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Abstract: Desmoglein 2 (DSG2) is overexpressed in many epithelial cancers and therefore represents
a target receptor for oncolytic viruses, including Ad5/3-based viruses. For most Ad serotypes, the
receptor-binding fiber is composed of tail, shaft, and knob domains. Here, we investigated the
role of the fiber shaft in Ad5/3 tumor transduction in vitro and in human DSG2-transgenic mice
carrying human DSG2high tumors. DSG2tg mice express DSG2 in a pattern similar to humans. We
constructed Ad5/3L (with the “long” Ad5 shaft) and Ad5/3S (with the “short” Ad3 shaft) expressing
GFP or luciferase. In in vitro studies we found that coagulation factor X, which is known to mediate
undesired hepatocyte transduction of Ad5, enhances the transduction of Ad5/3(L), but not the
transduction of Ad5/3(S). We therefore hypothesized that Ad5/3(S) would target DSG2high tumors
while sparing the liver after intravenous injection. In vivo imaging studies for luciferase and analysis
of luciferase activity in isolated organs, showed that Ad5/3(L) vectors efficiently transduced DSG2high

tumors and liver but not normal epithelial tissues after intravenous injection. Ad5/3(S) showed
minimal liver transduction, however it failed to transduce DSG2high tumors. Further modifications
of the Ad5/3(S) capsid are required to compensate for the lower infectivity of Ad5/3(S) vectors.
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1. Introduction

Currently, there are more than 104 human adenoviruses (Ads) in seven species (A to
G) [1,2]. For most Ads, infection involves the high affinity/avidity binding of the fiber
knob to a cellular attachment receptor followed by a second interaction between the viral
penton base with cellular integrins, which triggers the internalization of attached virions.
A subgroup of species B Ads, including serotype 3 (Ad3), uses desmoglein 2 (DSG2) as
a receptor [3]. DSG2 is best known as an integral component of epithelial junctions [4].
DSG2 is overexpressed and a predictor of poor prognosis in multiple types of cancer, in-
cluding skin [5,6], non-small cell lung cancer [7], lung adenocarcinoma [8,9], hepatocellular
carcinoma [10], ovarian cancer [11], and gastric cancer [12], indicating that tumors take
advantage of DSG2 overexpression as a means of forming tight physical barriers and con-
tributing to resistance against therapeutics [13,14]. Based on this, DSG2-interacting Ad
vectors were developed for oncolytic virus therapy. For more than a decade, chimeric Ad
vectors that possess the serotype 5 (Ad5) fiber shaft and Ad3 knob (Ad5/3), have been used
for cancer therapy in humans with a very good efficacy and an acceptable safety profile
after intravenous injection [15–18]. More recently, clinical studies with oncolytic vectors
based completely on Ad3 have been performed [19].

The fiber knob largely determines the receptor tropism of adenoviruses. In the case
of Ad5/3 vectors, the substitution of the Ad5 knob by the Ad3 knob domain switches the
tropism of the vector from the Coxsackie-adenovirus receptor (CAR) to DSG2. However,
among the human Ad serotypes with different tissue tropisms, not only the knob, but also
the length of the fiber shaft domain, varies significantly. The rod-like fiber shaft contains
repeats of up to 14 amino acids forming β sheets, with the number of repeats ranging from
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6 (in Ad3, Ad11, and Ad35) to 23 (in Ad12) [20]. Ad3 has six shaft motifs and a length of
~7 nm. Ad5 has 22 motifs and a length of 37 nm. The length of the fiber shaft has to be seen
in the context of the knob and penton binding to cells. Electron microscopy studies of Ad5
fibers revealed a bend in the fiber shaft that is thought to be facilitated by a four amino acid
(KKTK) insertion into the short linker between β-strands of the third β-repeat It is thought
that the flexibility of the Ad5 shaft allows for the simultaneous binding of CAR by the fiber
knob and multiple αv integrins by the Ad5 penton base [21]. In contrast, for the Ad3 fiber,
the insertion of two residues in the third repeat is not sufficient for fiber flexibility [22,23].
It is thought that for Ad3 infection, DSG2 is flexible enough, so it can interact with the Ad3
fiber knob [24]. Notably, CryoEM studies of the Ad3 fiber knob–DSG2 complex reveals a
unique stoichiometry of 1:1 and 2:1 (DSG2: knob trimer), not previously observed for other
adenovirus–receptor (e.g., CAR and CD46) complexes [25].

The nature of the high-affinity binding receptor can affect the infection of long (Ad5)
and short (Ad3 or Ad35)-shafted vectors. Studies with Ad5 vectors containing the CAR-
binding Ad5 fiber knob and either the native (long) Ad5 fiber shaft or the (short) Ad3 fiber
shaft showed that infectivity of the short-shafted Ad5 vectors was 20- or 4-fold less by
plaque assay or GFP expression in 293 cells, respectively [26]. However, no differences
in in vitro infectivity were observed for short- or long-shafted, CD46-interacting Ad5/35
vectors [26]. The influence of the fiber shaft length on infection of DSG2-targeting Ad5/3
vectors has not been studied so far.

Previously, we found that intravenously injected short-shafted Ad5/35 vectors did
not efficiently transduce liver but targeted metastatic tumors that express CD46 at levels
comparable to human xenograft tumors [26]. Along this line, no efficient liver transduction
with short-shafted Ad5/35 vectors was found in baboons after intravenous injection [27].
The findings that short-shafted Ad5 and Ad5/35 vectors have reduced liver transduction
was confirmed by a number of other groups [28–30]. In contrast, intravenous injection of
Ad5/35 vectors containing the long Ad5 fiber shaft resulted in undesired transduction of
hepatocytes in mice [31]. Subsequent studies found that hepatocyte transduction of Ad5
vectors was mediated by vitamin K-dependent blood coagulation factors that bind to the
Ad5 hexon [31,32].

Based on the findings with short-shafted Ad5/35 vectors, we hypothesized that the
use of short-shafted, DSG2-targeting Ad5/3 vectors would efficiently transduce DSG2high

tumors while sparing the liver after intravenous injection into an adequate human DSG2-
transgenic (DSG2tg) mouse model. This hypothesis is, in part, supported by observations
that oncolytic vectors completely derived from Ad3 (and containing the original short Ad3
fiber shaft) displayed remarkable anti-tumor efficacy and good safety [19,33,34].

2. Materials and Methods

Recombinant proteins: Recombinant human DSG2 protein was from Leinco Technolo-
gies, Inc. (St. Louis, MO, USA). The recombinant Ad3 fiber knob (JO4) was produced
in Escherichia coli with N-terminal 6-His tags using the pQE30 expression vector (Qiagen,
Valencia, CA, USA) and purified by nickel–nitrilotriacetic acid agarose chromatography
as described elsewhere [35]. Human factor X was from Haematologic Technologies (Essex
Junction, VT, USA) (HCX-0050, lot T1206).

Adenovirus vectors: The construction of Ad5/3L-GFP and Ad5/3S-GFP was described
earlier [36]. Viral particle (VP) concentrations were determined spectrophotometrically by
measuring the optical density at 260 nm (OD260). Titers of plaque-forming units (pfu) were
performed using 293 cells as described elsewhere [35]. The VP/PFU ratio was 20:1 for all
virus preparations.

Cells: Colon cancer T84 cells (ATCC CCL-248) were cultured in a 1:1 mixture of
Ham’s F12 medium and DMEM, 10% FBS, Glu, and Pen-Strep. To achieve cell polarization,
2 × 105 T84 cells were cultured in 6.5-mm Transwell inserts (0.4-µm pore size) (Costar
Transwell Clears, Corning, New York, NY, USA) for more than 20 days until transepithe-
lial resistance was stable. To create TC1-hDSG2 cells, TC1 cells were transduced with a
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lentivirus vector expressing the human DSG2 cDNA under the control of the EF1α pro-
moter [3]. hDSG2high cells were isolated by a fluorescence-activated cell sorter (FACS)
one week later. CHO-K1 (heparan sulfate proteoglycan [HSPG] expressing cells; ATCC
CCL-61) and CHO-E606 (HSPG-negative cells; ATCC CCL-61) were from the American
Type Culture Collection. CHO cells were cultured in a minimal essential medium (MEM)
supplemented with 10% FBS, 200 mM asparagine, and 200 mM proline.

Luciferase assay: Luciferase activity in cell and tissue lysates was measured using the
Promega luciferase assay kit in a 96-well plate luminometer. Cells were lysed using the
reagent lysis buffer provided by the manufacturer. Tissue homogenates were submitted to
three freeze–thaw cycles and then centrifuged. For all organs, 20 µL of lysate were used
per well for measurement of luciferase and total protein.

Competition of Ad5/3-GFP(S) and Ad5/3-GFP(L) by recombinant Ad3 fiber knob (JO4)
or rDSG2. Colon cancer T84 cells were incubated with 20 µg/mL of the proteins for 1 h
before viruses were added at a multiplicity of infection (MOI) of 150 pfu/cell. After 1 h of
infection, the medium was replaced and GFP expression was analyzed 20 h later.

In vitro transduction studies with Factor X. The day before infection, 3 × 105 CHO
cells were seeded per well (24-well plate). The next day, attached cells were counted and
virus was added at the indicated MOI in 1 mL of growth medium containing FCS either
with or without human factor X (8 µg/mL). After 2 h of incubation with Ad vectors, the
medium was removed, and cells were washed. Luciferase was measured after 24 h of
incubation in complete medium.

Analysis of intracellular trafficking. The workflow to measure attachment, internal-
ization, and nuclear transport of viral particles is shown in Figure S1. A Nuclear Extraction
Kit from abcam (ab113474) (Cambridge, UK) was used. Virions were measured based on vi-
ral genomes, which were quantified by qPCR as follows: Total genomic DNA (gDNA) was
extracted by using Quick-DNA miniprep kit (Zymo Research, Irvine, CA, USA) following
the manufacturer’s instructions. gDNA samples were analyzed for vector copy numbers
(VCN) with the following primers: GFP forward: TCGTGACCACCCTGACCTAC, GFP
reverse: GGTCTTGTAGTTGCCGTCGT, human GAPDH forward: caaattccatggcaccgtca,
human GAPDH reverse: tcctagttgcctccccaaag. qPCR was performed using the Power SYBR
Green PCR Master Mix (Thermo Fisher Scientific, Waltham, MA, USA). Each reaction
was run in triplicate. Serial dilutions of purified Ad5/3-GFP viral DNA diluted in gDNA
extracted from control cells were used for a standard curve.

Immunofluorescence analysis of TC1-DSG2 tumor sections: Frozen OCT sections
were fixed with methanol-acetone (1:1) and incubated with antibodies: rabbit claudin
7 (abcam), mouse monoclonal antibody anti-DSG2 (clone 6D8; Cell Sciences, Canton,
MA), rabbit CD31 (abcam), rabbit anti-laminin (abcam). Images were taken by a Leica
DMLB microscope (Wetzlar, Germany), using a Leica DFC300FX digital camera and Leica
Application Suite version 2.4.1 R1 software (Leica, Heerbrugg, Germany).

Animal studies. These studies were carried out in strict accordance with the recom-
mendations in the Guide for the Care and Use of Laboratory Animals of the National
Institutes of Health. The protocol was approved by the Institutional Animal Care and Use
Committee of the University of Washington, Seattle, WA (Protocol: 3108–01). Mice were
housed in specific pathogen-free facilities.

DSG2 transgenic mice: Human DSG2 transgenic mice were generated using the bac-
terial artificial chromosome (BAC) clone CTD-2233I9 (Invitrogen (Carlsbad, CA, USA)
containing the human genome region from position 29,054,158 to position 29,143,265 of
chromosome 18. This fragment contains the 24 kb DSG2 promoter and 5′ untranslated
regions (UTR), the 50.6 kb DSG2 gene, and 14.5 kb of the 3′ UTR. DSG2tg mice contain
two copies of the BAC fragment inserted into chromosome 16 [37]. In previous studies we
have shown that DSG2 transgenic mice express hDSG2 at a level and in a pattern similar to
humans [38].

Subcutaneous TC1-DSG2high. Tumors were established by subcutaneous injection of
2 × 106 TC1-DSG2high cells (mixed 1:1 with Matrigel) into the right lower back side. Tumor
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volumes were measured as described previously [39]. Ad5/3 vectors were injected when
tumors reached a volume of ~400 mm3.

Luciferase and GFP in vivo imaging: In vivo luciferase imaging was performed on
an IVIS Lumina Series II (PerkinElmer, Waltham, MA, USA). Mice were injected i.p. with
15 mg/mL Luciferin in PBS at 150 mg/kg. Five minutes later, animals were transferred
to anesthesia induction chamber and animals were induced for 3 min. Animals were
then transferred to the in vivo imaging system (IVIS) imaging chamber. Ten minutes after
substrate injection, the imaging procedure was started. Exposure times are indicated in the
figures.

GFP immunohistochemistry on tissue sections. Tissues were either fixed in 10%
neutral buffered formalin and processed for paraffin sections. For GFP staining, paraffin
sections were subjected to antigen retrieval by antigen unmasking solution (Vector Labs,
Burlingame, CA, USA) using a Pascal pressure cooker (DakoCytomation, Carpinteria, CA,
USA). For GFP staining, paraffin sections were incubated with monoclonal anti-GFP, 1:400
(Clontech, Mountain View, CA, USA), followed by the Klear Mouse DAB kit (Golden Bridge
International Inc., Mukilteo, WA, USA).

Blood analyses: Blood samples were collected into EDTA-coated tubes and analysis
was performed on a HemaVet 950FS (Drew Scientific, Waterbury, CT, USA).

Statistical analysis. All results are expressed as mean standard deviation (SD). Stu-
dent’s t test or 2-way analysis of variance (ANOVA) for multiple testing was applied when
applicable. A p value of 0.05 was considered significant.

3. Results
3.1. Ad5/3 Vectors

Ad5/3L vectors contain the Ad5 tail, the “long” (L) Ad5 shaft, and the Ad3 fiber
knob. Ad5/3S vectors contain the Ad5 tail, the “short” (S) Ad3 shaft, and Ad3 knob
(Figure 1A). All Ad5/3 vectors are E1/E3-deleted. The first pair of “L” and “S” vectors
has an identical CMV-GFP expression cassette inserted into the E3 region. The other
pair has a CMV-luciferase expression cassette. Vectors were produced in 293 cells and
purified by CsCl ultracentrifugation. Vector yields and pfu titers were comparable for all
four vectors. To confirm infection of cells through the interaction between fiber knob and
DSG2, a competition study was performed (Figure 1B). Transduction of both vectors was
inhibited by pre-incubation of cells with recombinant fiber Ad3 knob (JO4) [38], as well as
by recombinant DSG2.
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Figure 1. In vitro transduction studies with Ad5/3(L) and Ad5/3(S) vectors. (A) Vector structure.
Upper panel: Vector capsids. Both vectors are based on Ad5. Ad5/3(S) contains the Ad5 fiber tail, the
“short” (S) Ad3 fiber shaft and the Ad3 fiber knob. (Ad fibers are homotrimers, which are depicted by
three fiber knobs.) Ad5/3(L) contains the original “long” (L) Ad5 fiber shaft and Ad3 fiber knob.
Lower panel: Two sets of E1/E3 deleted (first-generation) Ad5/3(S) and Ad5/3(L) vectors were
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generated containing either a CMV promoter-driven GFP gene (Ad5/3-GFP(S) and Ad5/3-GFP(L)
or a CMV promoter-driven firefly luciferase gene (Ad5/3-luc(S) and Ad5/3-luc(L)). SV40pA: SV40
polyadenylation signal. ITR: adenoviral inverted repeat. ψ: adenoviral packaging signal. (B) Compe-
tition of Ad5/3-GFP(S) and Ad5/3-GFP(L) by recombinant Ad3 fiber knob (JO4) or rDSG2. Colon
cancer T84 cells were incubated with 50 µg/mL of proteins for 1 h. Cells were then infected with
viruses at an MOI of 100 pfu/cell. Viruses were removed 1 h after infection and GFP expression was
analyzed ~20 h later by flow cytometry. Cntr: untransduced control cells.

3.2. Effect of Coagulation Factor X on Transduction with Ad5/3 Vectors

Ad5 vectors containing the “long” Ad5 fiber shaft and either the Ad5 or Ad35 fiber
knob efficiently transduce hepatocytes in vivo, mostly through interactions between the
capsid hexon with coagulation factor X (FX) and subsequent uptake by hepatocytes through
Heparan-sulfate-proteoglycans (HSPGs) [31,32]. In our previous studies, we found that
chimeric Ad5 vectors containing the “short” Ad35 shaft (six shaft motifs) and the Ad35
fiber knob only very inefficiently transduced hepatocytes in mice and non-human primates
(NHPs) after intravenous injection [27,40]. We therefore hypothesized that short fiber shafts
would interfere with FX-mediated infection of cells. We tested this by using our pair of
Ad5/3-luc(S) and Ad5/3-luc(L) vectors on CHO-K2 cells and CHO cells that lack HSPGs
(CHO-pgsE-606) (Figure 2). While FX significantly increased Ad5/3-luc(L) transduction of
CHO-K2 cells, it had no effect on Ad5/3-luc(S) transduction (Figure 2A). The enhancing
effect of FX on Ad5/3-luc(L) was abolished in CHO-psgE-606 cells. Uptake of viral parti-
cles was also analyzed based on immunofluorescence of the main capsid protein hexon
(Figure 2B). Hexon-specific signals in the cytoplasm were comparable for Ad5/3-luc(L) and
Ad5/3-luc(S) in the absence of FX. However, they were stronger for the Ad5/3(L) vectors
when the vector was mixed with FX. No colocalization of hexon and lysosomal-specific
cathepsin B signals were found indicating that both types of vectors were not transported
into lysosomes. Notably, CHO cells do not express human DSG2 and Ad5/3 uptake is
mediated through HSPGs, which are the receptors that mediated virus uptake through
FX [41].
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Figure 2. Effect of coagulation factor X on infection of Ad5/3-luc(S) and Ad5/3-luc (L). (A) Lu-
ciferase activity after transduction of CHO-K2 and sulfation-deficient CHO-E606 cells. Viruses were
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added to cells at an MOI of 150 pfu/cell with or without recombinant factor X (FX) (8 µg/mL), and
luciferase expression was measured 20 h later. n = 3. * p < 0.05; n.s.: not significant. (B) Detection
of viral particles after infection of CHO cells by immunofluorescence analysis for the viral capsid
protein hexon. Six hours after infection of cells with and without FX, cells were fixed and incubated
with hexon-specific (green) and cathepsin B-specific (red) antibodies. Untransduced CHO cells were
used as a negative control. The scale bar is 20 µm. Representative images are shown.

3.3. In Vitro Transduction Studies with Ad5/3 Vectors

Studies were performed with T84 cells, a human colon cancer cell line that expresses
high levels of DSG2 and forms epithelial junctions when cultured in transwells [42]. T84
cells were transduced at increasing MOIs with Ad5/3-GFP(S) and Ad5/3-GFP(L) and GFP
expression was measured by flow cytometry 20 h later (Figure 3A). The percentage of
GFP-positive cells was significantly higher for Ad5/3-GFP(L) for MOIs of in the range of
40 to 80 pfu/cell, while at the higher MOI (160 pfu/cell), the difference was not significant.
No significant differences between the vectors were found in the mean GFP fluorescence at
all MOIs analyzed (Figure 3A, right panel). There was also no difference in the number
of GFP-positive cells after infection of polarized T84 cells from the apical and basal sides
at an MOI of 300 pfu/cell (Figure 3B). Notably, infection from the apical side is inefficient
because DSG2 is trapped in lateral epithelial junctions. Transduction studies with Ad5/3-
Luc vectors allowed for a more quantitative read-out over a large range of luciferase
intensities (Figure 3C). This study confirmed that transduction of T84 cells is less efficient
for Ad5/3-luc(S) at low MOIs (6.25, 12.5, 25 pfu/cell), while there is no difference at higher
MOIs (50 and 100 pfu/cell).
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Figure 3. In vitro transduction studies. (A) T84 cells were infected with Ad5/3-GFP viruses at
the indicated MOIs. GFP expression was analyzed 20 h after infection by flow cytometry. The left
panel shows the percentage of GFP-positive cells; the right panel shows the mean GFP fluorescence
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intensity (MFI). n = 3. * p < 0.05. (B) To form tight junctions between T84 cells, 2 × 105 T84 cells
were plated into polyester membrane transwell inserts and cultured for 21 days with medium change
every 3 days. Ad5/3-GFP(S) and Ad5/3-GFP(L) (MOI 200 pfu/cell) were used to infect cells from the
apical or basal sides for 1 h. Viruses were then removed, and fresh medium was added. GFP images
were taken 48 h post-infection. The scale bar is 20 µm. (C) T84 cells infected with Ad5/3-luc viruses at
the indicated MOIs. Luciferase expression was analyzed 20 h after infection and expressed as relative
light units (RLU) per mg total protein. n = 3. * p < 0.05. (D) Quantification of viral particles/genomes
that were attached, internalized, or transported to the nucleus after infection of HeLa cells with
Ad5/3(L) and Ad5/3-GFP(S). Experimental details are shown in Figure S1.

We then tried to determine at which step of the viral infection process Ad5/3(S) was
less efficient than Ad5/3(L) (Figure 3D). Using qPCR for viral genomes, we measured the
number of virions that were attached to cells, internalized into the cytoplasm, and imported
into the nucleus (Figure S1). In agreement with previous data, there was no significant
difference between the two vectors in attachment and internalization [36]. However, the
number of vector genomes measured in the nucleus was significantly lower for Ad5/3(S).

3.4. In Vivo Transduction of Tumor-Bearing Mice with Ad5/3 Vectors

As an adequate model for biodistribution studies after intravenous Ad5/3 vector
injection, we used human DSG2 transgenic mice, and as a control, non-transgenic litter
mates. DSG2tg mice contain the human DSG2 locus and express human DSG2 at a level
and in a pattern similar to those found for humans and nonhuman primates [37]. We
developed a syngeneic tumor cell line (TC1-DSG2) that expressed human DSG2 at a high
level. Subcutaneous implantation of TC1-DSG2 cells into the right lower back side resulted
in the development of tumors that reached the endpoint volume (1 cm3) within 8 weeks
after implantation. To characterize TC1-DSG2 tumors, we performed immunofluorescence
studies on tumor sections (Figure 4). DSG2-positve tumor nests contained epithelial
junctions marked by claudin 7 and were surrounded by mouse-derived stoma cells and
extracellular matrix proteins such as laminin. Tumors and tumor stroma contained blood
vessels marked by CD31. These features are similar to tumors found in humans. The
DSG2tg + TC1 − DSG2high mouse model therefore represents an adequate model for vector
biodistribution studies.
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Figure 4. Immunofluorescence analysis of TC1-DSG2 tumor sections. Tumors were harvested
when they reached a volume of 500–600 mm3, embedded in OCT, and sectioned. (A) Sections were
stained for (human) DSG2 (green) and the epithelial marker claudin 7 (red). Visible are nests of
human DSG2-postitive tumor cells embedded in tumor stroma cells (mouse-derived). (B) Sections
were stained for the extracellular matrix/stroma protein (red) and the endothelial/blood vessel cell
marker CD31 (green). The images show a vascularized tumor with typical stroma components.

3.4.1. In Vivo Analysis of GFP Expression

First, we injected tumor-bearing mice intravenously with Ad5/3-GFP(L) and Ad5/3-
GFP(S) and analyzed GFP expression 3 days later by in vivo imaging of animals and
immunohistochemistry (IHC) analysis of tissue sections (Figure 5). In vivo imaging showed
widespread superficial signals in DSG2tg mice injected with Ad5/3-GFP(L) but not in non-
transgenic mice injected with this virus or mice injected with Ad5/3-GFP(S) (Figure 5A).
These signals most likely originated from transduced cells in the skin because GFP signals
that are deeper in the body cannot be detected by this method. Using this method, it
was also difficult to discern tumor-localized signals. More informative were the IHC
studies (Figure 5B). GFP signals were found in hepatocytes of liver sections from DSG2tg
mice injected with Ad5/3-GFP(L) GFP signals were found on tumor sections of Ad5/3-
GFP(L). Sparse GFP signals were also visible in the spleen, intestine, and adrenal gland.
When correlated with DSG2 staining of consecutive sections (Figure 5B, lower panels),
transduction in the intestine and adrenals appeared to be DSG2-dependent, whereas Ad5/3-
GFP(L) transduction of the liver was not. In contrast, GFP signals in Ad5/3-GFP(S)-injected
animals were only found in the liver (Figure S3), but not in other organs and the tumor.
While ~50% of hepatocytes were positive in Ad5/3-GFP(L) injected animals, only sparse
GFP-positive hepatocytes were visible on liver sections from mice that received Ad5/3-
GFP(S).



Genes 2022, 13, 2056 9 of 16Genes 2022, 13, x FOR PEER REVIEW 9 of 16 
 

 

 

Figure 5. Biodistribution of GFP expression after intravenous Ad5/3 injection. (A) In vivo GFP 

imaging. TC1-DSG2+ tumor-bearing non-DSG2 transgenic mice (litter mates) and DSG2-transgenic 

mice were intravenously injected via the tail with  pfu of Ad5/3-GFP(L) or Ad5/3-GFP(S). Mice 

were subjected to imaging 3 days later. Shown are two mice injected with Ad5/3-GFP(L) and four 

mice injected with Ad5/3-GFP(S) from the font and the back. The color reflects the radian efficiency, 

the range of which is indicated in the bars to the right of the images. The tag numbers are indicated 

below the images. (B) GFP and DSG2 immunohistochemistry analyses of selected organs and the 

tumor harvested on day 3 after Ad5/3-GFP (L) injection. GFP staining appears brown. The scale bar 

is 20 μm. Shown are representative sections of mouse #990. DSG2 staining of tumor sections is 

shown in Figure 4A. 

3.4.2. In vivo analysis of luciferase expression 

Luciferase in vivo imaging is a more adequate method for biodistribution studies 

(Figures 6 and S2). Imaging from the back side revealed luciferase luminescence signals 

in TC1-DSG2 tumors and livers in both DSG2tg and non-DSG2tg mice injected with the 

long-shafted Ad5-luc(L) vector (Figures 6A and S2A). No signals, except for the injection 

site in the tail vein, were detected by in vivo imaging for Ad5/3-luc(S) injected animals. 

Imaging from the front side (Figures 6B and S2B) showed liver-localized signals in Ad5/3-

luc(S] animals, however at a much lower intensity than in Ad5/3-luc(L) injected animals. 

To quantitate luciferase activity, organs and tumors were harvested at day 3 post virus 

injection, and lysates were subjected to luciferase assay (Figure 7A). Background activity 

(1 × 103 RLU/mg total protein) established in mock-injected mice was subtracted from all 

values and RLUs/mg protein were plotted. For the short-shafted Ad5/3-luc(S) vector, lu-

ciferase activity was only detectable in the liver of both DSG2tg and non-DSG2tg mice at 

Ad5/3-GFP(L)

non-DSG2-tg

239

DSG2-tg

990 239 990

Ad5/3-GFP(L)

non-DSG2-tg DSG2-tg

240 241 99 100

non-DSG2-tg DSG2-tg

Ad5/3-GFP(S)

non-DSG2-tg DSG2-tg

Ad5/3-GFP(S)

240 241 99 100

liver spleen small intestine adrenal gland

A

B

G
F

P
D

S
G

2

tumor 

Figure 5. Biodistribution of GFP expression after intravenous Ad5/3 injection. (A) In vivo GFP
imaging. TC1-DSG2+ tumor-bearing non-DSG2 transgenic mice (litter mates) and DSG2-transgenic
mice were intravenously injected via the tail with pfu of Ad5/3-GFP(L) or Ad5/3-GFP(S). Mice were
subjected to imaging 3 days later. Shown are two mice injected with Ad5/3-GFP(L) and four mice
injected with Ad5/3-GFP(S) from the font and the back. The color reflects the radian efficiency, the
range of which is indicated in the bars to the right of the images. The tag numbers are indicated
below the images. (B) GFP and DSG2 immunohistochemistry analyses of selected organs and the
tumor harvested on day 3 after Ad5/3-GFP (L) injection. GFP staining appears brown. The scale bar
is 20 µm. Shown are representative sections of mouse #990. DSG2 staining of tumor sections is shown
in Figure 4A.

3.4.2. In Vivo Analysis of Luciferase Expression

Luciferase in vivo imaging is a more adequate method for biodistribution studies
(Figures 6 and S2). Imaging from the back side revealed luciferase luminescence signals
in TC1-DSG2 tumors and livers in both DSG2tg and non-DSG2tg mice injected with the
long-shafted Ad5-luc(L) vector (Figures 6A and S2A). No signals, except for the injection
site in the tail vein, were detected by in vivo imaging for Ad5/3-luc(S) injected animals.
Imaging from the front side (Figures 6B and S2B) showed liver-localized signals in Ad5/3-
luc(S] animals, however at a much lower intensity than in Ad5/3-luc(L) injected animals.
To quantitate luciferase activity, organs and tumors were harvested at day 3 post virus
injection, and lysates were subjected to luciferase assay (Figure 7A). Background activity
(1 × 103 RLU/mg total protein) established in mock-injected mice was subtracted from
all values and RLUs/mg protein were plotted. For the short-shafted Ad5/3-luc(S) vector,
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luciferase activity was only detectable in the liver of both DSG2tg and non-DSG2tg mice
at a level that was 2–3 orders of magnitude lower than liver-localized luciferase activity
in Ad5/3-luc(L) injected mice. The greatest difference between DSG2tg and non-DSG2tg
mice was, however, found for TC1-DSG2 tumors indicating that the level and accessibility
of DSG2 in tumors mediated efficient transduction. Transduction of other tissues was
less efficient than tumor transduction. For Ad5/3-luc(L), activity in epithelial tissues
(kidney, lung, intestine, colon, pancreas) and heart was higher in DSG2tg mice than in
non-DSG2tg mice, indicating DSG2-mediated transduction. In contrast, Ad5/3-luc(L)
transduction of liver and spleen seemed to be DSG2-independent. Luciferase signals in the
liver and the tumor originated from transduced hepatocytes and tumor cells, respectively,
as immunofluorescence studies indicated (Figure 7B).
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Figure 6. In vivo imaging for luciferase expression after intravenous Ad5/3 injection. (A) Images
taken from the back of mice on day 3 after virus injection. Shown are three non-DSG2-tg/TC1-
DSG2 tumors and four DSG2-tg/TC1-DSG2 tumor mice injected with Ad5/3-luc(L) or Ad5/3-luc(S).
Tumors are visible at the lower right back side. Strong signals at the injection site (tail veins) are
noted. The exposure time was 180 s. (B) Images taken from the front of mice.
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Figure 7. Luciferase activity measured in organs and the tumor harvested on day 3 after intravenous
Ad5/3-luc virus injection. (A) Summary of luciferase activity data. Shown are data for tumor-bearing
DSG2-transgenic and non-transgenic mice injected with the two Ad5/3-luc vectors. Signals from
Ad5/3(S)-injected mice were below background, except for the liver. n = 3. (B) Immunofluorescence
staining with a luciferase-specific antibody (FITC—green) of liver and tumor sections from a DSG2-tg
mouse injected with Ad5/3(L).

Hematological analyses on day 3 after injection of both vectors did not show significant
differences between the virus-injected groups and untreated animals (Figure 8).
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Figure 8. Hematological analyses of Ad5/3-luc injected mice. Blood samples were analyzed on
day 3 after virus injection. Shown are data for tumor-bearing DSG2-transgenic and non-transgenic
mice injected with the two Ad5/3-luc vectors. n = 3. WBC–white blood cells, NE–neutrophils,
LY–lymphocytes, MO–monocytes, RBC–red blood cells. Platelet (PLT) counts are shown in the lower
panel.

In summary, intravenous injection of Ad5/3-luc(L) resulted in TC1-DSG2high tumor
transduction, however, also in transduction of hepatocytes, most likely via FX. DSG2-
mediated Ad5/3-luc(L) transduction of other epithelial tissues was 1–2 orders of magnitude
lower than tumor-transduction, likely because DSG2 is not readily accessible in normal
epithelial tissues. The Ad5/3-luc(S) vector was nearly inactive in vivo, except for some
DSG2-independent liver transduction that was 2–3 orders of magnitude lower than that of
Ad5/3-luc(L) injection animals.

4. Discussion

This study showed that Ad5/3(L) vectors efficiently transduced DSG2high tumors
but not normal epithelial tissues after intravenous injection into DSG2tg mice that express
DSG2 in a pattern similar to humans. The basis for preferential tumor transduction is
differences in level and accessibility of the target receptor DSG2. While in normal epithelial
tissue DSG2 is trapped in epithelial junctions and not accessible to DSG2 ligands such as
recombinant Ad3 fiber knobs [38,42], it is expressed at high levels on the surface of tumors,
with only a fraction trapped in junctions [42].

The ability of Ad5/3L to target epithelial tumors comes with the caveat that it also
transduces hepatocytes in a DSG2-independent manner after intravenous injection into
mice. Our in vitro studies indicate that hepatocyte transduction is facilitated by binding of
the Ad5 hexon to vitamin K-dependent coagulation factors, which is in agreement with
in vivo studies by Koski et al. [43]. Our in vitro studies also show that factor X does not
enhance transduction with Ad5/3(S) that contained the same Ad3 fiber knob, but the short
Ad3 fiber shaft. This could be due to several mechanisms: (i) the interaction between the
hexon Gla-domain and factor X is sterically affected by the short rigid Ad3 fiber, and/or
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(ii) the high affinity of the Ad3 fibers for DSG2 partially overcomes the Ad5 hexon:FX
interaction [30].

Previous studies performed by us [36] and others [44] did not indicate differences
in infectivity of Ad5/3(L) and Ad5/3(S), most likely because in these studies relatively
high MOIs (>250 pfu/cell) of viruses were used for infection. Here, we performed in vitro
transduction studies with lower MOIs (<100 pfu/cell). Under these conditions, transduction
measured based on GFP-positive cells or luciferase activity was significantly less efficient
for the short-shafted Ad5/3(S) vector. Moreover, in vivo transduction of tumors and tissues
was not detectable after intravenous injection into DSG2-transgenic mice, except for the
liver where luciferase signals were 2–3 orders of magnitude lower compared Ad5/3(L),
supporting our hypothesis that Ad5/3(S) only inefficiently transduces hepatocytes.

The DSG2-dependent infectivity of Ad5/3(S) could be affected at several stages of
the virus infection process, including virus attachment, internalization, endosome release,
intracellular trafficking to the nucleus, and import of the viral genome into the nucleus.
Our data indicate that after internalization, intracellular trafficking of Ad5/3(S) is impaired.
Based on our in vitro studies with long- and short-shafted Ad5 vectors [26], we hypothe-
size that this is due to inefficient release from endosomes and/or retrograde transport of
particles to the cell surface. Release from endosomes is influenced by the penton base RGD
motif-integrin αv/β3/5 interaction, either through mediating pH changes within endo-
somes that lead to membrane permeabilization, or through integrin-mediated intracellular
signaling [45]. In wild-type Ad3 virus, the protruding penton RGD loop is longer than the
RGD loop in Ad5 (Figure S4). This could imply that in Ad5/3(S), the spatial constellation
of Ad3 knob/DSG2 and RGD/integrins is not optimal for endosome release. Replacing the
Ad5 RGD loop in Ad5/3(S) with that of Ad3 could prove this hypothesis. This hypothesis
is also supported by publications that the Ad3 vectors (containing the Ad3 fiber knob and
shaft and Ad3 penton) efficiently infect cells [3,46] and trigger oncolysis in vivo [19,47]. We
speculate that inefficient intracellular trafficking of Ad5/3(S) is also responsible for the
poor TC1-DSG2 tumor transduction in vivo.

An approach to enhance in vivo transduction of target cells after intravenous Ad
injection is to increase the affinity of the fiber knob to the target receptor by introducing
mutations to the fiber knob [48]. In the case of affinity enhanced Ad5/35(S) vectors, we
demonstrate, in a mouse model with pre-established CD46high liver metastases, better
tumor transduction without significant liver transduction [21]. Furthermore, such an
Ad5/35 vector enabled us to transduce mobilized hematopoietic stem cells (HSCs) in
mice [49] and non-human primates [50], which was very inefficient with an Ad5/35(S)
vector without enhanced affinity to CD46. Recently, we showed that a short-shafted Ad5/3
vector containing Ad3 fiber knobs with greatly increased affinity to DSG2 also efficiently
transduced mobilized hematopoietic stem cells (HSCs) in NHPs [51,52]. We speculate that
the high avidity, together with the high DSG2 receptor density and accessibility of DSG2
on HSCs, could compensate for the deficiencies of Ad5/3(S) vectors found in this study.

5. Conclusions

This is the first biodistribution study of Ad5/3(L), a vector platform that is used
clinically in oncolytic virotherapy in an adequate DSG2tg animal model. It shows tumor
targeting with minimal transduction of normal epithelial tissues after intravenous injection.
However, Ad5/3(L) also efficiently transduced hepatocytes implying that careful monitor-
ing of liver inflammation is recommended in studies with this vector platform. Ad5/3(S)
vectors showed minimal liver transduction however failed to transduce DSG2high tumors.
Further modifications of Ad5/3(S) in the Ad5 penton base or Ad3 fiber knob are probably
required to compensate for the lower infectivity of these vectors, which is most likely due
to relatively inefficient intracellular trafficking of virions.
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