Skip to main content
. 2022 Oct 31;10(11):2189. doi: 10.3390/healthcare10112189
Algorithm 1. Procedure of the proposed framework.
 Require: labeled dataset DL, unlabeled dataset DU
 Ensure: classifier M
1:  Construct and initialize class classifier M, encoder E, generator G, real/fake classifier D
2:  Train M, E, D, G with DL
3:  while not satisfy condition do
4:   randomly sample xbatch from DU
5:   calculate scorei  i  xbatch according to (13)
6:   select n sample with the highest score
7:   Dinc
8:   for x* in xre do
9:    query the label of x* from Oracle and get y* xre*G(E(x*))
10:    xre*G(E(x*))
11:     Dinc Dinc{(xre*,y*),(  x*,  y*)}
12:     DLDLDinc
13:   end for
14:   retrain M,E,D,C with DL by (2)–(8)
15:  return M