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W N e

Abstract: Estrogens are steroid hormones produced by the aromatization of androgens by the
aromatase enzyme, encoded by the CYP19A1 gene. Although generally referred to as “female sex
hormones”, estrogen is also produced in the adult testes of many mammals, including humans.
To better understand the function of estrogens in the male, we used the rabbit model which is an
important biomedical model. First, the expression of CYP19A1 transcripts was localized mainly in
meiotic germ cells. Thus, testicular estrogen appears to be produced inside the seminiferous tubules.
Next, the cells expressing ESR1 and ESR2 were identified, showing that estrogens could exert their
function on post-meiotic germ cells in the tubules and play a role during sperm maturation, since
ESR1 and ESR2 were detected in the cauda epididymis. Then, CRISPR/Cas9 CYP19A1~/~ genetically
modified rabbits were analyzed. CYP19A1~/~ males showed decreased fertility with lower sperm
count associated with hypo-spermatogenesis and lower spermatid number. Germ/sperm cell DNA
methylation was unchanged, while sperm parameters were affected as CYP19A1~/~ males exhibited
reduced sperm motility associated with increased flagellar defects. In conclusion, testicular estrogens
could be involved in the spermatocyte—spermatid transition in the testis, and in the acquisition of
sperm motility in the epididymis.

Keywords: CYP19A1 knock-out; male fertility; testicular estrogens; epididymis; spermatogenesis;
sperm maturation; DNA methylation

1. Introduction

Sex steroids are key reproductive system hormones in both sexes. Estrogens have
always been considered the female sex steroid hormones and androgens as their male
counterparts. This simplistic assessment remains accurate in different species of vertebrate
and for several developmental pathways such as ovarian development in non-mammalian
species in which estrogen plays a key role [1-5] or in the differentiation of internal and
external male genitalia of mammals for androgens [6]. However, it has been clear for
many decades that the situation is more complex; on the one hand because the synthesis
of estrogens is made from androgens, thus implying the presence, at least transitory, of
androgens in females, and on the other hand because estrogens are also produced by the
testes of mammals where their roles remain to be elucidated (for review see [7]).

Cytochrome P450 aromatase, encoded by the CYP19A1 gene, is responsible for the
irreversible conversion of androgens to estrogens. This enzyme is expressed in the adult
testes in mammals, but its cellular localization is highly variable depending on the species
and the laboratory of analyses (for review see [8]). Initially, the aromatase expression was
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described in Leydig cells in rats [9], pigs [10], stallions [11] or humans [12]. Its expression
in Sertoli cells was also observed in immature rat testes [13] and aromatase was finally
described in meiotic and post-meiotic germ cells of mice [14], rats [9] and humans [15].
Some studies even detected its expression in spermatozoa in pigs [16] and humans [15].

To promote their actions, estrogens are known to use two nuclear receptors ERot/ESR1
and ER[3/ESR?2, resulting in genomic effects; and a G-protein-coupled seven-transmembrane
receptor (GPER, G-Protein Estrogen coupled Receptor) causing rapid non-genomic effects.
On the base of the literature, ERs expression can be detected in all testicular cell types
although the results often differ between species and studies (reviewed in details by [17]).
For example, in the human testis, ESR1 expression has been described in Leydig cells [18],
or in spermatogonia, spermatocytes and round spermatids [19], or in Leydig, Sertoli and
germ cells [20]. This variability of results can be explained by the existence of ER variants
(spliced isoforms [21]), other proteins that share homology with classical ER, or by the
methodologies and antibodies used.

The importance of estrogen signaling in the male fertility has been indicated by the
adverse effects of estrogen-like compounds and their interaction with estrogen receptors,
which have been shown to cause pathologies. In rats, nuclear receptor overstimulation
experiments revealed the presumed role of estrogens in spermatogenesis. Treatment with
an ESR1 agonist impaired the formation of elongated spermatids, while administration of
an ESR2 agonist induced spermatocyte apoptosis and spermiation failure both leading to
reduced sperm count [22]. In addition, overexposure to estrogen during spermatogenesis
resulted in epigenetic defects in sperm, such as increased histone retention (ESR1 agonist)
and decreased DNA methylation (ESR2 agonist) [23,24].

On the other hand, gene modification experiments carried out in mice tend to show
that estrogens, in the testes and male genital tract, act mainly via the ESR1 receptor. Indeed,
data on ESR2 functions in the male tract are still controversial in mice, since some showed
normal Esr2~/~ male fertility [25], while others described infertility of unknown origin [26].
In addition, mice deficient for the membrane receptor (Gper—/~) are fertile and show
no particular phenotype [27]. On the contrary, a complete infertility was described in
male Esr1~/~ [28]. Early in their reproductive life, Esr1~/~ males showed testes with
disorganized seminiferous epithelium and dilated lumen. While sperm counts were normal
in Esr1~/~ males, spermatozoa presented reduced motility (flagellar defects) [28-30] and
were ineffective in in vitro fertilization (premature acrosomal reaction in mutants) [28,30].
The latter phenotypes appeared to be related to epididymal dysfunctions, and alterations
of the epididymal fluid milieu were observed in Esr1~/~ mice [29].

Genetic modifications or mutations affecting estrogen production have also been
reported. In mice, in the absence of aromatase in males (Cyp19a1~/~ or ArKO), normal
testicular morphology was observed up to 14 weeks, with no signs of infertility. Then, a
progressive alteration of spermiogenesis was reported, leading to an increase in apoptosis
of round spermatids and degeneration of the seminiferous epithelium: the ArKO mice
became infertile with advancing age [31,32]. In humans, aromatase mutations are extremely
rare conditions. In these patients, there are no consistent findings regarding the testicular
phenotype (review in [33]). Nevertheless, when semen collection could be done, oligo-
azoospermia and reduced sperm motility were observed [34,35].

The rabbit is an important biomedical model that could help to better understand
the function of this testicular estrogen production for spermatogenesis. Thus, we first
described CYP19A1, ESR1 and ESR2 expression in the testis and epididymis of adult rabbits.
We showed that estrogens are exclusively produced by germ cells, mainly pachytene
spermatocytes. Both ESR1 and ESR2 were expressed by round spermatids. Additionally,
these receptors were detected in the epididymis, mainly the cauda, where estrogen could be
measured. Then, taking advantage of the CYP19A1 mutant rabbit model created by our
laboratory [36], we investigated the effects of estrogen deprivation on testes and sperm
production in this species. First, a slight decrease in fertility was observed in homozygous
mutant males. Then, abnormalities of the seminiferous epithelium were observed, which
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were related to impaired spermatogenesis and led to a lower sperm count. Finally, sperm
motility was affected and sperm morphological abnormalities were increased in mutant
males suffering from estrogen deprivation.

2. Materials and Methods
2.1. Animals

New Zealand rabbits (NZ1777, Hypharm, Rousssay, France) were bred at the SAA]
rabbit facility (Jouy-en-Josas, France). All experiments were performed with the approval
of the French Ministry MENESR (accreditation number APAFIS#6775-2016091911407980
vl) following the recommendation given by the local committee for ethic in animal experi-
mentation (COMETHEA, Jouy-en-Josas). All researchers working directly with the animals
possessed an animal experimentation license delivered by the French veterinary services.
Three independent lines of CYP19A1 mutant rabbits have been generated [36], and two of
them were used in this study, since no phenotypical differences were observed.

From sexual maturity (6 months), heterozygous CYP19A1*/~ and homozygous
CYP19A1~/~ males were mated with heterozygous CYP19A1*/~ females, while control
males and females were mated together. The number of mating with or without birth per
male, as well as the number of pups per litter was monitored.

2.2. Histological and Immunohistological Analyses

Immediately after sampling, pieces of adult testes were immersed in Bouin’s fixative or
paraformaldehyde (4% PFA in PBS 1x), fixed for 72 h then paraffin embedded. Microtome
sections of 5 um thickness were processed. Periodic Acid Schiff (PAS) colorations were
performed by the @Bridge platform (INRAE, Jouy-en-Josas, France) using an automatic
Varistain Slide Stainer (Thermo Fisher Scientific, France).

In situ hybridization (ISH) was performed using the RNAscope ISH methodology
(ACD, Bio-Techne SAS, Rennes, France) as previously described [36]. The CYP19A1, ESR1
and ESR2 probes that were used were those published previously [36]. Hybridization was
performed on 5um sections from PFA fixed tissue using labelling kits (RN Ascope 2.5HD
assay-brown (conjugated to horse radish peroxidase)) as recommended by the manufacturer.
Hybridization was considered as positive when at least one dot was observed in one cell.
All colored sections (visible) were scanned using a 3SDHISTECH panoramic scanner at the
@Bridge platform (INRAE, Jouy-en-Josas, France).

Immunofluorescence was performed on rehydrated sections, where epitope retrieval
was performed with citrate-based unmasking solution in a pressure cooker. DNA was
then denatured 15 min with HCI 2N, and sections were permeabilized by incubation with
0.5% Triton, 1% BSA for 1h30. After an overnight incubation at 4 °C with the primary
antibodies (anti-5mC, Eurogentec, ref BI-MECY-0100, 1/500; anti-5hmC, Active Motif,
ref 39569, 1/500), and a 1-h incubation at room temperature with secondary antibodies
(Dylight 488 anti-mouse, KPL, ref 072-03-18-06, 1/200; anti-rabbit AlexaFluor 488, Life
Technologies, ref A21441, 1/200), slides were mounted in Vectashield mounting medium
(Vector, Eurobio Scientific, France) containing DAPI and images were acquired with a DP50
CCD camera (Olympus, France).

2.3. RNA Extraction and RT-gPCR Analyses

The testis and epididymis (head and cauda) from adult rabbits were collected and im-
mediately frozen at —80 °C. Total RNA from each sample was extracted using the RNeasy®
MicroKit (Qiagen, France). Quantitative PCR was performed on reverse transcribed RNAs
(High-Capacity Reverse cDNA Transcription kit with the included set of random primers,
Applied Biosystems, ThermoFisher Scientific, France). Based on the output of the GeNorm
program, we used H2AFX, YWHAZ and SF1 (Splicing Factor 1) as the reference genes for
this study (Table 1). The results were analyzed with qBase Software (qbase+, Biogazelle,
France) [37].
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Table 1. Primers used by RT-qPCR.
Gene Name Forward Primer Reverse Primer
H2AFX ACCTGACGGCCGAGATCCT CGCCCAGCAGCTTGTTGAG
YWHAZ GGGTCTGGCCCTTAACTTCTCT AGCAATGGCTTCATCAAAAGC
SF1 GCTTCCGACTGCAAATTCCA TCACCCAGTTCAGCCATGAG
CYP19A1 GGAAGAATGCATCGACTTGAGTT GGGCCCAAAACCAAATGGT
ESR1 TCCTCATCCTCTCCCACATC AGCATCTCCAGCAACAGGTC
ESR2 CTCACCAAGCTGGCTGACAA AGAGGCGCACTTGGTCCAA
SYCP3 AAAAGAAATGGCCATGTTGCA GAGTCATCAAAGTAACACGGATTGAA
PRM1 CCAGAGGCGAAGAGTCAGGAA TCTGGTGGGTCTGCTGTTCTGT

2.4. Measurement of Estradiol, Testosterone and DHEA Hormone Levels in Testis and Epididymis
of Adult Rabbits

Estradiol, testosterone and DHEA were assayed by GC/MS according to the protocol
described by [38] with modifications [39]. Sample extraction and purification, derivatization
and determination of steroid levels in testes and epididymides from adult rabbits are
described in [36] or can be provided upon request.

2.5. Semen Collection and Sperm Parameter Analyses (CASA)

Semen of rabbits from the different genotypes were collected using a specially designed
artificial vagina. Two successive samplings were performed when possible for each animal.
The ejaculate volume was estimated by pipetting and sperm was then immediately diluted
in GALAP media (IMV Technologies, France) which was specifically designed for the
conservation of rabbit semen. Each diluted sample was incubated 10 min at 37 °C before
analyzing sperm parameters using a CASA Hamilton Thorne IVOS II (Hamilton Thorne,
France) device with the x 10 objective.

2.6. Luminometric Methylation Assay (LUMA)

DNA extraction from sperm samples was performed as described in [40]. Global DNA
methylation levels were quantified using LUMA [41]. Briefly, 1 ug of genomic DNA was
cleaved using the isoschizomers Hpall (methylation sensitive) and Mspl (non-methylation-
sensitive) in two separate reactions and in the presence of EcoRI to standardize for DNA
amounts (New England Biolabs, France). The protruding ends were then used as templates
for pyrosequencing with the Pyromark Q24 device and Pyromark Gold Q96 reagents
(Qiagen). The luminometric signals produced by either the sequential incorporation of C
and G nucleotides (reflecting the number of CCGG sites digested by Hpall or Mspl) or
the sequential incorporation of A and T nucleotides (reflecting the number of AATT sites
digested by EcoRI), were then quantified using Pyromark Q24 software (Qiagen, France).
Each sample was assayed in duplicate.

The global methylation percentage per sample was then calculated as follows:
Methylation% = [100 — (Average signal obtained with Hpall after EcoRI normaliza-
tion/ Average signal obtained with MspI after EcoRI normalization)] x 100

2.7. Statistics

The statistical analyses were performed using the GraphPad Prism 7 Software (Graph-
Pad Software Inc., La Jolla, CA, USA). Because of the small number of samples in groups,
comparisons between values were made by the Mann-Whitney test for non-parametric
values. A probability lower than 0.05 was required for significance.

3. Results
3.1. Localization of CYP19A1/Aromatase and ESRs Expression in the Rabbit Testis and Epididymis
To decipher which testicular cell type expressed the CYP19A1 gene and thus, were

able to produce estrogens, we carried on in situ hybridization by using the RNAscope tech-
nology, giving reproducible results on rabbit gonads [36] (Figure 1). Aromatase expression
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was detected inside the seminiferous tubules, mainly in germ cells with a large nucleus
and which seemed to correspond to pachytene spermatocytes (Figure 1A). In addition, to
determine which cell types could respond to estrogens in the seminiferous compartment,
probes corresponding to estrogen receptors ESR1 and ESR2 were used. The expression
of both estrogen receptor mRNAs was attested into the seminiferous tubules and was
restricted to the round spermatids, with a stronger labelling for ESR1 (Figure 1B).
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Cauda epididymis

Figure 1. CYP19A1 and estrogen receptors expression in the testis and epididymis of adult rabbits.
(A) Location of CYP19A1 expression by in situ hybridization (RNAscope technology) in the adult
testis. (B) Location of ESR1 and ESR2 expression by in situ hybridization in the testis and the cauda
epididymis. (C) Relative expression levels of CYP19A1, ESR1 and ESR2 analyzed by RT-qPCR in the
adult testis and epididymis (caput and cauda). Testis n = 4; Epididymis n = 4.

The expression level of both aromatase and estrogen receptors transcripts was studied
and compared within testes and epididymides (caput and cauda) by RT-qPCR (Figure 1C).
Although CYP19A1 expression was restricted to the testis, ESR1 expression was strongly
detected in the testis and in the tail of the epididymis (cauda). ESR2 expression was also
observed in testes, and was faintly detected in both the head and the tail of the epididymis.
However, in situ hybridization failed to detect ESR2 (or ESR1) expression in the caput
epididymis (Figure 1B). On the contrary, strong staining was obtained in the mesenchyma
with ESR1 probe and a faint staining for ESR2 in the epithelial cells of the cauda epididymis.
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3.2. CYP19A1 Gene-Targeting in Rabbits Efficiently Suppresses Testicular Estrogen Secretion

We have previously established three strains of genetically modified rabbits carrying
deletions of exon 2 (including the initiator ATG codon) of the CYPI9A1 gene. These
rabbit strains were initially created to evaluate the role of fetal estrogens produced by
early developing ovaries (i.e.,: before meiosis initiation in the germinal lineage) in a non-
rodent mammalian species [36]. To confirm that knocking out CYP19A1 in male really led to
testicular estrogen deprivation, we measured estrogen concentrations in CYP19A1~/~ testes
in comparison with wild type ones (Figure 2A). As expected, consistent with estrogen assays
performed for their female counterparts [36], no testicular estrogen remained detectable in
mutant gonads compared to wild type ones where the median 17(3-Estradiol value was
about 55 pg/g of tissue. Even if testicular estrogen production was abolished, testosterone
and dehydroepiandrosterone (DHEA) concentrations remained similar between mutant
and wild type testes with, respectively, around 9 ng/g and 40 ng/g (median values) in each
condition (Figure 2A). These results confirm that the deletions engineered on CYP19A1
exon 2 in the three rabbit lines efficiently suppressed aromatase activity and estrogen
secretion as previously demonstrated in females [36].
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Figure 2. Steroid levels in the testis and epididymis in adults. (A) Dosage of 173-estradiol (E2), testos-
terone and DHEA concentrations in control and CYP19A1~/~ adult testes by GC/MS. (B) Dosage of
17B3-estradiol (E2) in the head and the tail of epididymis. Control n = 4 to 6; CYP19A1~/~ n=5. The
median is shown in red. ND: not detected. Mann-Whitney test: p-value < 0.05. ns: non-significant.

We have previously shown that estrogens are produced in the seminiferous tubules.
Due to the presence of the blood-testis barrier, estrogens were expected to circulate through
the efferent ducts and epididymides. 17f3-Estradiol levels were thus measured in the
epididymides, showing 25 pg/g and 20 pg/g as median values in the head and the tail

of the epididymis, respectively (Figure 2B). No estrogen could be detected in CYP19A1
homozygous mutant epididymides.
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3.3. CYP19A1 Knockout Male Rabbits Show Subfertility Parameters

During our previous study on CYP19A1~/~ fetal ovary [36], spanning 8 years, CYP19A1
genetically modified male rabbits from three different strains were mated with heterozy-
gous females (CYP19A1*/~) to expand the lines and produce biological materials. Ei-
ther heterozygous carrier males (XY CYP19A1*/~) or homozygous mutant males (XY
CYP19A1~/~) were used. Interestingly, a slight subfertility of homozygous mutant males
compared to heterozygous carrier ones was observed on two recorded parameters. First,
the percentage of mating without birth was increased when using homozygous mutant
males (58.9%) compared to heterozygous carrier males (32.3%) or control rabbits (35.5%)
(Figure 3A). Secondly, when mating was successful, the recorded litter size was statistically
reduced, as the number of pups per litter dropped from 7.9 (& 3.3) to 6 (£ 2.8) by using
heterozygous or homozygous mutant males, respectively (Figure 3B,C).

A
Control males x CYP19A1*~ males x | CYP19A1""males x
Control females CYP19A1"" females | CYP19A1"" females
Matings with birth 20 (64.5%) 44 (67.7%) 58 (41.1%)
Matings without birth 11 (35.5%) 21 (32.3%) 83 (58.9%)
'Total number of matings 31 65 141

B
Control males x CYP19A1*" males x | CYP19A1™~ males x
Control females | CYP19A1"" females | CYP19A1" females
Number of different males 10 13 18
Number of different females 13 25 38
Total number of litters 20 44 58
Total number of pups 156 349 349
IAverage number of pups per litter 7825 79%33 6+£28
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Figure 3. Effect of the CYP19A1 gene knock-out on the male fertility. (A) Number of successful and
unsuccessful mating, depending on the genotype of the parents. (B) Number of different males and
females used and pups per litter depending on the genotype. (C) Number of pups per litter obtained
by crossing heterozygous females with heterozygous (CYP19A1*/~) or homozygous (CYP19A1~/~)
males. The median is shown in red. Mann-Whitney test: ** p < 0.01.
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3.4. Absence of Testicular Estrogens Leads to Spermatogenesis Defects

The effects of estrogen deficiency on testicular morphogenesis and function were
evaluated in 2- to 3-year-old rabbits. Histological analyses of the testes showed some
abnormal seminiferous tubules in the homozygous mutants (Figure 4A-F). These were
found clustered in a few testicular lobules or scattered through the testis (Figure 4C and D
and Figure 4E and F, respectively). In these abnormal tubules, the thickness of the seminif-
erous epithelium was reduced, and the lumen appeared larger: a drastic decrease in the
spermatid layer was observed.

A PAS staining

Control testis

CYP19A1 - testis

Figure 4. Spermatogenesis defects in absence of estrogen production. (A,B) PAS staining on control
testis. (C,F) PAS staining on CYP19A1~/~ testis from two different rabbits (C-F). Males are 2 to

3 years old.

The expression levels of the markers of spermatocytes I (SYCP3) and spermatids
(PRM1, Protamine 1) were evaluated and indeed showed that the fraction of spermatids
could be affected in the mutants because the mRNA levels of PRM1 were diminished
(p-Value = 0.02) (Figure 5A,B). Consistent with spermatogenesis abnormalities, testis to
body weight ratio was found to be significantly lower in CYP19A1~/~ males compared to
control ones (Figure 5C). In addition, total sperm number was estimated using the IVOS
II CASA system (computer assisted sperm analysis), showing that the sperm count was
significantly decreased in absence of estrogen synthesis (Figure 5D).
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Figure 5. Hypo-spermatogenesis in CYP19A1~/~ males. (A,B) RT-qPCR analyses of mRNA levels of
SYCP3 and PRM1 in control and CYP19A1~/~ adult testis (n = 5 for each genotype). (C) Testis on
body weight ratio in control and CYP19A1 ~/= rabbits. Control, n = 6; CYP19A1~/~ n =5. The median
is shown in red. (D) Total sperm counts per million per ejaculated sample in control and CYP19A1~/~
rabbits. Control, n = 10; CYP19A1~/~ n = 5. Dots represent the average of two successive semen
collections per animal. For CYP19A1~/~ rabbits, three sets of two successive ejaculations were
collected over a one-year interval. The median is shown in red. Mann—-Whitney test: * p-value < 0.05.
*** p-Value < 0.0005. ns: non-significant.

3.5. Absence of Testicular Estrogens Has No Impact on Germ Cell DNA Methylation

Since estrogen receptor over activation has been linked to epigenetic modifications [24],
we were interested in the DNA methylation of germ cells. Nevertheless, immunoflu-
orescence studies of the deposition of 5-methyl Cytosine (DNA methylation) or the 5-
hydroxymethyl Cytosine (DNA hydroxymethylation, i.e., DNA demethylation) showed
no difference between control and CYP19A1~/~ testes (Figure 6A). In addition, the DNA
methylation rate of ejaculated sperm was determined by luminometric methylation assay
(LUMA). The percentage of DNA methylation, around 70%, was found identical between
sperm from control and mutant rabbits (Figure 6B), suggesting that if estrogen plays a
role in epigenetics of the male gamete, this might not have been detected by global DNA
methylation assessment.
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Figure 6. DNA methylation in the testis and sperm in absence of estrogen synthesis. (A) Immunode-
tection of 5mC and 5hmC in control and CYP19A1~/~ testis (green). Nuclei were stained in blue
(DAPI). (B) Percentage of sperm DNA methylation from control and CYP19A1~/~ male rabbits deter-
mined by Luminometric Methylation Assay (LUMA). The median is shown in red. Mann-Whitney

test: nonsignificant.

3.6. Absence of Testicular Estrogen Leads to Sperm Defects

In order to better understand the subfertility of CYP19A1~/~ males, the sperm param-
eters of mutant and control rabbits were evaluated using the IVOS II CASA system on
ejaculated sperm. Of the parameters assessed by this procedure, six were found statistically
divergent between control and mutant sperm (Figure 7A-F). First, we noticed a decrease in
total (from 90% to 55%) and progressive (from 60% to 30%) sperm motility in mutant rabbits
(Figure 7A,B). Second, the mutants displayed increased sperm malformations such as bent
tails and Distal Midpiece Reflex curvatures (DMR) (Figure 7C,D). Finally, the spermatozoa
from mutant animals retained more proximal and distal (Figure 7E,F) cytoplasmic droplets
than the control sperm, suggesting an imperfect maturation of the gametes during their
transit in the epididymis [42].
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Figure 7. Spermatic parameters in control and CYP19A1~/~ rabbits. Motility and morphometric
parameters of the sperm from control and CYP19A1~/~ rabbits were obtained by Computer Assisted
Sperm Analysis. Percentages of (A) total motility and (B) progressive motility of the sperm were
decreased in mutants. Percentages of (C) bent tails and (D) Distal Midpiece Reflex were increased
in CYP19A1~/~ semen, together with (E) proximal droplets and (F) distal droplets. Dots represent
the average of two successive semen collections per animal. For CYP19A1~/~ rabbits, three sets
of two successive ejaculations were collected over a one-year interval. The median is shown in
red. Control n = 10; CYP19A1 ~/~ n = 5. Mann-Whitney test: * p-Value < 0.05; ** p-Value < 0.005;
*** p-Value < 0.0005.

4. Discussion

In rabbits, the production of estrogen by the adult testes is strictly limited to the germ
cells inside the seminiferous tubules: mainly to the meiotic germ cells (pachytene sper-
matocytes). While the location of aromatase expression differs according to the published
studies, several of them are concordant on this point in rodents and in humans [9,14,15].
Thus, because of the blood-testis barrier established in the tubules, testicular estrogens
should not pass through the general circulation in rabbits, but rather have a local function
on the germ cells themselves, or on the male genital tract. Accordingly, 17p-Estradiol
could be measured in the head and the tail of epididymis, showing that testicular estrogens
diffuse into the fluid during the epididymal transit.

4.1. Testicular Estrogens Are Involved in Germ Cells Differentiation

In the testis, both ESR1 and ESR2 receptor mRNAs were detected in round spermatids,
suggesting that estrogens may have a role on post-meiotic germ cells. Accordingly, hypo-
spermatogenesis has been observed in homozygous CYP19A1~/~ mutant males, with
some testicular lobules showing thinner seminiferous epithelium, with a lack of round
spermatids, as described in the ArKO mouse model [31,32]. In the rat, overstimulation of
ESR1 or ESR2 leads to spermiogenesis defects [22]. Thus, a lack or an excess of estrogens
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may impact spermatid differentiation. Additionally, epigenetic defects in the spermatids
have been reported when estrogen receptors were overstimulated [23,24]. Nevertheless, in
this present study, we could not detect any changes in DNA methylation in the absence of
estrogen. This may be related to the use of inappropriate methods, but estrogen might also
not be involved in epigenetic reprograming in normal situations.

In humans, loss-of-function mutations affecting CYP19A1/ Aromatase gene are very
rare and poorly documented. In one reported case, the authors described abnormal skeletal
growth and bone maturation in a male patient, which were associated with testicular
hypoplasia and infertility [35]. The initiation of a replacement therapy by daily injection
of estrogens restored the bone/skeletal phenotype, but had no effect on the testicles or
fertility disorders. This last aspect could be linked to the fact that estrogens must be
produced locally in the seminiferous tubules in order to be able to act on the differentiation
of germ cells. In addition, a testicular biopsy, performed in this patient, revealed hypo-
spermatogenesis and an arrest of germ differentiation, mainly at the level of primary
spermatocytes [35]. This phenotype is close to that observed in rabbits, where round
spermatids were rare in some tubules of the CYP19A1~/~ males, suggesting either that
estrogens are necessary for their differentiation or maintenance, or that estrogens may
be involved in the completion of meiosis. Interestingly, overexposure to estrogen or BPA
has the same impact on spermatogenesis, with meiotic progression being defective and
stopping at the pachytene stage [43]. In the present study, in rabbits deficient for aromatase,
PRM1 mRNAs levels were found to be decreased which could reflect spermiation disorder
or could be an additional clue to consider the function of estrogens on meiotic process.
Further investigations involving high throughput transcriptome sequencing may highlight
the potential implication of estrogens into meiosis in males.

4.2. Testicular Estrogens Are Involved in Sperm Production, Maturation and Motility

As a consequence of the described defect in spermatogenesis, mild but significant
testicular hypoplasia was observed in CYP19A1~/~ rabbits and the number of ejaculated
spermatozoa decreased. These animals presented slight subfertility with conception diffi-
culties (mating without birth), as well as a decrease in the number of offspring. In addition
of a decrease in sperm count, an increase in sperm abnormalities was observed. First, like
in humans [34,35] and mice [29,31,32], sperm motility was affected, with a 50% reduction
in the progressive motility in CYP19A1~/~ compared to control males. Then, related to
the motility defects, increased percentages of flagellar abnormalities were noted, including
bent tail and Distal Midpiece Reflex (DMR) which were doubled in mutants. In addition,
proportion of sperm with cytoplasmic residual droplets was increased. These last pheno-
types could be related to sperm maturation trouble in the epididymis, where sperm motility
is acquired. In particular, the cytoplasmic droplet is expected to migrate caudally along the
sperm during epididymal transit, and this droplet has been implicated in affecting some
biochemical aspects of motility [44]. Some signaling pathways have been associated with
sperm motility, and evidence suggests that sperm may have functional flagellar machinery
that is activated during epididymal transit [44]. Indeed, in the epididymis, sperm undergo
protein changes. As sperm are translationally silent, proteins appearing in them are thought
to be synthesized by the epididymal epithelium and then incorporated to the sperm cells,
thanks to exosomes for instance, called epididymosomes [45]. ESR1 and ESR2 receptor
mRNAs were both detected in the epididymis of male rabbits, mainly in the tail, where
estrogens seem thus to exert their functions. In particular, ESR2 transcripts were found in
the epithelial cells, which are supposed to secrete epididymosomes. Additional analyses
on the transcriptomes and proteomes of mutant epididymides could provide clues to better
understand how estrogen pathway dysfunctions impact sperm maturation and motility.

5. Conclusions

In the rabbit, testicular estrogens are produced inside the seminiferous tubules, mainly
by meiotic germ cells. They play two main roles in promoting the fertility of the male ga-
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mete: (i) on germ cells and their progression in spermatogenesis; (ii) on the epididymis and
indirectly on sperm maturation and motility acquisition. The phenotype of the CYP19AT~/~
rabbits is very similar to the rare cases of aromatase mutations reported in humans, making
the rabbit a relevant biomedical model for understanding and preventing male fertility.
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