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Abstract Here, we follow the call to target measurement reliability as a key prerequisite for 
individual-level predictions in translational neuroscience by investigating (1) longitudinal reliability 
at the individual and (2) group level, (3) internal consistency and (4) response predictability across 
experimental phases. One hundred and twenty individuals performed a fear conditioning paradigm 
twice 6 months apart. Analyses of skin conductance responses, fear ratings and blood oxygen level 
dependent functional magnetic resonance imaging (BOLD fMRI) with different data transformations 
and included numbers of trials were conducted. While longitudinal reliability was rather limited 
at the individual level, it was comparatively higher for acquisition but not extinction at the group 
level. Internal consistency was satisfactory. Higher responding in preceding phases predicted higher 
responding in subsequent experimental phases at a weak to moderate level depending on data 
specifications. In sum, the results suggest that while individual-level predictions are meaningful for 
(very) short time frames, they also call for more attention to measurement properties in the field.

Editor's evaluation
The authors assess the psychometric properties of behavioral, psychophysiological, and brain 
imaging measures of fear conditioning. Six-month retest reliability was generally low, whereas 
internal-consistency reliability was generally high. At the group level, reliability and criterion validity 
were generally good. Most measurements proved sensitive to data analytical choices. Results are 
framed within a larger discussion of the role of measurement properties in individual difference 
research and clinical translation and have the potential to serve as an important building block 
towards improvement in both these areas.

Introduction
The increasing incidence (e.g., Xiong et al., 2022) and high relapse rates (Essau et al., 2018; Yonkers 
et al., 2003) of anxiety-related disorders call for a better understanding of anxiety- and stress-related 
processes which might contribute to improving existing treatments or developing more effective 
interventions. In the laboratory, these processes can be studied using fear conditioning paradigms 
(Dunsmoor et al., 2022; Fullana et al., 2020; Milad and Quirk, 2012).
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In differential fear conditioning protocols (see Lonsdorf et al., 2017a) one stimulus is repetitively 
paired with an aversive unconditioned stimulus (US; e.g., electrotactile stimulation), and as a conse-
quence becomes a conditioned stimulus (CS+) while another stimulus, the CS−, is never paired with 
the US. After this acquisition training phase, CSs are presented without the US (extinction training) 
leading to a gradual waning of the conditioned response. Critically, the fear memory (CS+/US associa-
tion) is not erased, but a competing inhibitory extinction memory (CS+/no US association) is assumed 
to be formed during extinction training (Milad and Quirk, 2012; Myers and Davis, 2007). Subse-
quently, return of fear (RoF) can be induced by procedural manipulations such as a time delay (spon-
taneous recovery), a contextual change (renewal, Vervliet et al., 2013a), or a (re-)presentation of an 
aversive event (reinstatement, Haaker et al., 2014). Conditioned responding can be subsequently 
probed in an RoF test phase during which either the absence (i.e., extinction retention) or the return 
of conditioned responding (i.e., RoF) can be observed (Bouton, 2004; Lonsdorf et al., 2017a).

Findings from studies employing fear conditioning paradigms hold strong potential for translating 
neuroscientific findings into clinical applications (Anderson and Insel, 2006; Cooper et al., 2022a; 
Fullana et al., 2020; Milad and Quirk, 2012). More precisely, extinction learning is assumed to be the 
active component of exposure-based treatment (Graham and Milad, 2011; Milad and Quirk, 2012; 
Rachman, 1989; Vervliet et al., 2013b) and experimental RoF manipulations have been suggested 
to serve as a model of clinical relapse (Scharfenort et al., 2016; Vervliet et al., 2013a). Important 
findings in the fear conditioning field include the deficient learning of the safety signal (CS−) during 
acquisition training, impaired extinction learning (Duits et al., 2015) and the tendency of fear general-
ization to innocuous stimuli (Cooper et al., 2022a) in patients suffering from anxiety-related disorders 
as compared to healthy controls.

To date, both clinical and experimental research using the fear conditioning paradigm have 
primarily focused on group-level, basic, general mechanisms such as the effect of experimental 
manipulations – which is important to investigate (Lonsdorf and Merz, 2017b). Successful clinical 
translation (e.g., ‘Why do some individuals develop pathological anxiety while others do not?’) and 
particularly treatment outcome prediction (e.g., ‘Why do some patients benefit from treatment while 
others relapse?’), however, requires that both the experimental paradigm and the measures employed 
allow for individual-level predictions over and above prediction of group averages (Fröhner et al., 
2019; Hedge et al., 2018; Lonsdorf and Merz, 2017b). A prerequisite for this is that the measures 
show stability within and reliable differences between individuals over time. Hence, tackling clinical 
questions regarding individual-level predictions of symptom development or treatment outcome 
requires a shift toward and a validation of research methods tailored to individual differences – such 
as a focus on measurement reliability (Zuo et al., 2019). This is a necessary prerequisite for the long-
term goal of developing individualized intervention and prevention programs. This further relates 
to the pronounced heterogeneity in symptom manifestation among individuals diagnosed with the 
same disorders (e.g., post-traumatic stress disorder, PTSD, Galatzer-Levy and Bryant, 2013b) which 
cannot be captured in binary clinical diagnoses as two patients with for example a PTSD diagnosis 
may not share a single symptom (Galatzer-Levy and Bryant, 2013b).

Measurement reliability has only recently gained momentum in experimental cognitive research 
(Fröhner et al., 2019; Hedge et al., 2018; Zuo et al., 2019) and can be assessed through test–retest 
and longitudinal reliability (i.e., test–retest reliability over longer time intervals, typically assessed 
through e.g., intraclass correlation coefficients, ICCs, see Table 1). Importantly, longitudinal reliability 
(for definitions and terminology, see Table 1) also has implications for the precision with which associ-
ations of one variable (e.g., conditioned responding) with another (individual difference) variable can 
be measured because the correlation between those two variables cannot exceed the correlations 
within, that is the reliability, of these two variables (Spearman, 1910).

Yet, in fear conditioning research, surprisingly little is known about longitudinal reliability at the 
individual level with time intervals ranging from 9 days to 8 months in prior work (Supplementary file 
1; Cooper et al., 2022b; Fredrikson et al., 1993; Ridderbusch et al., 2021; Torrents-Rodas et al., 
2014; Zeidan et al., 2012). Generally (details in Supplementary file 1), individual-level longitudinal 
reliability of risk ratings, skin conductance responses (SCRs), and fear potentiated startle (FPS) was 
within the same range (Cooper et al., 2022b; Torrents-Rodas et al., 2014) whereas it was numer-
ically somewhat lower for the BOLD response as compared to different rating types (Ridderbusch 
et al., 2021). Longitudinal reliability at the individual level appeared higher for acquisition training 
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than for extinction training (SCRs: Fredrikson et al., 1993; Zeidan et al., 2012), but comparable to 
generalization (Cooper et al., 2022b; Torrents-Rodas et al., 2014). Moreover, it appeared higher for 
extinction training than for reinstatement-test (for BOLD fMRI but not ratings: Ridderbusch et al., 
2021) and higher for CS+ than CS− responses (SCRs: Fredrikson et al., 1993) and CS discrimination 
(ratings and BOLD fMRI: Ridderbusch et al., 2021; SCRs: Zeidan et al., 2012).

However, it is difficult to extract a comprehensive picture from these five studies as they differ 
substantially in sample size (N = 18–100), paradigm specifications, experimental phases reported, 
outcome measures, time intervals, and employed reliability measures (see Supplementary file 1).

Given that the predominance of research on group-level generic mechanisms in fear conditioning 
research, it is even more surprising that, to our knowledge, no study to date has investigated longitu-
dinal reliability at the group level and only few studies have (Fredrikson et al., 1993) targeted internal 
consistency (i.e., the degree to which all test items capture the same construct, see Table 1). More 
precisely, longitudinal reliability at the group level indicates the extent to which responses averaged 
across the group as a whole are stable over time, which is important to establish when investigating 
basic, generic principles such as the impact of experimental manipulations. Even though it has to be 
acknowledged that the group average is not necessarily representative of any individual in the group 
and the same group average may arise from different and even opposite individual responses at both 
time points in the same group, group-level reliability is important to establish in addition to individual-
level reliability. Group-level reliability is relevant not only to work focusing on the understanding of 
general, generic processes but also for questions about differences between two groups of individuals 
such as patients vs. controls (e.g., see meta-analyses of Cooper et al., 2022a; Duits et al., 2015). 
Of note, many fear conditioning paradigms were initially developed to study general group-level 
processes and to elicit robust group effects (Lonsdorf and Merz, 2017b). Hence, it is important to 
investigate both group- and individual-level reliability given the challenges of attempts to employ 
cognitive tasks that were originally designed to produce robust group effects in individual difference 
research (Elliott et al., 2020; Hedge et al., 2018; Parsons, 2020; Parsons et al., 2019).

As pointed out above, individual-level reliability is a prerequisite for individual-level predictions 
such as treatment outcomes. Since the different experimental phases of fear conditioning paradigms 
serve as experimental models for the development, treatment, and relapse of anxiety- and stress-
related disorders, it is also an important question whether responding across phases can be reli-
ably predicted at the individual level. Interestingly, it is often implicitly assumed that responding in 
one experimental phase reliably predicts responding in a subsequent phase (e.g., see Milad et al., 
2009; critically discussed in Lonsdorf et al., 2019a) even though empirical evidence is lacking. As 
a result it has been suggested to routinely ‘correct for responding’ during fear acquisition training 
when studying performance in later experimental phases such as extinction training or retention/RoF 
test (critically discussed in Lonsdorf et al., 2019a). However, empirical evidence on this cross-phases 
predictability (for definition and terminology, see Table 1) is scarce to date.

Evidence from experimental work on cross-phase predictability in rodents and humans is mixed. 
In rodents, freezing during acquisition training and 24-hrs-delayed extinction training were uncor-
related (Plendl and Wotjak, 2010) and responding during extinction training did not predict extinc-
tion retention (i.e., lever-pressing suppression: Bouton et al., 2006; or freezing behavior: Shumake 
et al., 2014). Similarly, in humans, extinction performance (FPS, SCRs, and US expectancy ratings) 
did not predict performance at 24-hrs-retention test (Prenoveau et al., 2013). Yet, a computational 
modeling approach suggests that the mechanism of extinction learning (i.e., the formation of a new 
extinction memory trace in comparison to an update of the original fear memory trace) predicts the 
extent of spontaneous recovery in SCRs (Gershman and Hartley, 2015).

Also evidence from work in patient samples is mixed (for a review, see Craske et al., 2008). The 
extent of fear reduction within therapeutic sessions was unrelated to overall treatment outcome in 
some studies (Kozak et al., 1988; Pitman et al., 1996; Riley et al., 1995), while others observed an 
association (Foa et al., 1983). Similarly, significant correlations of fear reduction between therapeutic 
sessions with treatment outcome were observed for reported distress (Rauch et al., 2004) and heart 
rate, but not for SCR (Kozak et al., 1988; Lang et al., 1970) and for self-reported fear post treatment, 
but not at follow-up (Foa et al., 1983). In addition, evidence that responding in different phases is 
related comes from pharmacological manipulations with the cognitive enhancer D-cycloserine which 
facilitates learning and/or consolidation. D-cycloserine promoted long-term extinction retention 

https://doi.org/10.7554/eLife.78717
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(Rothbaum et al., 2014; Smits et al., 2013a; Smits et al., 2013b) only if within-session learning was 
achieved.

With this pre-registered study, we follow the call for a stronger appreciation and more systematic 
investigations of measurement reliability (Zuo et al., 2019). We address longitudinal reliability and 
internal consistency as well as predictability of cross-phase responding in SCRs, fear ratings, and the 
BOLD response. For this purpose, we reanalyzed data from 120 participants that underwent a differ-
ential fear conditioning paradigm twice (at time points T0 and T1, 6 months apart) – with habituation 
and acquisition training on day 1 and extinction, reinstatement and reinstatement-test on day 2 to 
allow for fear memory consolidation prior to extinction. Part of the data have been used previously 
in method focused work (Kuhn et al., 2022; Lonsdorf et al., 2022; Lonsdorf et al., 2019a; Sjou-
werman et al., 2022) and work investigating the association of conditioned responding with brain 
morphological measures (Ehlers et al., 2020).

Specifically, we (1) estimated internal consistency of SCRs at both time points and (2) systemati-
cally assessed longitudinal reliability of SCRs, fear ratings and BOLD fMRI at the individual level by 
calculating ICCs. This was complemented by investigations of response similarity (SCR and BOLD 
fMRI) and the degree of overlap of activated voxels at both time points (BOLD fMRI) as additional 
measurements of longitudinal reliability at the individual level that allow for a more detailed picture 
than the coarser ICCs (see Table 1 for terminology and definitions). We also (3) assessed whether 
SCR and BOLD fMRI show longitudinal reliability at the group level. Finally, we (4) investigated if 
individual level responding during an experimental phase is predictive of individual-level responding 
during subsequent experimental phases. All hypotheses are tested across different pre-registered 
data specifications to account for procedural heterogeneity in the literature (see Supplementary file 
1): More precisely, we follow a pre-registered multiverse-inspired approach and include (1) responses 
to the CS+, CS−, US, and CS discrimination, (2) different phase operationalizations, (3) different 
data transformations none, log-transformed, log-transformed and range-corrected, and (4) ordinally 
ranked vs. non-ranked data (for justification of these choices, see Table 1). We acknowledge that 
the specifications used here are not intended to cover all potentially meaningful combinations as in 
a full multiverse study (Lonsdorf et al., 2022; Sjouwerman et al., 2022; Steegen et al., 2016) but 
can be viewed as a manyverse (Kuhn et al., 2022) in which we a priori pre-registered a number of 
meaningful combinations.

Results
For a comprehensive overview of the different reliability measures used here and of the analyses 
conducted, see Table 1.

Satisfactory internal consistency
To assess internal consistency of SCRs, trials were split into odd and even trials (i.e., odd–even 
approach), averaged for each individual subject and then correlated (Pearson’s correlation coefficient). 
This was done separately for each time point and experimental phase. Internal consistency at T0 (see 
Figure 1A) and T1 (see Figure 1B) of raw SCRs to the CS+ and CS− ranged from 0.54 to 0.85 and for 
raw SCRs to the US from 0.91 to 0.94 for all phases. In comparison, internal consistency was lower for 
CS discrimination with values ranging from −0.01 to 0.60. Log-transformation did not impact internal 
consistency but log-transformation in combination with range correction largely resulted in reduced 
reliability (see Figure 1—figure supplement 1).

Longitudinal reliability at the individual level
Longitudinal reliability at the individual level refers to the time stability of individual responses which 
we assessed through several measures (see Table 1).

As a first measure, absolute agreement ICCs (ICCabs) and consistency ICCs (ICCcon) were calculated 
across both time points (T0, T1) for all data specifications (see Figure 1) while for BOLD fMRI these 
were only calculated for CS discrimination (see Materials and methods for justification). While ICCabs 
refers to the extent to which measurements at T0 correspond with measurements at T1 in absolute 
terms, ICCcon allows for deviations at T1 due to systematic error (Koo and Li, 2016).

https://doi.org/10.7554/eLife.78717
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Figure 1. Illustration of internal consistency for skin conductance responses (SCRs) at T0 (A) and T1 (B) as well as 
ICCabs and ICCcon for SCRs (C, D) and fear ratings (E, F) color coded for stimulus type. Internal consistency indicates 
the reliability of responses within each time point, while intraclass correlation coefficients (ICCs) indicate the 
reliability across both time points. Note that assessment of internal consistency was not possible for fear ratings as 
only two ratings (pre, post) were available. Error bars represent 95% confidence intervals and indicate significance, 
when zero is not included in the interval. The y-axis comprises the different phases or phase operationalizations. 
In the literature, internal consistency is often interpreted using benchmarks (Kline, 2013) for unacceptable (<0.5), 
poor (>0.5 but <0.6), questionable (>0.6 but <0.7), acceptable (>0.7 but <0.8), good (>0.8 but <0.9), and excellent 
(≥0.9). Common benchmarks in the literature for ICCs are poor (<0.5), moderate (>0.5 but <0.75), good (>0.75 
but <0.9), and excellent (≥0.9) (Koo and Li, 2016). These benchmarks are included here to provide a frame of 
reference but we point out that these benchmarks are arbitrary and most importantly derived from psychometric 
work on trait self-report measures and should hence not be overinterpreted in the context of responding in 
experimental paradigms which bear more sources of noise (Parsons, 2020). ACQ = acquisition training, EXT = 
extinction training, RI = reinstatement, RI-Test = reinstatement-test, pre = prior to the experimental phase, post = 
subsequent to the experimental phase.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Illustration of (A, B) internal consistency for log-transformed (log) as well as (C, D) log-
transformed and range corrected (log rc) skin conductance responses (SCRs) at T0 and T1 color coded for stimulus 
type.

Figure supplement 2. Illustration of (A, B) intraclass correlation coefficients (ICCs) of log-transformed (log) as well 
as (C, D) log-transformed and range corrected (log, rc) skin conductance responses (SCRs) color coded for stimulus 
type.

Figure supplement 3. Illustration of ICCabs of trial-by-trial raw skin conductance responses (SCRs) for phases (A–D: 
Acquisition, E–G: Extinction, H–J: Reinstatement-Test, K: Reinstatement) and stimulus types separately.

Figure 1 continued on next page

https://doi.org/10.7554/eLife.78717


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Klingelhöfer-Jens et al. eLife 2022;11:e78717. DOI: https://doi.org/10.7554/eLife.78717 � 9 of 35

Note that internal consistency and ICCs for SCRs are shown for raw data only. Results of log-
transformed as well as log-transformed and range corrected data are presented in Figure 1—figure 
supplement 1 and Figure 1—figure supplement 2 for completeness.

SCR and fear ratings
Across data specifications, ICCabs and ICCcon ranged from 0.03 to 0.58 and 0.03 to 0.61 for SCRs and 
from -0.16 to 0.70 as well as from -0.19 to 0.70 for fear ratings respectively (see Figure 1, for detailed 
results see also Supplementary file 3 and Supplementary file 4). ICCs for log-transformed and 
raw SCRs were similar (see Figure 1—figure supplement 2A-B) while log-transformation and range 
correction resulted in increased reliability for some data specifications (e.g., CS+ and CS- responses 
averaged across acquisition training, see Figure 1—figure supplement 2C-D) but in reduced reli-
ability for others (e.g., CS- responses during fear recall, i.e., the first extinction trial).

Exploratory, non-pre-registered analyses of trial-by-trial SCRs revealed, overall, only minor changes 
in ICCs upon stepwise inclusion of additional SCR trials (see Figure 1—figure supplements 3–8) with 
few exceptions: Including more trials resulted in an increase of ICC point estimates for SCRs to the 
CS+ and CS− during acquisition (log-transformed and range corrected data) and extinction training 
(all transformation types). Note, however, that this was – at large – only statistically significant when 
comparing ICCs based on the first (i.e., single trial at T0 and T1) and the maximum number of trials 
(as indicated by non-overlapping 95% confidence interval [CI] error bars). Interestingly, ICC point 
estimates for reinstatement-test (all transformation types) were numerically lower with an increasing 
number of trials, likely because of the transitory nature of the reinstatement effect (Haaker et al., 
2014).

BOLD fMRI
For BOLD fMRI, both ICC types suggest rather limited reliability for CS discrimination during acqui-
sition (both ICCabs and ICCcon = 0.17) and extinction training (both ICCabs and ICCcon = 0.01). For indi-
vidual regions of interest (ROIs: anterior insula, amygdala, hippocampus, caudate nucleus, putamen, 
pallidum, nucleus accumbens [NAcc], thalamus, dorsal anterior cingulate cortex [dACC], dorsolateral 
prefrontal cortex [dlPFC], and ventromedial prefrontal cortex [vmPFC]), ICCs were even lower (all ICCs 
≤0.001; for full results see Supplementary file 5).

Higher within- than between-subject similarity in BOLD fMRI but not 
SCRs
While ICCs provide information on the absolute quantity of longitudinal reliability at the individual 
level, comparison of within- and between-subject similarity as a complementary measure of longitu-
dinal reliability at the individual level (see Table 1) reflects the extent to which responses in SCR and 
BOLD activation of one individual at T0 were more similar to themselves at T1 than to other individuals 
at T1 (see Figures 2 and 3).

Figure supplement 4. Illustration of ICCcon of trial-by-trial raw skin conductance responses (SCRs) for phases (A–D: 
Acquisition, E–G: Extinction, H–J: Reinstatement-Test, K: Reinstatement) and stimulus types separately.

Figure supplement 5. Illustration of ICCabs of trial-by-trial log-transformed skin conductance responses (SCRs) 
for phases (A–D: Acquisition, E–G: Extinction, H–J: Reinstatement-Test, K: Reinstatement) and stimulus types 
separately.

Figure supplement 6. Illustration of ICCcon of trial-by-trial log-transformed skin conductance responses (SCRs) 
for phases (A–D: Acquisition, E–G: Extinction, H–J: Reinstatement-Test, K: Reinstatement) and stimulus types 
separately.

Figure supplement 7. Illustration of ICCabs of trial-by-trial log-transformed and range corrected skin conductance 
responses (SCRs) for phases (A–D: Acquisition, E–G: Extinction, H–J: Reinstatement-Test, K: Reinstatement) and 
stimulus types separately.

Figure supplement 8. Illustration of ICCcon of trial-by-trial log-transformed and range corrected skin conductance 
responses (SCRs) for phases (A–D: Acquisition, E–G: Extinction, H–J: Reinstatement-Test, K: Reinstatement) and 
stimulus types separately.

Figure 1 continued

https://doi.org/10.7554/eLife.78717


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Klingelhöfer-Jens et al. eLife 2022;11:e78717. DOI: https://doi.org/10.7554/eLife.78717 � 10 of 35

Figure 2. Illustration of within- and between-subject similarity for raw skin conductance responses (SCRs) during 
(A) acquisition and (B) extinction training separately for CS discrimination (gray), CS+ (red), CS− (blue), and 
unconditioned stimulus (US) responses (yellow). Results for log-transformed as well as log-transformed and range 
corrected SCRs were almost identical to the results from raw data and are hence not reported here. Single data 
points represent Fisher r-to-z transformed correlations between single trial SCRs of each subject at T0 and T1 
(within-subject similarity) or averaged r-to-z transformed correlations between single trial SCRs of one subject at 
T0 and all other subjects at T1 (between-subject similarity). Triangles represent mean correlations, corresponding 
error bars represent 95% confidence intervals. Boxes of boxplots represent the interquartile range (IQR) crossed 
by the median as bold line, ends of whiskers represent the minimum/maximum value in the data within the range 
of 25th/75th percentiles ±1.5 IQR. Distributions of the data are illustrated by densities next to the boxplots. 
One data point had a similarity above 3.5 (within-subject similarity of SCRs to the CS+) and is not shown in the 
figure. *p < 0.05. Note that the variances differ strongly between within- and between-subject similarity because 
between-subject similarity is based on correlations averaged across subjects, whereas within-subject similarity is 
based on non-averaged correlations calculated for each subject. Note also that similarity calculations were based 
on different sample sizes for acquisition and extinction training and CS discrimination as well as SCRs to the CS+, 
CS−, and US, respectively (for details, see Materials and methods). within-sub = within-subject; between-sub = 
between-subject.

https://doi.org/10.7554/eLife.78717
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SCR
For SCRs, within-subject similarity (i.e., within-subject correlation of trial-by-trial SCR across time 
points) and between-subject similarity (i.e., correlation of trial-by-trial SCR between one individual 
at T0 and all other individuals at T1; see Figure 2) did not differ significantly for most data specifica-
tions. This was true for CS discrimination (t(64) = 1.78, p = 0.079, d = 0.22) as well as for SCRs to the 
CS+ (t(61) = 0.84, p = 0.407, d = 0.11) and CS− (t(55) = 1.50, p = 0.138, d = 0.20) during acquisition 
training and for CS discrimination (t(44) = −0.23, p = 0.823, d = −0.03) and SCRs to the CS+ (t(39) = 
0.25, p = 0.801, d = 0.04) during extinction training. This indicates that SCRs of one particular indi-
vidual at T0 were mostly not more similar to their own SCRs than to those of other individuals at T1. 
The only exceptions where within-subject similarities were significantly higher than between-subject 
similarity were SCRs to the US during acquisition training (t(70) = 2.54, p = 0.013, d = 0.30) and to the 
CS− during extinction training (t(31) = 2.05, p = 0.049, d = 0.36). Note, however, that within-subject 
similarity had a very wide spread pointing to substantial individual differences (while this variance is 
removed in calculations of between-subject similarity).

fMRI data
In contrast to what was observed for SCRs, within-subject similarity was significantly higher than 
between-subject similarity in the whole brain (p < 0.001) and most of the ROIs for fear acquisition 
training (see Figure 3A and Supplementary file 6). This suggests that while absolute values for simi-
larity might be low, individual brain activation patterns during fear acquisition training at T0 were – at 
large – still more similar to the same subject’s activation pattern at T1 than to any others at T1. For 
extinction training, however, no significant differences between within- and between-subject similarity 
were found for any ROI or the whole brain (all p’s > 0.306; see Figure 3B and Supplementary file 6).

Figure 3. Acquisition (A) and extinction (B) training within- and between-subject similarities (Fisher r-to-z 
transformed) of voxel-wise brain activation patterns (based on beta maps) for CS discrimination at T0 and T1 for 
the whole brain and different regions of interest (ROIs). Triangles represent mean correlations, corresponding 
error bars represent 95% confidence intervals. Single data points represent Fisher r-to-z transformed correlations 
between the first-level response patterns of brain activation of each subject at T0 and T1 (within-subject similarity) 
or averaged r-to-z transformed correlations between the first-level response patterns of brain activation of one 
subject at T0 and all other subjects at T1 (between-subject similarity). Boxes of boxplots represent the interquartile 
range (IQR) crossed by the median as bold line, ends of whiskers represent the minimum/maximum value in the 
data within the range of 25th/75th percentiles ±1.5 IQR. Distributions of the data are illustrated with densities 
next to the boxplots. fMRI data for the reinstatement-test were not analyzed in the current study since data from a 
single trial do not provide sufficient power. *p < 0.05, **p < 0.01, ***p < 0.001. NAcc = nucleus accumbens; dACC 
= dorsal anterior cingulate cortex; dlPFC = dorsolateral prefrontal cortex; vmPFC = ventromedial prefrontal cortex; 
within-sub = within-subject; between-sub = between-subject.

Table 2. Overlap in significantly activated voxels at the individual and group level across both time points for CS discrimination.

Level Phase Coeff.

ROI

Whole 
brain Insula Amygdala Hippocampus Caudate Putamen Pallidum Accumbens Thalamus dACC dlPFC vmPFC

(A) 
Individual

Acq

Jaccard 0.076 0.075 0.011 0.012 0.039 0.037 0.018 0.017 0.033 0.132 0.080 0.039

Dice 0.131 0.121 0.018 0.021 0.057 0.058 0.029 0.024 0.055 0.189 0.118 0.061

Ext

Jaccard 0.007 0.001 0.000 0.000 0.001 0.000 0.000 0.000 0.001 0.003 0.001 0.005

Dice 0.014 0.001 0.000 0.000 0.001 0.000 0.000 0.001 0.001 0.006 0.002 0.009

(B) Group

Acq

Jaccard 0.620 0.595 0.294 0.323 0.613 0.740 0.747 0.441 0.834 0.898 0.895 0.045

Dice 0.765 0.745 0.448 0.472 0.760 0.847 0.855 0.595 0.910 0.946 0.944 0.086

Ext

Jaccard 0.057 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.044 0.014 0.000

Dice 0.108 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.085 0.028 0.000

Note. Results are shown for the whole brain as well as for selected regions of interest (ROIs) for fear acquisition training and extinction training. Both coefficients range from 0 (no overlap) to 1 (perfect 
overlap). Note that the Jaccard can be interpreted as % (Maitra, 2010). NAcc = nucleus accumbens; dACC = dorsal anterior cingulate cortex; dlPFC = dorsolateral prefrontal cortex; vmPFC = ventromedial 
prefrontal cortex.
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Low overlap at the individual level between both time points
As opposed to similarity measures (see above) which reflect the correlation of activated voxels 
between time points, overlap at the individual level denotes the degree of overlap of significantly 
activated voxels.

The overlap at the individual level was low with the Jaccard coefficient indicating 7.60% and 0.70% 
whole brain overlap for acquisition and extinction training, respectively (see Table 2A). Of note, indi-
vidual values ranged from 0% to 39.65% overlap during acquisition, suggesting large interindividual 
differences in overlap.

While overlap during acquisition for individual ROIs was comparable to the whole brain, Jaccard 
and Dice coefficients indicate close to 0 overlap at extinction (see Table 2A).

Robust longitudinal reliability at the group level
While longitudinal reliability at the individual level relies on (mean) individual subject responding at 
both time points, longitudinal reliability at the group level relies on the percentage of explained 
variance of group averaged trials at T1 by group averaged trials at T0 (i.e., R squared for SCR) or the 
degree of group level overlap of significant voxels expressed as Dice and Jaccard indices (i.e., BOLD 
fMRI).

SCR
For acquisition training (see Figure 4A), 40.66% (‍F

(
1, 11

)
= 7.54‍, ‍p = 0.019‍), 63.59% (‍F

(
1, 11

)
= 19.21‍, 

‍p = 0.001‍) and 75.67% (‍F
(
1, 11

)
= 34.20‍, ‍p < 0.001‍) of the variance of SCRs at T1 could be explained 

by SCRs at T0 for CS discrimination, CS+ and CS−, respectively, indicating robust longitudinal reli-
ability of SCRs at the group level for CS responding during acquisition. Interestingly, only 19.53% 
(‍F

(
1, 12

)
= 2.91‍, ‍p = 0.114‍) of the variance of SCRs to the US could be explained. For extinction training, 

in contrast, only 19.58% (‍F
(
1, 11

)
= 2.68‍, ‍p = 0.130‍) and 21.70% (‍F

(
1, 11

)
= 3.05‍, ‍p = 0.109‍) of the SCR 

variance at T1 could be explained by SCRs at T0 for CS discrimination and CS+, respectively, indi-
cating only limited longitudinal reliability at the group level. However, with 67.35% (‍F

(
1, 11

)
= 22.69‍, 

Figure 4. Scatter plots illustrating longitudinal reliability at the group level during (A) acquisition and (B) extinction 
training for raw skin conductance responses (SCRs) (in μS). Results for log-transformed as well as log-transformed 
and range corrected data are presented in Figure 4—figure supplement 1. Longitudinal reliability at the group 
level refers to the extent of explained variance in linear regressions comprising SCRs at T0 as independent and 
SCRs at T1 as dependent variable. Results are shown for trial-by-trial group average SCRs to the CS+ (red), CS− 
(blue), the unconditioned stimulus (US; yellow), and CS discrimination (black). Single data points represent pairs of 
single trials at T0 and T1 averaged across participants. Note that no US was presented during extinction training 
and hence, no reliability of the US is shown in (B).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Scatter plots illustrating longitudinal reliability at the group level during (A, C) acquisition 
and (B, D) extinction training for log-transformed (A, B) as well as log-transformed and range corrected (C, D) skin 
conductance responses (SCRs).

https://doi.org/10.7554/eLife.78717
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‍p = 0.001‍) explained variance at T1, longitudinal reliability of SCRs to the CS− appeared to be more 
robust as compared to CS discrimination and responses to the CS+ (see Figure 4B).

BOLD fMRI
In stark contrast to the low overlap of individual-level activation (see Table 2A), the overlap at the 
group level was rather high with 62.00% for the whole brain and up to 89.80% for individual ROIs (i.e., 
dACC and dlPFC; Jaccard) for CS discrimination during acquisition training (see Table 2B). Similar to 
what was observed for overlap at the individual level, a much lower overlap for extinction training as 
compared to acquisition training was observed for the whole brain (5.70% overlap) and all ROIs (all 
close to zero).

Cross-phases predictability of conditioned responding
Finally, we investigated if responding in any given experimental phase predicted responding in subse-
quent experimental phases. To this end, simple linear regressions with robust standard errors were 
computed for both SCRs and fear ratings and all data specifications (see Figure 5 and Supplementary 
file 7, Supplementary file 8). To approximate these analyses, correlations of patterns of BOLD brain 
activation between experimental phases were calculated (see Figure 6).

SCR
Stronger CS discrimination in SCRs during (delayed) fear recall (i.e., first trial of extinction training) 
was significantly predicted by both average and end-point performance (i.e., last two trials) during 
acquisition training for most data specifications (Figure 5A, columns 1 and 2). In contrast, average 
CS discrimination during extinction training was significantly predicted by acquisition training perfor-
mance only if data were ordinally ranked (columns 3 and 4). Strikingly, all predictions of extinction 
end-point performance (columns 5 and 6) as well as performance at reinstatement-test (columns 7–11) 
were non-significant – irrespective of phase operationalizations and data transformation.

The majority of predictions of SCRs to the CS+ and CS− were significant with few exceptions (see 
white cells in Figure  5A) – irrespective of experimental phases, their operationalization and data 
transformation. Most non-significant regressions included log-transformed and range corrected data. 
Strikingly, extinction end-point performance never predicted performance at reinstatement-test – irre-
spective of data transformation (column 11).

Fear ratings
Higher ratings for the CS+ as well as higher CS discrimination during acquisition training predicted 
higher CS+ ratings and CS discrimination at fear recall (Figure  5B, columns 1 and 2), extinction 
training (columns 3 and 4), and at reinstatement-test (columns 7 and 8). Higher responding to the CS+ 
and higher CS discrimination at fear recall predicted higher responding at reinstatement-test (column 
9) – irrespective of data transformations. In contrast, predictions of CS discrimination and CS+ ratings 
after extinction training were mostly non-significant (columns 5 and 6). Higher CS+ ratings during 
extinction training significantly predicted higher ratings at reinstatement-test which was not true for 
CS discrimination (columns 10 and 11).

Higher CS− ratings after acquisition training predicted higher CS− ratings at fear recall as well 
as after extinction training and CS− ratings after extinction training predicted the performance at 
reinstatement-test – irrespective of ranking of the data (columns 2, 6, and 11). Furthermore, when 
based on ordinally ranked data, the difference between ratings prior to and after acquisition 
predicted CS− ratings at fear recall and CS− ratings after acquisition training predicted the difference 
between CS− ratings prior to and after extinction training (columns 1 and 4). All other predictions 
were non-significant.

In sum, all significant predictions observed were positive with weak to moderate associations and 
indicate that higher responding in preceding phases predicted higher responding in subsequent 
phases for both SCRs and fear ratings.

BOLD fMRI
In short, all but one association (CS discrimination in the NAcc) was positive, showing that higher 
BOLD response during acquisition was associated with higher BOLD responding during extinction 

https://doi.org/10.7554/eLife.78717
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Figure 5. Illustration of standardized betas derived from regressions including skin conductance responses (SCRs) 
(A) and fear ratings (B) for all data specifications. Colored cells indicate statistical significance of standardized 
betas, non-colored cells indicate non-significance. Standardized betas are color coded for their direction and 
magnitude showing positive values from yellow to red and negative values from light blue to dark blue. Darker 
colors indicate higher betas. On the y-axis, the following data specifications are plotted from left to right: CS type, 
ranking of the data and transformation of the data. On the x-axis, the following information is plotted: Number 
of the columns for better orientation, predictor, and criterion included in the regression. For example, the beta 
value at the top left in (A) (i.e., 0.196) is the standardized beta as retrieved from the linear regression including 
CS discrimination in non-ranked and raw SCRs during average acquisition as predictor and the first extinction 
trial as criterion. For exploratory non-preregistered regressions including a small manyverse of approximations 
of SCR extinction training learning rates, see Figure 5—figure supplement 1. Tables containing regression 
parameters beyond the standardized betas depicted in panels A and B are presented in Supplementary file 7 
and Supplementary file 8. AVE = average, LOG = log-transformed data, LOG.RC = log-transformed and range 
corrected data, not ordinal = not ordinally ranked data, ordinal = ordinally ranked data.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. As per reviewer’s request, we illustrate standardized betas derived from non-pre-registered 
regressions including skin conductance response (SCR) extinction training learning rates (LR EXT).

https://doi.org/10.7554/eLife.78717
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training (see Figure 6). However, the standardized beta coefficients are mostly below or around 0.3 
except for CS+ associations in the dACC, indicating non-substantial associations for all ROIs and CS 
specifications that were near absent for CS discrimination. Analysis of CS+ and CS− data was included 
here as the analysis is based on beta maps and not T-maps (as in previous analyses) where a contrast 
against baseline is not optimal.

Cross-phases predictability depends on data specifications
Pooled across all other data specifications, some interesting patterns can be extracted: First, stan-
dardized betas were significantly lower for raw (t(65) = 8.08, p < 0.001, d = 0.99) and log-transformed 
(t(65) = 8.26, p < 0.001, d = 1.02) as compared to log-transformed and range corrected SCRs while 
standardized betas derived from the former did not differ significantly (t(65) = −0.26, p = 0.794, d = 
−0.03). Second, standardized betas derived from ranked and non-ranked analyses were comparable 
for fear ratings (t(32) = 1.26, p = 0.218, d = 0.22) but not for SCRs with significantly higher betas 
for non-ranked as opposed to ranked SCRs (t(98) = 2.37, p = 0.020, d = 0.24). Third, standardized 
betas for CS discrimination were significantly lower than for CS+ and CS− for both SCRs (CS+: t(65) 
= −15.31, p < 0.001, d = −1.88 and CS−: t(65) = −12.34, p < 0.001, d = −1.52) and BOLD fMRI (CS+: 
t(11) = −4.65, p < 0.001, d = −1.34 and CS−: t(11) = −3.05, p = 0.011, d = −0.88), while for ratings, 
standardized betas for CS discrimination were higher than for the CS− (t(21) = 3.11, p = 0.005, d = 
0.66) and comparable to those for the CS+ (t(21) = −0.57, p = 0.572, d = −0.12). Furthermore stan-
dardized betas were larger for the CS+ than for the CS− for SCRs (t(65) = 3.79, p < 0.001, d = 0.47), 
ratings (t(21) = 3.12, p = 0.005, d = 0.67) and BOLD fMRI (t(11) = 4.34, p = 0.001, d = 1.25). Fourth, 
standardized betas derived from regressions predicting fear recall were significantly higher than for 
reinstatement-test for both SCRs (t(124) = 4.35, p < 0.001, d = 0.86) and fear ratings (t(40) = 5.15, p 
< 0.001, d = 1.76).

Discussion
In fear conditioning research, little is known about longitudinal reliability (in the literature often referred 
to as test–retest reliability) for common outcome measures and almost nothing is known about their 
internal consistency and to what extent predictability across experimental phases is possible.

Here, we aimed to fill this gap and complement traditionally used approaches focusing on ICCs 
(summarized in Supplementary file 1) with (1) analyses of response similarity, (2) the degree of overlap 
of individual-level brain activation patterns as well as (3) by exploring longitudinal reliability at the 
group level in addition to (4) internal consistency across outcome measures.

Figure 6. Illustration of standardized betas derived from correlation analyses between brain activation patterns 
during acquisition and extinction training in different regions of interest (ROIs) and different data specifications. 
Standardized betas are color coded for their direction and magnitude showing positive values from yellow to red 
and negative values from light blue to dark blue. Darker colors indicate higher betas. NAcc = nucleus accumbens; 
dACC = dorsal anterior cingulate cortex; dlPFC = dorsolateral prefrontal cortex; vmPFC = ventromedial prefrontal 
cortex.

https://doi.org/10.7554/eLife.78717
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Moreover, we also directly investigated predictability of responding from one experimental phase 
to subsequent experimental phases. For all analyses, we followed a multiverse-inspired approach 
(Parsons, 2020) by taking into account different data specifications.

Overall, longitudinal group-level reliability was robust for SCRs (see Figure  4) and the BOLD 
response (see Table  2B) while longitudinal individual-level reliability as assessed by ICCs (see 
Figure 1C–F), and individual-level BOLD activation overlap (see Table 2A) was more limited across 
outcome measures and data specifications – particularly during extinction training. This is in line with 
previous work in fear conditioning (Cooper et  al., 2022b; Fredrikson et  al., 1993; Ridderbusch 
et  al., 2021; Torrents-Rodas et  al., 2014; Zeidan et  al., 2012) reporting figures for longitudinal 
individual-level reliability comparable to ours across outcome measures (SCRs, fear ratings, BOLD 
fMRI) and experimental phases. Importantly, however, it remains a challenge to interpret the results as 
benchmarks for ICCs are derived from psychometric work on trait self-report measures and it is plau-
sible that what is interpreted as ‘low’ and ‘high’ reliability in experimental work should be substantially 
lower (Parsons et al., 2019).

Our complementary analyses beyond traditional ICCs indicate that SCRs of one individual at T0 
were not more similar to responses of the same individual at T1 than compared to others at T1 (see 
Figure 2). For BOLD fMRI, however, acquisition-related individual BOLD activation patterns at T0 
were more similar to their own activation patterns at T1 than to other individuals’ activation patterns 
(see Figure 3). This was, however, not the case for extinction. Hence, this may suggest that BOLD 
fMRI might be more sensitive to detect similarity at individual-level responses within participants than 
SCRs in our data – maybe due to the dependence on spatial (i.e., voxel-by-voxel) rather than temporal 
(i.e., trial-by-trial) patterns.

Furthermore, we observed a few differences in longitudinal reliability at the individual level 
depending on data processing specifications (see also Parsons, 2020). For most data specifica-
tions, reliability was slightly higher for log-transformed and range-corrected SCRs (as opposed to 
raw and only log-transformed data) while – in contrast to what has been shown for other paradigms 
and outcome measures (Baker et al., 2021; see also https://shiny.york.ac.uk/powercontours/) – an 
increasing number of trials included in the calculation of ICCs did not generally improve reliability 
(see Figure 1—figure supplements 3–8). Together, this suggests that longitudinal reliability at the 
individual level is relatively stable across different data transformations and paradigm specifications 
(e.g., number of trials within the range used here, i.e., 1 to maximum 14) which is important informa-
tion facilitating the integration of previous work using different time intervals, reliability indices, and 
paradigms (see Supplementary file 1; Cooper et al., 2022b; Fredrikson et al., 1993; Ridderbusch 
et al., 2021; Torrents-Rodas et al., 2014; Zeidan et al., 2012).

In contrast, we observed quite robust longitudinal reliability at the group level for both SCRs (see 
Figure 4) and BOLD fMRI (see Table 2B) between both time points with substantial (i.e., up to 90%) 
overlap in group-level BOLD fMRI activation patterns (whole brain and ROI based) as well as substantial 
(i.e., up to 76%) explained variance at T1 by variance at T0 for SCRs. However, this was generally only true 
for acquisition but not extinction training. This pattern of higher reliability during acquisition compared 
to extinction training has been described in the literature (SCRs: Fredrikson et al., 1993; Zeidan et al., 
2012) and was also evident in the similarity analyses of BOLD fMRI and the group-level reliability of 
SCRs. While this pattern did not emerge across all analyses, it appears to be particularly present when 
examining reliability of CS discrimination as it was the case for BOLD fMRI and as it also emerged in 
individual-level reliability analyses of CS discrimination in SCRs (internal consistency and ICCs) and fear 
ratings (ICCs). Since CS discrimination is typically lower during extinction as compared to acquisition 
training, this restriction of variance potentially resulted in a floor effect which might have lowered the 
internal consistency and longitudinal reliability of CS discrimination during extinction training.

Reports regarding this discrepancy between group- and individual-level longitudinal reliability were 
recently highlighted for a number of (classic) experimental paradigms (Fröhner et al., 2019; Hedge 
et al., 2018; Herting et al., 2018; Plichta et al., 2012; Schümann et al., 2020). Our results add fear 
conditioning and extinction as assessed by SCRs and BOLD fMRI to this list and have important impli-
cations for translational questions aiming for individual-level predictions – particularly since findings 
obtained at the group level are not necessarily representative for any individual within the group 
(Fisher et al., 2018).

In addition to these methods-focused insights, we observed significant associations between 
responding in different experimental phases for SCR (see Figure 5A), fear ratings (see Figure 5B) and 

https://doi.org/10.7554/eLife.78717
https://shiny.york.ac.uk/powercontours/


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Klingelhöfer-Jens et al. eLife 2022;11:e78717. DOI: https://doi.org/10.7554/eLife.78717 � 18 of 35

BOLD fMRI (see Figure 6) revealing that higher responses in previous phases were generally modestly 
associated with higher responses in subsequent phases in all outcome measures. However, a remark-
able amount of predictions were non-significant – which was particularly true for CS discrimination 
in SCRs and BOLD fMRI. This may be explained by difference scores (i.e., CS+ minus CS−) being 
generally less reliable (Infantolino et al., 2018; Lynam et al., 2006) due to a subtraction of mean-
ingful variance (Moriarity and Alloy, 2021) particularly in highly correlated predictors (Thomas and 
Zumbo, 2012). Especially at the end of the extinction, CS discrimination is low and hence, variance 
limited. Therefore, floor effects may contribute to the non-significant effects for extinction end-point 
performance.

Mixed findings in the literature support both the independence of conditioned responding in 
different experimental phases (Bouton et al., 2006; Plendl and Wotjak, 2010; Prenoveau et al., 
2013; Shumake et al., 2014) but also their dependence – particularly in clinical samples (Foa et al., 
1983; Rauch et al., 2004; Rothbaum et al., 2014; Smits et al., 2013a; Smits et al., 2013b). These 
diverging findings in experimental and clinical studies might point toward a translational gap. 
However, our work may suggest that the strengths of associations between responding in different 
phases depended on the specific outcome measure and its specifications (e.g., responses specified 
as CS discrimination, CS+, or CS−). Yet another explanation – in particular for predictions spanning 
a 24 hrs delay in experimental phases − might be that individual differences in consolidation efficacy 
(e.g., how efficiently the fear and extinction memories are consolidated after performing acquisition 
and extinction training, respectively) may underlie differences in predictability. For example, the 
performance during a retention or RoF test phase is considered to be determined by the strength 
of the fear and extinction memory, respectively. Memory strength, however, is not only determined 
by the strength of the initially acquired memory but also by its consolidation (discussed in Lonsdorf 
et al., 2019b). Thus, as acquisition training preceded the extinction training and reinstatement-test 
by 24 hrs, it is highly likely that individual differences in consolidation efficacy also impact on perfor-
mance at test. This has also implications for the common practice of correcting responses during one 
experimental phase for responding during preceding experimental phases (discussed in Lonsdorf 
et al., 2019b).

Importantly, together with our observation of robust internal consistency (see Figure 1 and also 
Fredrikson et al., 1993), this pattern of findings suggests that individual-level predictions at short 
intervals are plausible but might be more problematic for longer time periods as suggested by the 
limited stability over time in our data.

Yet, we would like to point out that the values we report may in fact point toward good and not 
limited longitudinal individual-level reliability as our interpretation is guided by benchmarks that were 
not developed for experimental data but from psychometric work on trait self-report measures. We 
acknowledge that the upper bound of maximally observable reliability may differ between both cases 
of application as empirical neuroscientific research inherently comes with more noise. The problem 
remains that predictions in fear conditioning paradigms appear to not be meaningful for longer 
periods of time (~6 months). Thus, a key contribution of our work is that it highlights the need to pay 
more attention to measurement properties in translational research in general and fear conditioning 
research specifically (e.g., implement reliability calculations routinely in future studies). To date, it 
remains an open question what ‘good reliability’ in experimental neuroscientific work actually means 
(Parsons et al., 2019).

Yet, before discussing implications of our results in detail, some reflections on potential (method-
ological) reasons for (1) limited individual-level but robust group-level reliability and (2) on the role of 
time interval lengths deserve attention:

First, the limited longitudinal individual-level reliability might indicate that the fear conditioning 
paradigm employed here – which is a rather strong paradigm with 100% reinforcement rate – may be 
better suited for investigations of group effects and to a lesser extent for individual difference ques-
tions – potentially due to limited variance between individuals (Hedge et al., 2018; Parsons, 2020; 
Parsons et al., 2019). However, high reliability appears to be possible in principle, as we can conclude 
from the robust internal consistency of SCRs that we observed. This speaks against a limited between-
subject variance and a general impracticability of the paradigm for individual difference research. 
Hence, we call for caution and warn against concluding from our report that fear conditioning and our 
outcome measures (SCRs, BOLD fMRI) are unreliable at the individual level.

https://doi.org/10.7554/eLife.78717
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Second, limited individual-level but robust group-level longitudinal reliability might be (in part) 
due to different averaging procedures which impacts error variance (Kennedy et al., 2021). More 
precisely, compared to individual-level data, group-level data are based on highly aggregated data 
resulting in generally reduced error variance which increases group-level reliability.

Third, different operationalizations of the same measurement might have different reliabilities 
(Kragel et al., 2021). For instance, amygdala habituation has been shown to be a more reliable measure 
than average amygdala activation (Plichta et al., 2014) and more advanced analytical approaches 
such as intraindividual neural response variability (Månsson et al., 2021) and multivariate imaging 
techniques Kragel et al., 2021; Marek et al., 2020; Noble et al., 2021; Visser et al., 2021 have been 
suggested to have better (longitudinal) reliability than more traditional analyses approaches. Similarly, 
methodological advances (e.g., techniques to adjust the functional organization of the brain across 
participants, Kong et al., 2021; or hyperalignment, Feilong et al., 2021) in measurement quality and 
tools may ultimately result in better reliability estimates (DeYoung et al., 2022).

Fourth, as discussed above, caution is warranted as traditional benchmarks for ‘good’ reliability 
were not developed for experimental work but mainly from psychometric work on trait self-report 
measures (see above).

Finally, longitudinal reliability refers to measurements obtained under the same conditions and 
hence it is both plausible and well established that higher reliability is observed at short test–retest 
intervals (see also Noble et al., 2021; Werner et al., 2022). Longer intervals are more susceptible 
to true changes of the measurand – for instance due to environmental influences such as seasonality, 
temperature, hormonal status, or life events (see Specht et al., 2011; Vaidya et al., 2002). Indeed 
most longitudinal reliability studies in the fMRI field used shorter intervals (<6 months, see Elliott 
et al., 2020; Noble et al., 2021) than our 6-month interval and hence our results should be concep-
tualized as longitudinal stability rather than a genuine test–retest reliability. The satisfactory internal 
consistency speaks against excessive noisiness inherent to our measures as a strong noisiness would 
also be evident in measurements within one time point and not only emerge across our retest interval. 
Thus, we rather suggest a true change of the measurand during our retest interval and hence a poten-
tially stronger state than trait dependency.

What do our findings imply? Fear conditioning research has been highlighted as a particularly 
promising paradigm for the translation of neuroscientific findings into the clinics (Anderson and Insel, 
2006; Cooper et al., 2022a; Fullana et al., 2020; Milad and Quirk, 2012) and some of the most 
pressing translational questions are based on individual-level predictions such as predicting treat-
ment success. Our results, however, suggest that measurement reliability may allow for individual-
level predictions for (very) short but potentially less so for longer time intervals (such as our 6 months 
retest interval). Importantly, however, robust group-level reliability appears to allow for group-level 
predictions over longer time intervals. This applies to SCRs and BOLD fMRI in our data but note that 
the latter was not investigated for fear ratings. A potential solution and promising future avenue to 
make use of both good group-level reliability and individual-level predictions might be the use of 
homogenous (latent) subgroups characterized by similar response profiles (e.g., rapid, slow or no 
extinction, Galatzer-Levy et al., 2013a) – to exploit the fact that reliability appears to be higher for 
more homogenous samples (Gulliksen, 1950).

While general recommendations and helpful discussions on the link between reliability and 
number of trials (Baker et  al., 2021), statistical power (Parsons, 2020), maximally observable 
correlations (Parsons, 2020), sample and effect size (Hedge et al., 2018; Parsons, 2020) consid-
erations exist, our results highlight the need for field and subdiscipline specific considerations. Our 
work allows for some initial recommendations and insights. First, we highlight the value of using 
multiple, more nuanced measures of reliability beyond traditional ICCs (i.e,. similarity, overlap, 
Fröhner et al., 2019) and second, the relation between number of trials and reliability in an exper-
iment with a learning component (i.e., no increase in reliability with an increasing number of trials). 
Importantly, our work can also be understood as an empirically based call for action, since more 
work is needed to allow for clear-cut recommendations, and as a starting point to develop and 
refine comprehensive guidelines in the future. We also echo the cautionary note of Parsons that 
‘estimates of reliability refer to the measurement obtained – in a specific sample and under partic-
ular circumstances, including the task parameters’ (cf. Parsons, 2020). Hence, it is important to 
remember that reliability is a property of a measure that is not fixed and may vary depending on 
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task specifications and samples. In other words, reliability is not a fixed property of the task itself, 
here fear conditioning.

We argue that we may need to take a (number of) step(s) back and develop paradigms and data 
processing pipelines explicitly tailored to individual difference research (i.e., correlation) or exper-
imental (i.e., group level) research questions (e.g., Parsons, 2020) and focus more strongly on 
measurement reliability in experimental work – which has major consequences on effect sizes and 
statistical power (Elliott et al., 2020). More precisely, multiverse-type investigations (Parsons, 2020; 
Steegen et al., 2016) that systematically scrutinize the impact of several alternative and equally justi-
fiable processing and analytical decisions in a single dataset (Kuhn et  al., 2022; Lonsdorf et  al., 
2022; Sjouwerman et al., 2022) – as also done here for transformations and number of trials – may 
be helpful to ultimately achieve this overarching aim. This could be complemented by systematically 
varying design specifications (Harder, 2020) which are extensively heterogeneous in fear conditioning 
research (Lonsdorf et al., 2017a). Calibration approaches, as recently suggested Bach et al., 2020 
follow a similar aim.

Such work on measurement questions should be included in cognitive-experimental work as a 
standard practice (Parsons, 2020) and can (often) be explored in a cost and resource effective way 
in existing data which in the best case are openly available – which, however, requires cross-lab data 
sharing and data management homogenization plans. Devoting resources and funds to measurement 
optimization is a valuable investment into the prospect of this field contributing to improved mental 
health (Moriarity and Alloy, 2021) and to resume the path to successful translation from neuroscience 
discoveries into clinical applications.

Materials and methods
Pre-registration
This project has been pre-registered on the Open Science Framework (OSF) (August 03, 2020; 
retrieved from https://doi.org/10.17605/OSF.IO/NH24G). Deviations from the pre-registered protocol 
are made explicit in brief in the methods section and reasons are specified in Supplementary file 2 as 
recommended by Nosek et al., 2018, who note that such deviations are common and occur even in 
the most predictable analysis plans.

Participants
Participants were selected from a large cohort providing participants for subsequent studies as part of 
the Collaborative Research Center CRC 58. Participants from this sample were recruited for this study 
through a phone interview. Only healthy individuals between 18 and 50 years of age without a history 
of childhood trauma according to the Childhood Trauma Questionnaire (CTQ, critical cutoffs as identi-
fied by Bernstein et al., 2003; Häuser et al., 2011). Additional exclusion criteria were claustrophobia, 
cardiac pacemaker, non-MR-compatible metal implants, brain surgery, left handedness, participation 
in pharmacological studies within the past 2 weeks, medication except for oral contraceptives, internal 
medical disorders, chronic pain, neurological disorders, psychiatric disorders, metabolic disorders, 
acute infections, complications with anesthesia in the past and pregnancy. Participants were right 
handed and had normal or corrected to normal vision. All participants gave written informed consent 
to the protocol which was approved by the local ethics committee (PV 5157, Ethics Committee of the 
General Medical Council Hamburg). The study was conducted in accordance with the Declaration of 
Helsinki. All participants were naive to the experimental setup and received a financial compensation 
of 170€ for completion of experiments at both time points (T0 and T1).

The total sample consisted of 120 participants (femaleN = 79, maleN = 41, ageM = 24.46, ageSD = 
3.73, agerange = 18–34). At T0 on days 1 and 2, in total 13 participants were excluded due to technical 
issues (day 1: N = 0; day 2: N = 3), deviating protocols (day 1: N = 2; day 2: N = 0) and SCR non-
responding (day 1: N = 3; day 2: N = 5, see below for definition of ‘non-responding’). Accordingly, the 
final dataset for the cross-sectional analysis of T0 data consists of 107 subjects (femaleN = 70, maleN = 
37, ageM = 24.30, ageSD = 3.68, agerange = 18–34). 84.11% of these participants were aware and 6.54% 
were unaware of CS–US contingencies. The remaining 9.35% subjects uncertain of the CS–US contin-
gencies were classified as semi-aware. CS–US contingency awareness of participants was assessed 
with a standardized post-experimental awareness interview (adapted from Bechara et al., 1995). On 
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average, the US aversiveness was rated on day 1 with a value of 19.82 (SD = 3.28) and on day 2 with 
a value of 16.46 (SD = 4.75) on a visual analog scale (VAS) ranging from 0 to 25. The US intensity was 
8.04 mA (SD = 8.28) on average. Averaged STAI-S (Strait-Trait Anxiety Inventory – State; Spielberger, 
1983) scores were 35.38 (SD = 5.26) on day 1 and 35.57 (SD = 6.69) on day 2.

At T1, 16 subjects were excluded due to technical issues (day 1: N = 1; day 2: N = 1), deviating 
protocols (day 1: N = 3; day 2: N = 0) and SCR non-responding (day 1: N = 5; day 2: N = 6; see below 
for definition of ‘non-responding’). Additionally, 20 participants dropped out between T0 and T1 
leaving 71 subjects for longitudinal analyses (femaleN = 41, maleN = 30, ageM = 24.63, ageSD = 3.77, 
agerange = 18–32). 88.73% of the participants were aware and 1.41% were unaware of CS–US contin-
gencies. The remaining 9.86% were classified as semi-aware. US aversiveness was rated with M = 
19.96 (SD = 2.99) on day 1 and with M = 17.73 (SD = 3.90) on day 2 (VAS = 0–25). On average, the US 
intensity amounted to 9.76 mA (SD = 13.18). Averaged STAI-S scores were 36.33 (SD = 6.09) on day 
1 and 35.83 (SD = 7.10) on day 2.

Experimental design
Here, we reanalyzed pre-existing data that are part of a larger longitudinal study that spanned six time 
points. In the current study, we included data from a 2-day fear conditioning experiment which were 
collected at two time points (T0 and T1) 6 months apart. The 2-day experimental procedure and the 
stimuli were identical at both time points. Measures acquired during the full longitudinal study that are 
not relevant for the current work such as questionnaires, hair, and salivary cortisol are not described in 
detail here. For an illustration of the experimental design, see also Figure 7.

Experimental protocol and stimuli
The protocol consisted of a habituation and a fear acquisition training phase on day 1 and an extinc-
tion training, reinstatement, and reinstatement-test phase on day 2. Acquisition and extinction training 
included 28 trials each (14 CS+/14 CS−), habituation and the reinstatement-test phase 14 trials each 
(7 CS+/7 CS−). Acquisition training was designed as delay conditioning with the US being presented 
0.2  s before CS+ offset with 100% reinforcement rate (i.e., all CS+ presentations followed by the 
US). CSs were two light gray fractals (RGB [230, 230, 230]), 492*492 pixels presented in a pseudo-
randomized order, with no more than two identical stimuli in a row, for 6–8  s (mean: 7  s). During 
the intertrial interval (ITI), a white fixation cross was shown for 10–16 s (mean: 13 s). Reinstatement 
consisted of three trials with a duration of 5 s each presented after a 10 s ITI. Reinstatement USs were 
delivered 4.8 s after each trial onset. The reinstatement phase was followed by a 13 s ITI before the 
next CS was presented during reinstatement-test. All stimuli were presented on a gray background 
(RGB [100, 100, 100]) using Presentation software, 2010 (Version 14.8, Neurobehavioral Systems, 
Inc, Albany, CA USA) keeping the context constant to avoid renewal effects (Haaker et al., 2014). 
Visual stimuli were identical for all participants, but allocation to CS+/CS− and CS type of the first trial 
of each phase were counterbalanced across participants.

The electrotactile US consisted of a train of three 2 ms electrotactile rectangular pulses with an 
interpulse interval of 50 ms generated by a Digitimer DS7A constant current stimulator (Welwyn 
Garden City, Hertfordshire, UK) and was administered to the back of the right hand of the participants 
through a 1-cm diameter platinum pin surface electrode. The electrode was attached between the 
metacarpal bones of the index and middle finger. The US was individually calibrated in a standardized 
stepwise procedure controlled by the experimenter aiming at an unpleasant, but still tolerable level 
rated by the participants between 7 and 8 on scale from zero (=stimulus was not unpleasant at all) to 
10 (=stimulus was the worst one could imagine within the study context). Participants were, however, 
not informed that we aimed at a score of 7–8.

Outcome measures
Skin conductance responses
SCRs were acquired continuously during each phase of conditioning using a BIOPAC MP 100 ampli-
fier (BIOPAC Systems, Inc, Goleta, CA, USA) and Spike 2 software (Cambridge Electronic Design, 
Cambridge, UK). For analog to digital conversion, a CED2502-SA was used. Two self-adhesive 
hydrogel Ag/AgCl-sensor recording SCR electrodes (diameter = 55 mm) were attached on the palm 
of the left hand on the distal and proximal hypothenar. A 10 Hz lowpass filter and a gain of 5Ω were 
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applied. Data were recorded at 1000 Hz and later downsampled to 10 Hz. Subsequently, SCRs were 
scored semi-manually using the custom-made computer program EDA View (developed by Prof. Dr. 
Matthias Gamer, University of Würzburg). The program is used to quantify the SCR amplitude based 
on the trough-to-peak method with the trough occurring at 0.9–3.5 s after CS onset and 0.9–2.5 s 
after US onset (Boucsein et al., 2012; Sjouwerman and Lonsdorf, 2019). The maximum rise time 
was set to maximally 5 s (Boucsein et al., 2012) unless the US occurred earlier. SCRs confounded 
by recording artifacts due to technical reasons, such as electrode detachment or responses moving 
beyond the sampling window, were discarded and scored as missing values. SCRs smaller than 0.01 

Figure 7. Illustration of the experimental design (A) and of the calculations of different measures for skin 
conductance responses (SCRs) including (averaged) acquisition trials (B). Note that the habituation phase is not 
shown in the figure, but described in the text.
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μS within the defined time window were defined as zero responses. Participants with zero responses 
to the US in more than two-thirds (i.e., more than 9 out of 14) of US acquisition trials were classified as 
non-responders on day 1. On day 2, non-responding was defined as no response to any of the three 
reinstatement USs.

SCR data were prepared for response quantification by using MATLAB, 2016 version R2016b. 
No learning could have possibly taken place during the first CS presentations as the US occurred 
only after the CS presentation. Consequently, the first CS+ and CS− trials during acquisition training 
were excluded from analyses. Hence, a total of 26 trials (13 differential SCRs) for the acquisition 
training phase were included in the analyses. For US analyses, all 14 trials were entered into the 
analyses.

Similarly, responses to the first CS+ and CS− during extinction training have to be considered a 
24 hrs delayed test of fear recall as no extinction learning could have taken place. Hence, the first trial 
and the remaining trials of the extinction were analyzed separately. CS discrimination was computed 
by subtracting (averaged) CS− responses from (averaged) CS+ responses.

Fear ratings
Fear ratings to the CSs were collected prior to and after acquisition and extinction training as well as 
after the reinstatement-test. Participants were asked ‘how much stress, fear and tension’ they experi-
enced when they last saw the CS+ and CS−. After reinstatement-test, ratings referred to (1) the first 
CS presentation per CS type directly after reinstatement as well as (2) the last CS presentation during 
reinstatement-test. After acquisition training and the reinstatement-test, subjects were also asked 
how uncomfortable they experienced the US itself. All ratings were given on a VAS ranging from zero 
(answer = none) to 100 (answer = maximum). For analyses, the rating scale was reduced to 0–25. 
Participants had to confirm the ratings via button press. A lack of confirmation resulted in exclusion of 
the trial from analyses. CS discrimination was computed by subtracting CS− from CS+ ratings.

BOLD fMRI: data acquisition, preprocessing, and first-level analysis
The inclusion of BOLD fMRI data was not initially planned and is included here as an additional non-
pre-registered outcome measure.

Data acquisition
Functional data were acquired with a 3 Tesla PRISMA whole body scanner (Siemens Medical Solutions, 
Erlangen, Germany) using a 64-channel head coil and an echo planar imaging sequence (repetition 
time: 1980 ms, echo time: 30 ms, number of slices: 54, slice thickness: 1.7 mm [1 mm gap], field of view 
= 132 × 132 mm). T1-weighted structural images were acquired using a magnetization prepared rapid 
gradient echo (MPRAGE) sequence (TR: 2300 ms, TE: 2.98 ms, number of slices: 240, slice thickness: 
1 mm, field of view = 192 × 256 mm).

Preprocessing
fMRI data analysis was performed using SPM12 (Wellcome Department of Neuroimaging, London, 
UK) and MATLAB, 2019. Preprocessing included realignment, coregistration, normalization to a 
group-specific DARTEL template and smoothing (6 mm full width at half maximum, FWHM).

First-level analysis
Regressors for the first-level analysis of acquisition training data included separate regressors for 
the first CS+ and CS− trials and the remaining CS+ and CS− trials because no learning could have 
occurred at the first presentation of the CSs. Nuisance regressors included habituation trials, US 
presentation, fear ratings and motion parameters. Likewise, separate regressors for the first CS+ and 
CS− trials of extinction (because no extinction has taken place yet) as well as the remaining CS+ and 
CS− trials were included as regressors of interest in the first-level analysis of extinction data acquired 
on day 2, while US, rating onset and motion parameters were included as regressors of no interest. No 
second-level analysis was completed in the current study, instead different analyses were carried out 
based on first-level models as further detailed in the statistical analysis section.

https://doi.org/10.7554/eLife.78717
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Regions of interest
A total of 11 ROIs (i.e., bilateral anterior insula, amygdala, hippocampus, caudate nucleus, putamen, 
pallidum, NAcc, thalamus, dACC, dlPFC, and vmPFC) were included in the current study. Amyg-
dala, hippocampus, caudate nucleus, putamen, pallidum, ventral striatum (i.e., NAcc), and thalamus 
anatomical masks were extracted from the Harvard-Oxford atlas (Desikan et al., 2006) at a maximum 
probability threshold of 0.5. The anterior insula was defined as the overlap between the thresholded 
anatomical mask from the Harvard-Oxford atlas (threshold: 0.5) and a box of size 60 × 30 × 60 mm 
centered around MNIxyz = 0, 30, 0 based on anatomical subdivisions (Nieuwenhuys, 2012). The 
cortical ROI dlPFC and dACC were created by building a box of size 20 × 16 × 16 mm around peak 
voxels obtained in a meta-analysis (with the x coordinate set to 0 for the dACC) (left dlPFC: MNIxyz 
= −36, 44, 22, right dlPFC: MNIxyz = 34, 44, 32, dACC: MNIxyz = 0, 18, 42, Fullana et al., 2016). As 
previously reported (Lonsdorf et al., 2014), the cortical ROI vmPFC was created by using a box of 
size 20 × 16 × 16 mm centered on peak coordinates identified in prior studies of fear learning (vmPFC: 
MNIxyz = 0, 40, −12, e.g., Kalisch et al., 2006, Milad et al., 2007) with the x coordinate set to 0 to 
obtain masks symmetric around the midline.

All analyses of BOLD fMRI as described below were conducted separately not only for the whole 
brain but also for these 11 selected ROIs.

Statistical analyses
For a comprehensive overview of which analysis was carried out for which outcome measures, stimuli, 
phases and data transformations (see Table 1). For an illustration of which data were included in the 
different analyses, see also Figure 7B.

Internal consistency
We assessed the internal consistency of SCRs for both time points and experimental phases separately 
(for details, see Table 1): trials of the respective time point and phase were split into odd and even 
trials (i.e., odd–even approach) and averaged for each individual subject. Averaged odd and even 
trials were then correlated by using Pearson’s correlation coefficient. To obtain a rather conserva-
tive result, we refrained from applying the Spearman–Brown prophecy formula. We considered the 
odd–even approach as the most appropriate since our paradigm constitutes a learning experiment 
and we suggest that adjacent trials measure a more similar construct compared to other possible 
splits of trials such as a split into halves or a large number of random splits as implemented in the 
permutation-based approach recommended by Parsons et al., 2019. Calculations of internal consis-
tency were not possible for fear ratings and BOLD fMRI due to the limited number of data points for 
fear ratings and an experimental design that did not allow for a trial-by-trial analysis of BOLD fMRI 
data. Internal consistency was interpreted using benchmarks for unacceptable (<0.5), poor (>0.5 but 
<0.6), questionable (>0.6 but <0.7), acceptable (>0.7 but <0.8), good (>0.8 but <0.9), and excellent 
(≥0.9) (Kline, 2013).

Longitudinal reliability at the individual and group level
While internal consistency indicates the extent to which all items of a test or – here, trials of an 
experimental phase – measure the same construct (Revelle, 1979), longitudinal reliability reflects the 
variability across two or more measurements of the same individual under the same conditions and is 
therefore indicative of the degree of correlation and agreement between measurements (Koo and Li, 
2016). For calculations of longitudinal reliability, we included data from both time points T0 and T1 
from the same experimental phase. To capture different aspects of longitudinal reliability, we chose a 
dual approach of calculating longitudinal reliability at both (1) the individual level and (2) at the group 
level (for details see also Table 1). To this end, longitudinal reliability at the individual and group 
level indicates to which extent responses within the same individual and within the group as a whole 
are stable over time. More precisely, whereas longitudinal reliability at the individual level takes into 
account the individual responses of participants, which are then related across time points, reliability 
at the group level first averages the individual responses across the group and then relates them 
across time points. Reliability at the individual level inherently includes the group level, as it is calcu-
lated for the sample as whole, but the individual responses are central to the calculation. Contrarily, 
for reliability at the group level, the calculation is carried out using group averages.

https://doi.org/10.7554/eLife.78717
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Reliability at the individual level was investigated as (1) ICCs encompassing both time points, (2) 
within- and between-subject similarity of individual trial-by-trial responding (i.e., SCRs) or BOLD fMRI 
activation patterns between time points, and (3) as the degree of overlap of significant voxels between 
time points within an individual (for methodological details see below). Reliability at the group level 
was investigated as (1) trial-by-trial group average SCRs and (2) the degree of overlap of significant 
voxels between time points within the group as a whole (for methodological details see below).

Assessments of internal consistency, within- and between-subject similarity, overlap at the individual 
and group level as well as longitudinal reliability of SCRs at the group level were not pre-registered 
but are included as they provide valuable additional and complementary information. Overlap and 
similarity analyses follow the methodological approach of Fröhner et al., 2019.

Longitudinal reliability at the individual level
Intraclass correlation coefficients
ICCs were determined separately for each experimental phase by including data from both time 
points T0 and T1. Generally, larger ICCs indicate higher congruency of within-subject responding 
between time points and increased distinction of subjects from each other (Noble et  al., 2021). 
Parsons et al., 2019 recommend the calculations of ICCs in cognitive-behavioral tasks through a two-
way mixed-effects model of single rater type labeled ICC(2,1) (absolute agreement, in the following 
referred to as ICCabs) and ICC(3,1) (consistency, in the following referred to as ICCcon) according to 
Shrout and Fleiss, 1979 convention and to report their 95% CIs. Due to their slightly different calcu-
lations, ICCabs tends to be lower than ICCcon (see Table 1).

However, as the pre-registered mixed-effects approach resulted in non-convergence of some 
models for SCRs and ratings, we implemented an analysis of variance (ANOVA) instead of the mixed-
effects approach to calculate ICCabs and ICCcon (Shrout and Fleiss, 1979). To calculate ICCs for BOLD 
fMRI (additional not pre-registered analyses), the SPM-based toolbox fmreli (Fröhner et al., 2019) 
was used. BOLD fMRI ICCs were determined for each voxel and averaged across the whole brain and 
for selected ROIs.

Furthermore, we investigated whether or to what extent ICCs change when ICC calculations were 
based on different numbers of trials. To this end, we included (additional non-pre-registered) analyses 
of trial-by-trial ICCs for SCRs in the supplementary material: First, ICCs were only computed for the 
first trial. Then, all subsequent trials of the respective phase were added stepwise to this first trial. 
After each step, trials were averaged and ICCs were calculated (see Figure 1—figure supplements 
3–8).

Within the figures, values less than 0.5 are classified as poor reliability, values between 0.5 and 
0.75 as indicative of moderate reliability, values between 0.75 and 0.9 are classified as good reliability 
and values greater than 0.9 as excellent reliability, as suggested by Koo and Li, 2016. These bench-
marks are included here to provide a frame of reference but we point out that these benchmarks 
are arbitrary and should hence not be overinterpreted in particular in the context of responding in 
experimental paradigms as these benchmarks have been developed in different contexts (i.e., trait 
self-report measures).

Within- and between-subject similarity
Both ICCs and within-subject similarity indicate to which extent responses of an individual at one 
time point are comparable to responses of the same individual at a later time point. Both were calcu-
lated separately for each experimental phase by including data from both time points. There are, 
however, two main differences: First, ICCs were calculated by decomposition of variances as applied 
for ANOVA, whereas similarity was calculated as correlation of responses between both time points 
(1) within one individual (within-subject similarity) and (2) between this individual and all other individ-
uals (between-subject similarity). Second, while ICCs are interpreted in terms of absolute values using 
cutoffs that provide information on the quantity of longitudinal reliability, within-subject similarity was 
compared to between-subject similarity showing if responses of one subject at T0 were more similar 
to themselves at T1 than to responses of all others at T1. The approach to the assessment of similarity 
was derived from the idea of representational similarity analysis (RSA) introduced by Kriegeskorte 
et al., 2008 and previously used by Fröhner et al., 2019 for the comparison of fMRI BOLD activation 
patterns between different sessions.

https://doi.org/10.7554/eLife.78717


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Klingelhöfer-Jens et al. eLife 2022;11:e78717. DOI: https://doi.org/10.7554/eLife.78717 � 26 of 35

Here, within-subject similarity was calculated by correlating (Pearson’s correlation coefficient) (1) 
individual trial-by-trial SCRs and (2) the first-level response patterns of brain activation for CS discrim-
ination (i.e., CS+ > CS−) of each individual subject between T0 and T1 resulting in one value of 
within-subject similarity per subject (e.g., SCR acquisition trials of subject 1 at T0 were correlated with 
SCR acquisition trials of subject 1 at T1). Between-subject similarity was calculated by correlating trial-
by-trial SCRs or the first-level response patterns of brain activation of each individual subject at T0 
with those of all other individuals at T1 (e.g., SCR acquisition trials of subject 1 at T0 were correlated 
with SCR acquisition trials of subject 2–71 at T1). This resulted in 70 correlation coefficients for each 
subject. These correlation coefficients were then averaged to yield one correlation coefficient per 
subject as an indicator of between-subject similarity.

For comparisons of within- and between-subject similarity in SCR and BOLD fMRI, similarities were 
Fisher r-to-z transformed and compared using paired t-tests or Welsh tests in cases where the assump-
tion of equal variances was not met. Cohen’s d is reported as effect size.

Note that within-subject similarities of SCRs could not be calculated for participants with a single 
non-zero response at the same trial (e.g., trial 1) at both time points or only zero responses to the CS+ 
or CS− in one particular phase. This is because arrays that include only zeros can not be correlated 
and correlations of 1 (e.g., resulting from non-zero responses at the same trial at both time points) 
result in infinite Fisher r-to-z transformed correlations. Thus, different numbers of participants had to 
be included in the analyses of SCRs during acquisition (NCS discrimination = 65, NCS+ = 62, NCS− = 56, NUS = 
71) and extinction training (NCS discrimination = 45, NCS+ = 40, NCS− = 32).

Overlap at the individual level
For BOLD fMRI, overlap in individual subject activation patterns across both time points was calcu-
lated as a third indicator of reliability at the individual level. Thus, overlap was determined separately 
for experimental phases by including data from both time points T0 and T1. To this end, activation 
maps from first-level contrasts (here CS+ > CS or CS discrimination) were compared such that the 
degree of overlap of significant voxels at a liberal threshold of puncorrected < 0.01 between T0 and T1 
was determined and expressed as the Dice and Jaccard coefficients (Fröhner et al., 2019). Both coef-
ficients range from 0 (no overlap) to 1 (perfect overlap), with the Jaccard index being easily interpre-
table as percent overlap (Fröhner et al., 2019). While overlap reflects the degree of voxels activated 
at both time points, similarity measures (see above) are based on the correlation of activated voxels 
between time points and can be considered a continuous approach based on CS+ > CS− contrast 
specific beta values and not thresholded T-maps.

Longitudinal reliability at the group level
As opposed to longitudinal reliability at the individual level which indicates the stability of individual 
responses across time points, longitudinal reliability at the group level refers to how stable group 
average responding is over time. Longitudinal reliability at the group level was calculated separately 
for experimental phases by including data from both time points T0 and T1.

We define longitudinal reliability at the group level (1) for SCRs as the percentage of explained vari-
ance of group averaged trials at T1 by group averaged trials at T0 (i.e., R squared) and (2) for BOLD 
fMRI as the degree of overlap of group averaged activated voxels between both time points. Different 
analysis approaches were chosen as SCR and BOLD fMRI data are inherently different measures: trial-
by-trial analyses in fMRI require slow-event related designs with long ITIs as well as fixed trial orders 
and ideally partial reinforcement rate to not confound CS and US responses (Visser et al., 2016). 
Hence, trial-by-trial analyses were not possible given our design and thus overlap at a group level was 
defined as overlap at voxel rather than at trial level.

For SCRs, simple linear regressions were computed with group averaged SCR trials at T0 as inde-
pendent and group averaged SCR trials at T1 as dependent variable and R squared was extracted. 
This was done separately for experimental phases. Although the Pearson’s correlation coefficient 
is often calculated to determine longitudinal reliability, R squared, which like overlap can also be 
expressed as a percentage, appears closest to the concept of overlap of significant voxels at T0 and 
T1 as applied to BOLD fMRI data.

For overlap in BOLD fMRI at the group level, the degree of overlap of significant voxels between 
both time points was determined for aggregated group-level activations instead of single subject-level 
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activation patterns (see ‘Overlap at the individual level’) and expressed using the Dice and Jaccard 
indices as described above.

Cross-phases predictability of conditioned responding
Simple linear regressions were calculated to assess the predictability of SCRs and fear ratings across 
experimental phases at T0. During data analysis, inspection of the data revealed heteroscedasticity. 
Therefore and deviating from the pre-registration, regressions with robust standard errors were calcu-
lated by using the HC3 estimator (Hayes and Cai, 2007). Two consecutive phases represent the 
independent and the dependent variable, respectively, with the preceding phase as the independent 
variable and the following phase as the dependent variable. For SCR and fear ratings, standardized 
betas as derived from linear regressions are reported. In simple linear regression, as implemented 
here, standardized betas can be also interpreted as Pearson’s correlation coefficients.

For fMRI data, we adopted the cross-phases predictability analysis of SCR and fear ratings by 
calculating Pearson’s correlation coefficients between patterns of voxel activation (i.e., first-level beta 
maps). Correlations were first calculated at the individual subject level and subsequently averaged.

Standardized betas (resulting from SCR and fear rating regressions) and correlation coefficients 
(resulting from BOLD fMRI correlational tests) were interpreted as demonstrating weak, moderate, 
or strong associations between variables with values of <0.4, ≥0.4, and ≥0.7, respectively (Dancey 
and Reidy, 2007). Tables containing regression parameters beyond the standardized betas depicted 
in Figure 5A, B are presented in the Supplement (see Supplementary file 7, Supplementary file 8).

For SCR and fear rating predictions, we assessed if predictions differ in their strength or direction 
when they are summarized across certain data specifications (see Table 1). For BOLD fMRI, correlation 
coefficients were pooled across ROIs. T-tests or Welch tests in cases where the assumption of equal 
variances was not met were performed on individual Fisher r-to-z transformed standardized betas 
(SCR and fear ratings) or correlation coefficients (BOLD fMRI). We highlight that these analyses can be 
interpreted as an example for predictive validity (i.e., the extent to which a score on a test predicts a 
score on a criterion measure). As our aim here is, however, not validation, we use the term cross-phase 
prediction throughout. (More precisely, we believe that ‘cross-phase predictions’ in our study cannot 
be used interchangeably with ‘criterion or predictive validity’ since our aim was not to validate one 
experimental phase against the other. Predictive validity in psychometrics is defined as ‘the extent 
to which a score on a scale (or test) predicts scores on some criterion measure’ (cf. Cronbach and 
Meehl, 1955). For instance, a cognitive test for job performance would have predictive validity if the 
observed correlation between the test score and the performance rating by the company were statis-
tically significant. Rather, we investigated whether responses in earlier experimental phases could 
predict responses in later experimental phases – both of which cannot be expected to ‘measure the 
same thing’.)

For all statistical analyses described above, a level of p < 0.05 (two-sided) was considered signifi-
cant. Since we were more interested in patterns of results and less in the result of one specific test, it 
was not necessary to correct for multiple comparisons. Moreover, multiverse approaches, as approx-
imated in our study, are assumed to be insensitive to multiple comparisons (Lonsdorf et al., 2022).

For data analyses and visualizations as well as for the creation of the manuscript, we used R (Version 
4.1.3; R Development Core Team, 2020) and the R-packages apa (Aust and Barth, 2020; Version 
0.3.3; Gromer, 2020), car (Version 3.0.10; Fox and Weisberg, 2019; Fox et  al., 2020), carData 
(Version 3.0.4; Fox et al., 2020), cowplot (Version 1.1.1; Wilke, 2020), DescTools (Version 0.99.42; 
Andri mult, 2021), dplyr (Version 1.0.8; Wickham et al., 2021), effsize (Torchiano, 2020), flextable 
(Version 0.6.10; Gohel, 2021), gghalves (Version 0.1.1; Tiedemann, 2020), ggplot2 (Version 3.3.5; 
Wickham, 2016), ggpubr (Version 0.4.0; Kassambara, 2020), ggsignif (Version 0.6.3; Constantin and 
Patil, 2021), gridExtra (Version 2.3; Auguie, 2017), here (Version 1.0.1; Müller, 2020), kableExtra 
(Version 1.3.1; Zhu, 2020), knitr (Version 1.37; Xie, 2015), ​lm.​beta (Version 1.5.1; Behrendt, 2014), 
lmtest (Version 0.9.38; Zeileis and Hothorn, 2002), officedown (Version 0.2.4; Gohel and Ross, 2022), 
papaja (Version 0.1.0.9997; Aust and Barth, 2020), patchwork (Version 1.1.0; Pedersen, 2020), psych 
(Version 2.0.9; Revelle, 2020), renv (Version 0.13.2; Ushey, 2020), reshape2 (Version 1.4.4; Wickham, 
2007), sandwich (Zeileis, 2004; Zeileis, 2006; Version 3.0.1; Zeileis et al., 2020), stringr (Version 
1.4.0; Wickham, 2019), tidyr (Version 1.2.0; Wickham, 2020), tinylabels (Version 0.2.3; Barth, 2022), 
and zoo (Version 1.8.8; Zeileis and Grothendieck, 2005).
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