5 p < 0.0001 p < 0.0001 p < 0.0001

M4 vs. M5 p < 0.0001 p < 0.0001 p < 0.0001
M1—RS using Resnet-50, M2—RS using Resnet-101, M3—RS using Resnet-152, M4—RS using VGG-16, M5—RS
using VGG-19.

6. Discussion
6.1. Principal Findings

The test was carried out on 20,000 COVID-19 patients’ chest X-ray images. The
following similarity measures were used to select the best one for the system based on
the AHS value: (i) cosine similarity, (ii) Maxwell–Boltzmann similarity, (iii) Euclidean
similarity, and (iv) Jaccard similarity. With a similarity value of more than 94%, the
Maxwell–Boltzmann similarity outperformed all other similarity measures. The proposed
RS’ performance was validated using the following CNN models: (i) Resnet-50, (ii) Resnet-
101, (iii) Resnet-152, (iv) VGG-16, and (v) VGG-19. The performance of the CNN models was
validated using parameters such as the ROC curve and FoM value. The AUC and p-values
obtained from the ROC curve indicate the ability of the CNN models to correctly predict the
GT of the input image. The Resnet-50 model was found to outperform other CNN models
with an AUC greater than 0.98 (p < 0.0001). The performance of the CNN models was also
analyzed through FoM. The FoM was defined as the error’s central tendency. The Resnet-50
CNN model was found to have a maximum FoM value of 98.38. The performance of the
similarity measures was also validated using the FoM value, and Maxwell–Boltzmann
similarity outperformed the other three similarity measures; the overall performance of the
proposed RS was evaluated using MAP@k. The MAP@k was determined using different
CNN models for the threshold similarity in the range of 0.7 to 0.95. The proposed RS
with the Resnet-50 CNN model showed the best result with a MAP@k value of 0.98014
and 0.98861 for k = 5 and k = 10, respectively. Finally, the system recommended meta-
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data information regarding hospital resources to a new COVID-19 patient admitted to the
hospital based on his or her chest X-ray image.

6.2. Benchmarking

We considered various papers related to RS based on image similarity in our bench-
marking strategy. This included Ullah et al. [17], Chen et al. [18], Tuinhof et al. [19], and
Geng et al. [40]. In ref. [17], an RS based on image content was proposed and divided
into two phases. The RS used a random forest classifier in the first phase to determine the
product’s class or category. The system then used the JPEG coefficients measure to extract
the feature vectors of the photos, which were then used to provide recommendations
based on feature vector similarity in the second phase. The proposed method produced
correct recommendations with a 98% accuracy rate, indicating its efficacy in real-world
applications. Ref. [18] provided a neural network-based framework for product selection
based on a specific input query image. A neural network was used in the proposed system
to classify the supplied input query image, followed by another neural network that used
the Jaccard similarity measure to determine the most comparable product image to that
input image. The approach had a classification accuracy of 0.5. It offered quick and accurate
online purchasing assistance and recommended products with a similarity of more than 0.5.
Ref. [19] describes a two-stage deep learning framework for recommending fashion images
based on similar input images. The authors proposed using a neural network classifier
as a data-driven, visually aware feature extractor. The data were then fed into ranking
algorithms, which generated suggestions based on similarities. The proposed method was
validated using the fashion dataset, which was made public. The proposed framework,
when combined with other types of content-based recommendation systems, can improve
the system’s stability and effectiveness. Ref. [40] proposed a framework for combining
an RS with visual product attributes by employing a deep architecture and a series of
convolution operations that result in the overlapping of edges and blobs in images. The
benchmarking table for the proposed study is shown in Table 9.

Table 9. Benchmarking table.

C1 C2 C3 C4 C5 C6 C7 C8

SN Author Number of Images Technique Model Types ACC MAP Loss AHS

1 Ullah et al. [25] 2000
Feature Extraction by JPEG

Coefficient and
Classification by RF

Cosine NR NR NR 0.967

Euclidean NR NR NR 0.961

Subjective NR NR NR 0.93

2 Chen et al. [82] 10,000 Neural Network and Jaccard
Similarity

SVM 0.26790 NR NR NR

Alexnet 0.39460 NR NR NR

VGG 0.5010 NR NR NR

3 Tuinhof et al. [27] 11,851 Feature Extraction and
ranking by KNN

Alexnet NR NR 1.48 NR

BN-Inception NR NR 1.27 NR

4 Geng et al. [51] 686,457 Feature Learning

CBF NR 0.098 NR NR

UCF NR 0.308 NR NR

ICF NR 0.338 NR NR

WMF NR 0.356 NR NR

DW NR 0.550 NR NR

DUIF NR 0.457 NR NR

5
Kuanr et al.
(proposed) 20,000

Feature Extraction and
Similarity by

Maxwell–Boltzmann
Similarity

VGG-19 91.12 0.85318 1.39 0.9428

VGG-16 96.23 0.95308 1.21 0.9466

Resnet-152 97.04 0.94806 1.26 0.9449

Resnet-101 97.84 0.97931 1.17 0.9567

Resnet-50 98.38 0.984375 1.09 0.9668

The proposed framework for developing an entirely image-based recommendation
model compares various linear and nonlinear reduction approaches to the properties of a
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CNN. Ref. [82] presented an RS framework that uses chest X-ray images to predict whether
a person needs COVID-19 testing. It implemented the same datasets used by the proposed
method but with a different objective. None of these studies proposed any hypothesis for
their proposed systems.

In contrast, we proposed two hypotheses for our system and also evaluated and
validated them in the result and performance evaluation sections, respectively.

6.3. Special Note on Searching for RS

RS works on the principle of information filtering, and the searching strategy plays
an important role in finding the relevant items to produce efficient and useful recom-
mendations. The proposed RS utilizes image similarity to find the most relevant chest
X-ray images with similar infections for a new COVID-19 patient with a chest X-ray image.
Although CNN models play a vital role in producing accurate feature vectors, the quality
of the recommendation mainly depends on the similarity measure. A proper similarity
measure producing a high similarity value can produce more accurate recommendations.
The four similarity measures considered for this study were analyzed based on AHS. In this
study, the AHS was determined by averaging the similarity value of the most similar image
to every input image present in the test set. The similarity measure with the highest AHS
was considered for the RS. The performance of the proposed RS was determined in terms
of MAP@k for a top-k recommendation. To identify relevant similar images for each query
image, a “threshold value (T)” of similarity was also considered in the system. A retrieved
database image was considered relevant when it had a similarity greater than or equal to
the threshold value. This threshold value was found to affect the overall performance of
the system in terms of MAP@k for a top-k recommendation.

The input images in both the training set and the testing sets were large images. These
large images had many pixels to process. Further, the method we adopted reduced the
computational complexity. The similarity measure strategy was very fast, quick, and low
in complexity, one reason being there was no special optimization protocol and iteration
adopted. Thus, overall, there was simplicity, speed, and low complexity. Such benefits
overrule direct image comparison. Note that the top-n similar images obtained from
the similarity computation were used for the recommendation. The proposed RS using
CNN for feature extraction and similarity measurement can be an efficient tool to produce
recommendations in the healthcare domain. The recommendations can be utilized for the
proper allocation of doctors, medicine, and hospital resources to new patients.

6.4. Strengths, Weaknesses, and Extensions

The proposed method shows that the RS using a CNN for feature extraction and
similarity measure can be an efficient tool for producing recommendations in the health-
care domain. The recommendations can be utilized for the proper allocation of doctors,
medicine, and hospital resources to new patients. The proposed study proposed two
hypotheses and also evaluated and validated them in the paper.

The results of the current pilot study are encouraging. However, due to the unavail-
ability of the denoising technique in the proposed RS, the quality of the recommendation
may be affected due to the presence of noise in the chest X-ray images. Denoising can
be conducted in the offline and online systems. Denoising is an expensive operation in
terms of computations. Therefore, offline denoising does not hurt the system that much,
but the online system must be hardware interactive. The low resolution of chest X-ray
images may also affect the quality of recommendations. Due to the limited number of
images available for similarity calculation, a small database size may result in incorrect
recommendations. A large database size may result in longer training time. While the study
used basic ResNet-based systems, this can be extended to hybrid ResNet systems [83,84].

In the future, we could apply more sophisticated feature extraction techniques by
fusing the different deep-learning models to achieve accurate recommendations. Better
similarity methods can be explored to increase the efficiency of the proposed system. It
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could also be enhanced by applying segmentation techniques to make the system more
robust. It can also be extended to cloud settings and big data platforms.

7. Conclusions

Through this study, we offered an RS for treating COVID-19 patients based on X-ray
images of the chest. The proposed RS was divided into two phases. In phase 1, the
proposed system fine-tuned the CNN models for feature extraction in phase 2. In phase 2,
the finely tuned CNN model was used to extract features from both the chest X-ray of a
new COVID-19 patient and the chest X-rays of COVID-19 patients present in the hospital
database who were already treated successfully. The top-k similar images to the input query
image of a new COVID-19 patient were determined further utilized for recommendation.
In its recommendation, the proposed RS recommends doctors, medicines, and resources
for new COVID-19 patients according to the metadata information of similar patients.

The proposed RS implemented with the ResNet-50 feature extraction CNN model
provides the highest MAP@k with k = 5 (top-5) and k = 10 (top-10) for all the datasets
with higher threshold values of similarity. The proposed RS with ResNet-50 CNN feature
extraction model was found to be a proper framework for the treatment recommendation
with a mean average precision (MAP) of more than 0.90 for the threshold similarities in
the range of 0.7 to 0.9. The results of the proposed study were hypothesized and validated
using various parameters. The proposed RS in this paper assumes that the hospital database
contains related metadata, such as information about the doctors investigated, medicines,
and resources allocated to a patient. The major limitation of our proposed system is that we
did not consider the related physiological parameters such as sugar level, blood pressure,
and other associated parameters that may affect the condition of a COVID-19 patient having
similar chest infections. In the future, the proposed RS can be enhanced by considering
these parameters for better recommendations.
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Abbreviations

SN Abb * Definition
1 AHS Average Highest Similarity
2 AUC Area-under-the-curve
3 AI Artificial Intelligence
4 ARDS Acute Respiratory Distress Syndrome
5 BMI Body mass index
6 CSSM Cosine Similarity Measure
7 CNN Convolution neural network
8 EDSM Euclidean Distance Similarity Measure
9 GGO Ground Glass Opacities
10 VGG Visual Geometry Group
11 DL Deep learning
12 DM Diabetes mellitus
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13 Densenet Dense Convolutional Network
14 MBSM Maxwell–Boltzmann Similarity Measure
15 MAP Mean Average Precision
16 ML Machine Learning
17 KNN K- nearest neighbor
18 FoM Figure of Merit
19 HDL Hybrid deep learning
20 HRS Health Recommender System
21 NB Naive Bayes
22 NR Not reported
23 PCA Principal component analysis
24 PI Pulmonary Infiltrates
25 Resnet Residual Neural Network
26 PR The period measured in milliseconds
27 RF Random forest
28 ReLU Rectified Linear Activation Unit
29 RoB Risk of bias
30 ROC Receiver operating-characteristics
31 TL Transfer learning
32 DFTV Dataset for Training and Verification
33 DFCV Dataset for Training and Cross Validation

Appendix A

Table A1. Average highest cosine similarity (AHS) obtained for the CNN models with DFTV dataset.

Feature Vector Extractor Architecture
Dataset Similarity

Measure ResNet-50 ResNet-101 ResNet-152 VGG-16 VGG-19

CSSM 0.9557 0.9383 0.9298 0.9233 0.9109

EDSM 0.6834 0.6517 0.6326 0.6338 0.6319

JCSM 0.4369 0.4210 0.4098 0.4049 0.4016
DFTV-1

MBSM 0.9651 0.9588 0.9489 0.9457 0.9421

CSSM 0.9587 0.9376 0.9300 0.9202 0.9090

EDSM 0.6858 0.6511 0.6374 0.6304 0.6308

JCSM 0.4394 0.4207 0.4117 0.4125 0.4039
DFTV-2

MBSM 0.9676 0.9564 0.9510 0.9428 0.9392

CSSM 0.9572 0.9392 0.9327 0.9216 0.9089

EDSM 0.6850 0.6536 0.6388 0.6321 0.6306

JCSM 0.4383 0.4228 0.4120 0.4107 0.4041
DFTV-3

MBSM 0.9668 0.9579 0.9533 0.9445 0.9385

CSSM 0.9566 0.9381 0.9324 0.9244 0.9114

EDSM 0.6859 0.6541 0.6376 0.6346 0.6328

JCSM 0.4376 0.4234 0.4122 0.4086 0.4066
DFTV-4

MBSM 0.9670 0.9581 0.9528 0.9440 0.9419

CSSM 0.9572 0.9385 0.9319 0.9238 0.9100

EDSM 0.6854 0.6548 0.6380 0.6335 0.6318

JCSM 0.4370 0.4230 0.4118 0.4027 0.4006
DFTV-5

MBSM 0.9665 0.9587 0.9530 0.9431 0.9416

Mean 0.762 0.743 0.733 0.727 0.721

Standard Deviation 0.224 0.227 0.229 0.227 0.225
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Table A2. Average highest cosine similarity (AHS) obtained for the CNN models with DFCV dataset.

Feature Vector Extractor Architecture
Dataset Similarity

Measure ResNet-50 ResNet-101 ResNet-152 VGG-16 VGG-19

CSSM 0.9582 0.9379 0.9281 0.9256 0.9121

EDSM 0.6874 0.6528 0.6332 0.6347 0.6323

JCSM 0.4384 0.4218 0.4098 0.4069 0.4011
DFCV-1

MBSM 0.9677 0.9580 0.9465 0.9472 0.9437

CSSM 0.9570 0.9359 0.9254 0.9263 0.9103

EDSM 0.6861 0.6514 0.6326 0.6357 0.6308

JCSM 0.4368 0.4206 0.4066 0.4074 0.4006
DFCV-2

MBSM 0.9663 0.9564 0.9433 0.9482 0.9418

CSSM 0.9587 0.9363 0.9280 0.9252 0.9122

EDSM 0.6882 0.6522 0.6335 0.6345 0.6319

JCSM 0.4370 0.4220 0.4083 0.4054 0.4018
DFCV-3

MBSM 0.9670 0.9559 0.9457 0.9468 0.9435

CSSM 0.9565 0.9351 0.9250 0.9262 0.9104

EDSM 0.6866 0.6519 0.6317 0.6360 0.6312

JCSM 0.4355 0.4215 0.4058 0.4068 0.4013
DFCV-4

MBSM 0.9657 0.9552 0.9436 0.9474 0.9415

CSSM 0.9580 0.9367 0.9273 0.9259 0.9126

EDSM 0.6871 0.6518 0.6329 0.6352 0.6327

JCSM 0.4362 0.4221 0.4074 0.4074 0.4027
DFCV-5

MBSM 0.9668 0.9567 0.9449 0.9466 0.9428

Mean 0.762 0.742 0.728 0.729 0.722

Standard Deviation 0.225 0.226 0.228 0.229 0.227

Table A3. Mean average precision (MAP) @K = 5 of CNN model.

Datasets Threshold Similarity (T) ResNet-50 ResNet-101 ResNet-152 VGG-16 VGG-19

T = 0.70 1 1 1 0.99724 1

T = 0.75 0.99793 1 1 0.99586 0.99655

T = 0.80 0.98965 1 0.99448 0.99034 0.97724

T = 0.85 0.96965 0.98620 0.95655 0.95586 0.88551

T = 0.88 0.93241 0.96275 0.87931 0.87793 0.69724

T = 0.90 0.88275 0.86758 0.77034 0.72827 0.45379

DFTV-1

T = 0.95 0.48551 0.11931 0.11241 0.03517 0.02551

T = 0.70 0.99931 1 1 0.99586 0.99586

T = 0.75 0.99793 1 1 0.99517 0.99172

T = 0.80 0.99379 0.99448 0.99448 0.98965 0.97862

T = 0.85 0.98551 0.98758 0.96206 0.94275 0.88896

T = 0.88 0.96689 0.95379 0.90344 0.83103 0.70275

T = 0.90 0.92551 0.87379 0.77793 0.69103 0.47379

DFTV-2

T = 0.95 0.51517 0.14758 0.11931 0.042068 0.02137
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Table A3. Cont.

Datasets Threshold Similarity (T) ResNet-50 ResNet-101 ResNet-152 VGG-16 VGG-19

T = 0.70 1 1 1 1 1

T = 0.75 0.99862 1 1 1 0.99379

T = 0.80 0.99793 1 1 0.99241 0.97379

T = 0.85 0.98068 0.99586 0.97103 0.95310 0.86482

T = 0.88 0.95586 0.97241 0.90965 0.84344 0.68275

T = 0.90 0.92413 0.91793 0.80137 0.69517 0.47379

DFTV-3

T = 0.95 0.50965 0.15034 0.15241 0.03379 0.02206

T = 0.70 0.99862 1 1 0.99862 0.99862

T = 0.75 0.99862 1 1 0.99862 0.99241

T = 0.80 0.99724 0.99655 1 0.99793 0.97172

T = 0.85 0.98 0.98620 0.96758 0.96137 0.86551

T = 0.88 0.94689 0.95586 0.89793 0.86827 0.70413

T = 0.90 0.90206 0.89931 0.78482 0.72137 0.48551

DFTV-4

T = 0.95 0.51862 0.14344 0.13931 0.02965 0.02482

T = 0.70 0.99586 1 1 0.99724 1

T = 0.75 0.99586 1 1 0.99586 0.99517

T = 0.80 0.99586 1 0.99724 0.99172 0.97241

T = 0.85 0.98137 0.98758 0.96758 0.95724 0.86896

T = 0.88 0.94689 0.96137 0.88206 0.85931 0.70689

T = 0.90 0.89034 0.88344 0.78620 0.70068 0.51034

DFTV-5

T = 0.95 0.51310 0.14206 0.14965 0.03448 0.02137

T = 0.70 1 1 1 0.99874 0.99791

T = 0.75 0.99874 1 1 0.99686 0.99289

T = 0.80 0.99665 0.99916 0.99686 0.99247 0.97262

T = 0.85 0.99143 0.98620 0.97617 0.95903 0.89655

T = 0.88 0.96907 0.95611 0.88777 0.88631 0.74670

T = 0.90 0.93187 0.89487 0.77324 0.77220 0.58098

DFCV-1

T = 0.95 0.56823 0.15423 0.09404 0.06645 0.02884

T = 0.70 1 1 1 0.99979 0.99811

T = 0.75 0.99958 1 1 0.99895 0.99247

T = 0.80 0.99895 0.99958 0.99749 0.99331 0.97471

T = 0.85 0.98766 0.99038 0.97115 0.96489 0.89299

T = 0.88 0.96907 0.95276 0.88965 0.88714 0.74461

T = 0.90 0.93207 0.88234 0.76154 0.78265 0.53939

DFCV-2

T = 0.95 0.54503 0.126227 0.07042 0.05642 0.02549

T = 0.70 0.99916 0.99916 1 1 0.99937

T = 0.75 0.99895 0.99895 0.99937 0.99937 0.99686

T = 0.80 0.99853 0.99853 0.99832 0.99498 0.98202

T = 0.85 0.98996 0.98537 0.98140 0.96196 0.88965

T = 0.88 0.97471 0.95276 0.90804 0.87502 0.74775

T = 0.90 0.94858 0.87628 0.77868 0.76426 0.56907

DFCV-3

T = 0.95 0.56677 0.13939 0.08296 0.05621 0.02737
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Table A3. Cont.

Datasets Threshold Similarity (T) ResNet-50 ResNet-101 ResNet-152 VGG-16 VGG-19

T = 0.70 1 1 1 0.99958 1

T = 0.75 0.99895 1 1 0.99791 0.99832

T = 0.80 0.99853 0.99916 0.99811 0.99122 0.97763

T = 0.85 0.99247 0.98829 0.96760 0.96907 0.89153

T = 0.88 0.97178 0.94503 0.87711 0.89822 0.74252

T = 0.90 0.92789 0.86060 0.74169 0.76823 0.54670

DFCV-4

T = 0.95 0.53772 0.12936 0.07021 0.06269 0.02110

T = 0.70 1 1 1 1 0.99811

T = 0.75 1 1 1 0.99874 0.99477

T = 0.80 0.99853 1 0.99811 0.99644 0.98244

T = 0.85 0.99226 0.99017 0.97868 0.97387 0.91055

T = 0.88 0.98014 0.95193 0.89926 0.90888 0.76781

T = 0.90 0.95047 0.88756 0.77680 0.78871 0.57199

DFCV-5

T = 0.95 0.55945 0.14211 0.07439 0.04472 0.02110

Table A4. Mean average precision (MAP) @K = 10 of CNN model.

Datasets Threshold Similarity (T) ResNet-50 ResNet-101 ResNet-152 VGG-16 VGG-19

T = 0.70 0.99827 1 1 0.99689 0.99965

T = 0.75 0.99310 1 1 0.99275 0.99206

T = 0.80 0.98275 0.99896 0.98620 0.98689 0.96206

T = 0.85 0.94827 0.98034 0.93586 0.93103 0.82586

T = 0.88 0.90206 0.93344 0.84137 0.81965 0.57241

T = 0.90 0.83172 0.80793 0.67896 0.64517 0.32862

DFTV-1

T = 0.95 0.35103 0.06827 0.06724 0.01758 0.01275

T = 0.70 0.99655 1 1 0.99344 0.99448

T = 0.75 0.99551 0.99827 1 0.99103 0.98724

T = 0.80 0.98965 0.99379 0.98862 0.97965 0.96586

T = 0.85 0.97310 0.97827 0.94758 0.91931 0.83413

T = 0.88 0.94137 0.92620 0.85689 0.76793 0.59172

T = 0.90 0.87448 0.81758 0.69931 0.62379 0.35103

DFTV-2

T = 0.95 0.40275 0.09517 0.07931 0.02275 0.01137

T = 0.70 1 1 1 1 0.99724

T = 0.75 0.99758 1 1 1 0.98931

T = 0.80 0.99620 1 0.99862 0.98862 0.95655

T = 0.85 0.97068 0.99379 0.96 0.92517 0.82206

T = 0.88 0.93551 0.95172 0.87965 0.77827 0.58724

T = 0.90 0.88586 0.86482 0.71758 0.60896 0.34931

DFTV-3

T = 0.95 0.39172 0.08758 0.10310 0.01689 0.01103
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Table A4. Cont.

Datasets Threshold Similarity (T) ResNet-50 ResNet-101 ResNet-152 VGG-16 VGG-19

T = 0.70 0.99758 1 1 0.99758 0.99586

T = 0.75 0.99689 1 1 0.99758 0.99034

T = 0.80 0.99344 0.99448 0.99551 0.99310 0.95586

T = 0.85 0.96379 0.97862 0.94275 0.94103 0.80931

T = 0.88 0.91241 0.93827 0.85862 0.81586 0.59827

T = 0.90 0.85344 0.83620 0.70655 0.63310 0.35172

DFTV-4

T = 0.95 0.39482 0.09344 0.08862 0.01482 0.01241

T = 0.70 0.99275 1 1 0.99344 0.99896

T = 0.75 0.99275 1 1 0.99275 0.98862

T = 0.80 0.98965 0.99896 0.99655 0.98758 0.95206

T = 0.85 0.96413 0.98379 0.94310 0.93344 0.81103

T = 0.88 0.90896 0.93379 0.84448 0.80379 0.62068

T = 0.90 0.84620 0.83413 0.70620 0.62310 0.38310

DFTV-5

T = 0.95 0.38793 0.08793 0.10620 0.01724 0.01068

T = 0.70 0.99947 1 1 0.99791 0.99655

T = 0.75 0.99759 1 1 0.99571 0.98819

T = 0.80 0.99519 0.99801 0.99550 0.98652 0.96112

T = 0.85 0.98328 0.98453 0.96133 0.94294 0.85862

T = 0.88 0.95141 0.93918 0.85193 0.84994 0.67920

T = 0.90 0.89540 0.84775 0.70940 0.72392 0.48192

DFCV-1

T = 0.95 0.47816 0.09540 0.05966 0.03730 0.01462

T = 0.70 0.99989 1 1 0.99905 0.99613

T = 0.75 0.99926 1 1 0.99728 0.98923

T = 0.80 0.99822 0.99832 0.99613 0.98850 0.96426

T = 0.85 0.98129 0.98390 0.95517 0.94587 0.85454

T = 0.88 0.94681 0.93291 0.85203 0.85757 0.65956

T = 0.90 0.89498 0.84190 0.68401 0.73281 0.45256

DFCV-2

T = 0.95 0.44482 0.07356 0.04179 0.03113 0.01400

T = 0.70 0.99905 0.99905 1 0.99989 0.99853

T = 0.75 0.99895 0.99895 0.99916 0.99874 0.99362

T = 0.80 0.99728 0.99770 0.99665 0.99090 0.97126

T = 0.85 0.98495 0.97857 0.96917 0.94440 0.85464

T = 0.88 0.96165 0.93166 0.86854 0.83699 0.68317

T = 0.90 0.91974 0.83479 0.70752 0.70961 0.47513

DFCV-3

T = 0.95 0.47450 0.08317 0.05057 0.03312 0.01400

T = 0.70 0.99989 1 1 0.99926 0.99937

T = 0.75 0.99885 1 1 0.99728 0.99571

T = 0.80 0.99791 0.99874 0.99686 0.98787 0.96468

T = 0.85 0.98390 0.97931 0.94806 0.95308 0.85318

T = 0.88 0.95224 0.91797 0.83667 0.86050 0.66112

T = 0.90 0.89592 0.81619 0.67450 0.71765 0.44524

DFCV-4

T = 0.95 0.44357 0.07481 0.04409 0.03448 0.01076
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Table A4. Cont.

Datasets Threshold Similarity (T) ResNet-50 ResNet-101 ResNet-152 VGG-16 VGG-19

T = 0.70 1 1 1 1 0.99738

T = 0.75 0.99979 1 1 0.99832 0.99258

T = 0.80 0.99770 1 0.99759 0.99310 0.97272

T = 0.85 0.98861 0.98150 0.96394 0.96123 0.87617

T = 0.88 0.96656 0.93364 0.86603 0.87398 0.69717

T = 0.90 0.91839 0.84535 0.71525 0.73103 0.47387

DFCV-5

T = 0.95 0.47021 0.08150 0.04660 0.02319 0.01076
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