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Long noncoding RNAs (lncRNAs) are revealed to be involved in the tumorigenesis and progression of human malignancies
mediated by microRNA (miRNA) via the competing endogenous RNA (ceRNA) mechanism, a newly proposed “RNA
language.” However, the lncRNA-associated competing triplet (lncACT) network among ceRNA transcripts in clear cell renal
cell carcinoma (ccRCC) is currently lacking. We carried out differential expression analysis to identify aberrantly expressed
lncRNAs, miRNAs, and mRNAs by analyzing the RNA-seq data of 420 ccRCC tissues and 71 noncancerous kidney tissues
obtained from The Cancer Genome Atlas (TCGA). Then, a ccRCC-specific ceRNA network was built using computational
algorithms, including miRcode, TargetScan, miRanda, and miRTarBase. In total, 1491 dysregulated lncRNAs were found
between normal renal tissues and ccRCC (fold change > 4 and false discovery rate < 0:01). A ceRNA network that comprised of
46 DElncRNAs, 11 DEmiRNAs, and 55 DEmRNAs was established by integrating the lncRNA/miRNA and miRNA/mRNA
interactions into lncACTs. Several lncRNAs were identified to be significantly associated with clinical features of ccRCC
patients. Notably, four key lncRNAs (TCL6, HOTTIP, HULC, and PCGEM1) were tightly correlated with both patients’
clinical characteristics and overall survival (log-rank P < 0:05), indicating their potential important roles in ccRCC. HOTTIP
may be a potential prognostic and therapeutic molecular marker for ccRCC patients. Collectively, our results provide a
comprehensive view of the lncRNA-associated ceRNA regulatory network for a better understanding of the mechanisms and
prognosis biomarkers for ccRCC.

1. Introduction

Renal cell carcinoma (RCC) is the most lethal urinary sys-
tem malignancy in adults with an increasing morbidity glob-
ally [1]. It is estimated that 76,080 new cases and 13,780
deaths from kidney malignancies occurred in the world in
2021 [2]. RCC, as a heterogeneous group of disease, is subdi-
vided into several histological subtypes according to the dif-
ferent nephron cell types that tumors derived from,
including clear cell RCC (ccRCC, ~75%), papillary RCC
(pRCC, ~15%), and chromophobe RCC (chRCC, ~5%) [3].

ccRCC is the predominant and most malignant subtype of
renal carcinoma. Although the diagnosis of ccRCC
improved mainly due to the advanced imaging detection
technologies, the clinical behaviors of ccRCC patients are
aggressive, especially the high rate of metastatic progression
[4]. Therefore, identification of the molecular mechanisms
underlying ccRCC for developing diagnostic markers and
therapeutic targets becomes urgently needed.

Noncoding RNAs (ncRNAs) are categorized into long
ncRNAs and short ncRNAs according to their length. The
noncoding RNA transcripts more than 200 nucleotides long
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are generally termed as “long noncoding RNAs” (lncRNAs)
[5]. lncRNAs have been recognized to involve in the patho-
genesis of multiple cancers by disrupting various biological
processes [6]. The abnormal expressions of microRNAs
(miRNAs, 20-22 nucleotide in length) participate in the
oncogenesis and cancer progression [7]. In recent years,
lncRNAs were verified to function as competing endogenous
RNAs (ceRNAs) to communicate with other RNAs via shar-
ing miRNA-binding sites. This lncRNA-miRNA-RNA inter-
action was a subclass of ceRNAs, called lncRNA-associated
competing triplets (lncACTs) [8]. In 2014, Xia et al. firstly
constructed a lncACT cross-talk network in gastric cancer
and also established a bioinformatics-based approach to pre-
dict cancer-associated ceRNA network [9]. Subsequently,
several cancer-specific ceRNA networks have also been
revealed in various cancers, including hepatocellular carci-
noma [10], bladder cancer [11], and thyroid carcinoma [12].

However, there are only limited studies so far on
lncACTs in RCC. lncRNA MALAT1 has been identified to
function as a ceRNA by mediating the MALAT1/mir-200s/
ZEB2 pathway to facilitate ccRCC proliferation and metasta-
sis [13]. lncRNA HOTAIR, an oncogene in various tumors,
was also reported to act as a ceRNA to promote HIF-1α/
AXL cascade by binding mir-217 in RCC [14]. A drug
resistance-related lncRNA lncARSR disseminated sunitinib
resistance by sponging mir-34/mir-449 to increase target
genes expression in RCC cells [15]. Fan et al. constructed
lncRNA-related ceRNA network and discovered the nomo-
grams and related infiltrating immune cells to predict prog-
nosis of pRCC patients [16]. However, huge genetic
heterogeneity exists among different histologic subtypes of
RCC [17]. In this study, differentially expressed lncRNAs,
miRNAs, and mRNAs (DElncRNAs, DEmRNAs, and
DEmiRNAs) were screened out of the expression profiles
of a 420 ccRCC patient cohort from The Cancer Genome
Atlas (TCGA). A ccRCC specific ceRNA regulatory network
was also built based on the potential competing triplets of
lncRNA/miRNA/mRNA predicted by computational algo-
rithms and databases. We also identified several key
lncRNAs to be associated with ccRCC progression and
prognosis.

2. Materials and Methods

2.1. Patient Dataset. TCGA is a public database providing
researchers open access to the multiple cancer genomic pro-
files for analyses and publications [18]. This study meets the
freedom-to-publish criteria announced on TCGA website
(https://cancergenome.nih.gov/publications/
publicationguidelines). A cohort of 537 ccRCC patients
obtained from TCGA was downloaded for this study. The
exclusion criteria included the following: (1) patients with-
out complete clinicopathological data, including age, gender,
race, TNM stage, and pathologic stage (12 cases); (2)
patients with follow-up data over 2000 days (84 cases); and
(3) patients with incomplete RNA-seq or miRNA-seq data
(21 cases). In total, 420 ccRCC patients (cohort T) and 71
normal samples (cohort N) were enrolled in this study.
The RNA and miRNA expression data (level 3) were pro-

duced from IlluminaHiseq_RNASeq and IlluminaHiseq_
miRNASeq sequencing platform and prenormalized by
TCGA archive (http://cancergenome.nih.gov).

2.2. Construction of lncACT Cross-Talk Network. We carried
out differential expression analysis with edgeR package in
Bioconductor [19]. Stringent filtering criteria were all set as
jlog2FCj > 2 and FDR < 0:01 (FC: fold change; FDR: false
discovery rate). Among these differentially expressed genes
(DEGs), the putative interactions of miRNA-lncRNA were
collected from miRcode [20]. Different miRNA-target pre-
diction algorithms, including experimentally validated data-
base TargetScan (http://www.targetscan.org/mamm_31/)
[21], miRanda (http://www.microrna.org/microrna/home
.do) [22], and miRTarBase (http://mirtarbase.mbc.nctu.edu
.tw/) [23], were used to predict the miRNA target mRNAs.
These tools provide miRNA-target interactions with com-
prehensive annotation and experimental validation. Finally,
the lncRNA-associated ceRNA network of ccRCC was inte-
grated and visualized based on the above competing triplets
using Cytoscape v3.5.1 (http://www.cytoscape.org/) [24].

2.3. Functional Enrichment Analysis. To access functional
roles of the genes in the ceRNA network, Gene Ontology
(GO) was performed using Database for Annotation, Visual-
ization and Integration Discovery (DAVID, https://david
.ncifcrf.gov/) (P value < 0.05). Meanwhile, pathway analysis
was conducted using Kyoto Encyclopedia of Genes and
Genomes (KEGG) by KOBAS 3.0 (P value < 0.01).

2.4. Coexpression Analysis. Correlation test was conducted
by the R software to figure out the coexpressed genes associ-
ated with HOTTIP (jcorj>0:3 and P value < 0.001).

2.5. Drug Sensitivity Analysis. Drug sensitivity analysis was
carried out with pRRophetic package in Bioconductor to dis-
cover the drugs with significant differences in sensitivity
between HOTTIP high and low groups (P value < 0.05).

2.6. Statistical Analysis. Unpaired t-test was applied to iden-
tify DEGs and the difference of DElnRNAs between different
pathological subgroups. The associations between DElncR-
NAs expression and patients’ overall survival (OS) were ana-
lyzed by univariate Cox proportional hazards regression
(log-rank P < 0:05). Kaplan-Meier method was employed
to generate overall survival curves.

3. Results

3.1. Patient Characteristics. A total of 420 patients who were
pathologically diagnosed as ccRCC and 71 normal samples
were enrolled in this study. The clinicopathological informa-
tion of study population is summarized in Table 1. The
median age was 60 years. Consistent with a previous report
[25], white male individuals appeared to be the majority of
RCC patients with the gender ratio (male/female) of 1.9/1
and white race ratio of 86.7%.

3.2. Screening Results of DEGs in ccRCC. After screening the
RNA and miRNA expression profiles by the threshold of j
log2FCj > 2 and FDR < 0:01, we found 1491 DElncRNAs,
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2368 DEmRNAs, and 53 miRNAs that aberrantly expressed
between ccRCC tumor tissues and normal tissues. Among
them, 989 lncRNAs, 1610 mRNAs, and 32 miRNAs were
upregulated, while 502 lncRNAs, 758 mRNAs, and 21 miR-
NAs were downregulated in cohort T compared with cohort
N. The total upregulated and downregulated lncRNAs,
mRNAs, and miRNAs were listed in Table S1-6.
Hierarchical clustering was further used to identify
expression patterns of DEGs between two cohorts. The top
50 overexpressed and top 50 downexpressed lncRNAs were
visualized in the heatmap, which showed that ccRCC
tumor tissues had significantly different expression patterns
from normal tissues (Figure 1 and Table S7).

3.3. lncACT Cross-Talk Network in ccRCC. The ceRNA
hypothesis is described as a complex posttranscriptional reg-
ulatory mechanism between lncRNAs and other RNAs
mediated by miRNAs through sharing miRNA response ele-
ments [26]. Therefore, further analysis was performed to
establish lncACT cross-talk network based on the above
DEGs in ccRCC. We got 11 specific DEmiRNAs that tar-
geted on 46 DElncRNAs by miRcode online tools, which is
a lncRNA-miRNA interaction prediction database

(Table 2). To further analyze these DEmiRNAs, we compre-
hensively considered the miRNA-mRNA interactions
obtained from TargetScan, miRTarBase, and miRanda data-
bases to enhance the predictive reliability. A total of 55 tar-
geted mRNAs were predicted to interact with 7
DEmiRNAs and were also involved in the above 2368
DEmRNAs (Table 3). By integrating these lncRNA/miRNA
and miRNA/mRNA interactions into lncACTs, the ceRNA
network is constructed and visualized in Figure 2, containing
46 DElncRNAs, 11 DEmiRNAs, and 55 DEmRNAs.

3.4. Functional Enrichment Analysis. To identify the func-
tions of the 55 DEmRNAs involved in the ceRNA network,
functional analysis was performed. GO analysis revealed 26
enriched GO categories in the “biological processes” (P value
< 0.05), top 15 of which are visualized in Figure 3. There
were two apoptotic processes significantly enriched in GO
terms (GO:1902042 and GO:0043065). According to P value
< 0.01, 27 KEGG categories were selected as significantly
enriched KEGG pathways. The top ten enriched pathways
are listed in Table 4, including four cancer-related pathways
(microRNAs in cancer, bladder cancer, transcriptional mis-
regulation in cancer, and pathways in cancer). Cyclin D1
(CCND1) was notably involved in six of the top ten path-
ways, indicating its complex roles in the progress of the
tumor.

3.5. The Clinical Relevance of DElncRNAs in ccRCC.We next
analyzed the association between the 46 DElncRNAs in the
ceRNA network and clinicopathological features. A total of
eight lncRNAs were discriminatively expressed in different
clinical feature subgroups (jlog2FCj > 2 and FDR < 0:01)
(Table 5). We found six downregulated lncRNAs
(C12orf77, TCL6, C8orf49, PCGEM1, and ERVMER61-1),
and two upregulated lncRNAs (HOTTIP and LINC00200)
were significantly related to the progression of ccRCC. Both
C12orf77 and TCL6 not only could inhibit tumor growth
(T3+T4 vs. T1+T2) but also downexpressed in individuals
with high levels of the pathologic stage, implying their neg-
ative roles in tumor development of ccRCC. HULC was
identified to promote lymph node metastasis; however, low
expression of HULC seemed to be correlated with high levels
of tumor size, distant metastases, and pathologic stage.

Subsequently, the Kaplan-Meier analysis was applied to
investigate overall survival time for DElncRNAs in ccRCC
patients. Among the 46 DElncRNAs involved in the lncACT
network, five lncRNAs (TCL6, PCGEM1, FGF12-AS2,
LINC00443, and LINC00472) were found positively associ-
ated with overall survival by univariate Cox regression anal-
ysis (log-rank P < 0:05), while another eight lncRNAs
(HOTTIP, HULC, PVT1, WT1-AS, C20orf203, NALCN-
AS1, TRIM36-IT1, and LINC00299) were negatively corre-
lated with survival. The Kaplan-Meier curves of HOTTIP,
HULC, TCL6, and PCGEM1, which also differentially
expressed in clinical feature comparisons, are shown in
Figure 4(a). The Kaplan-Meier curve analysis was also
employed to investigate overall survival for the DEmiRNAs
associated with this four lncRNAs. Notably, increased
expression of mir-144, which was predicted to interact with

Table 1: Clinical characteristics of 420 patients with ccRCC in
cohort T.

Parameter Cohort T (n = 420) (%)
Age (mean ± SD1) 60:4 ± 12:1
Gender

Male 275 (65.5)

Female 145 (34.5)

Race

Asian 8 (1.9)

White 364 (86.7)

Black or African American 48 (11.4)

Pathologic stage

Stage I 199 (47.4)

Stage II 43 (10.3)

Stage III 106 (25.2)

Stage IV 72 (17.1)

Tumor size

T1 205 (48.8)

T2 51 (12.1)

T3 153 (36.5)

T4 11 (2.6)

Lymph node

N0 181 (43.1)

N1 14 (3.3)

NX 225 (53.6)

Metastasis status

M0 326 (77.6)

M1 67 (16.0)

MX 27 (6.4)
1Standard deviation.
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TCL6, was positively associated with prognosis. The high
expression of mir-155, which potentially targeted HULC
and PCGEM1, was correlated with poor prognosis
(Figure 4(b)).

3.6. High Expression of HOTTIP Associated with Decreased
Drug Sensitivity. To further understand the expression of
HOTTIP in ccRCC patients, transcriptome sequencing data
of 420 ccRCC and 71 normal samples were extracted from
the TCGA database. HOTTIP expression level was signifi-
cantly higher in ccRCC patients than in normal controls
(Figure 5(a)). Coexpression analysis showed that 55 genes
were associated with HOTTIP expression, including 7 nega-
tively correlated genes and 48 positively correlated genes
(Table S8). The correlation circle diagram showed that
HOXA13, SERPIND1, ALDH1L2, AADAC, ADAM33, and
OSBPL6 were positively correlated with HOTTIP, and
BCL2, EDNRB, AQP1, ENPP4, and FBXL3 were negatively
correlated with HOTTIP (Figure 5(b)). Drug sensitivity
analysis identified that the half maximal inhibitory
concentration (IC50) of gemcitabine, pazopanib, sunitinib,
and XL-184 in ccRCC patients with high HOTTIP
expression was significantly higher than those in patients
with low HOTTIP expression, indicating that patients with
high HOTTIP expression were less sensitive to these
treatments (Figure 6).

4. Discussion

Previous reports have shown that lncRNAs participated in
tumorigenesis, cancer progression, and metastasis of RCC
and functioned as oncogenes or tumor suppressors. Several
studies have conducted genomic microarrays to reveal the
expression patterns of lncRNAs based on small sample size
[27, 28]. The tumor-specific lncACT cross-talk network
has been previously described in chRCC [29]. However, dif-
ferent RCC histological subtypes encompass a wide diversity
of molecular mechanisms for their tumorigenesis. Thus,
there is an urgent to explore the lncRNA-associated ceRNA
network in ccRCC. In the current study, we analyzed the
expression profile data of ccRCC patient cohort in TCGA
archive to comprehensively identify the landscape regarding
how tumor-specific lncRNAs function in ccRCC. We suc-
cessfully built the lncRNA-associated ceRNA network in
ccRCC according to the predicted competing triplets among
DElncRNAs, DEmRNAs, and DEmiRNAs.

Recent researches have demonstrated that lncRNAs
could communicate with miRNAs and indirectly regulate
miRNA targets via competing interactions. The lncACT
interactions might actively function as valuable prognostic
indicators in cancers [8]. Hence, we speculate that some spe-
cific lncACT cross-talks comprising lncRNA, miRNA, and
mRNA may affect ccRCC progression. We utilized stringent
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Figure 1: Heatmap of top 50 upregulated and top 50 downregulated DElncRNAs in clear cell renal cell carcinoma (ccRCC). Blue and red
stripes represent normal samples and tumor samples, respectively. Descending normalized expression level is colored from red to green.
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criteria to identify DElncRNAs, DEmiRNAs, and DEmR-
NAs between ccRCC tumor tissues and normal tissues and
then applied several bioinformatics strategies to increase
the predictive accuracy of RNA-RNA interactions. Finally,
46 DElncRNA, 11 DEmiRNAs, and 55 DEmRNAs consti-
tuted the lncACT coexpression network in ccRCC. To
explore the biological functions of these ceRNA network-
involved genes, KEGG pathway analysis showed that the
key DEmRNAs were significantly enriched in cancer-

related pathways, implicating their vital roles in tumorigen-
esis. Among the 46 key DElncRNAs, four lncRNA (TCL6,
HOTTIP, HULC, and PCGEM1) not only had correlations
with clinical features but could also affect ccRCC patients’
outcome, strongly suggesting their important roles as prog-
nostic biomarkers for ccRCC. Consistent with our results, a
recent study also verified that low expression of TCL6 was
correlated with advanced clinicopathological features and
poor prognosis of ccRCC patients. Furthermore, preliminary

Table 2: The 11 specific DEmiRNAs and 46 target DElncRNAs in ccRCC.

lncRNA miRNAs lncRNA miRNAs

ARAP1-AS2 mir-122 LINC00461 mir-122, mir-137, mir-141, mir-144, mir-216b, mir-508

ARHGEF26-AS1 mir-141 LINC00472 mir-155, mir-216b, mir-506

BPESC1 mir-216b, mir-506, mir-508 LINC00473 mir-142, mir-210

C12orf77 mir-137, mir-216b LINC00487 mir-216b, mir-506

C15orf56 mir-144, mir-216b, mir-506 LINC00507 mir-216b

C20orf197 mir-122, mir-137, mir-144, mir-508 LMO7-AS1 mir-122, mir-137

C20orf203 mir-506 LY86-AS1 mir-137, mir-141, mir-142, mir-155, mir-216b, mir-506

C8orf49 mir-122 MIAT mir-141, mir-155, mir-216b

CDRT7 mir-142 MIR155HG mir-155

CHL1-AS1 mir-137 NALCN-AS1 mir-21, mir-508

DLEU7-AS1 mir-142 NLGN1-AS1 mir-122, mir-155

ERVMER61-1 mir-21 PCGEM1 mir-155, mir-506

FGF12-AS2 mir-506 PVT1 mir-216b

FRY-AS1 mir-122 PWRN1 mir-122

HOTTIP mir-137, mir-506 SFTA1P mir-122, mir-216b

HULC mir-155 SLC25A5-AS1 mir-122, mir-144

LINC00200 mir-506 SLC6A1-AS1 mir-508

LINC00284 mir-141 SPATA13 mir-137, mir-506

LINC00299 mir-137, mir-21 TCL6 mir-122, mir-144

LINC00343 mir-142, mir-506 TRIM36-IT1 mir-155

LINC00410 mir-216b TSSC1-IT1 mir-137

LINC00426 mir-216b VCAN-AS1 mir-141

LINC00443 mir-141, mir-144 WT1-AS mir-141, mir-155, mir-216b

Table 3: The 7 DEmiRNAs and 55 target DEmRNAs in ccRCC.

miRNA mRNAs targeted by miRNA

mir-
137

CIDEC, LHFPL2, LYPD6

mir-
141

NR0B2, PRELID2, RASSF2

mir-
142

CDC6, DEPDC1, GFI1, HMGA2, KIF5A, SCD

mir-
144

BTG2, FGA, FGB, GRIK3, IL20RB, SIX4, TGFBI

mir-
155

ADAMTS4, CARD11, CCND1, CD36, CTLA4, E2F2, ERMP1, GATM, GPM6B, HAL, ITK, KIF14, LY6K, MMP16, PCDH9,
SPI1, TYRP1, ZIC3, ZNF98

mir-21
BTG2, CCL20, CXCL10, E2F2, FASLG, GXYLT2, HAPLN1, KLK2, MOXD1, MRAP2, NCAPG, NETO2, PPFIA4, ST6GAL1,

TOP2A

mir-
506

CD1D, QRFPR, SLC16A1, VIM
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experiments have indicated TCL6 as a potential antionco-
gene by inhibiting proliferation and promoting apoptosis
of ccRCC cell lines [30]. We predicted that TCL6 might
interact with mir-144, of which the potential target genes
included an antiproliferative gene BTG2. BTG2 was reported
to participate in cell cycle regulation and subsequently
involved in cell proliferation in carcinogenesis [31]. There-
fore, it deserves further experiments to elucidate the mecha-
nism underlying the effects of TCL6-associated competing
triplets on ccRCC.

The upexpression of HOXA transcript at the distal tip
(HOTTIP), as a critical oncogenic lncRNA, has been corre-
lated with poor overall survival in various malignancies
[32, 33]. We predicted that the high expression of HOTTIP
with an approximate 12-fold change in ccRCC tumor tissues
may promote tumor growth and a statistic shorter overall
survival, which is consistent with previous studies [34, 35].
We found a significant positive correlation between HOT-
TIP and HOXA13 expression in ccRCC patients. It was
demonstrated that HOTTIP transcriptionally regulates
HOXA13 in esophageal squamous cell carcinoma cells to
promote carcinogenesis and metastasis [36]. Because of the

physical contiguity of HOTTIP with HOXA13, we hypothe-
sized that HOTTIP and HOXA13 may closely coordinate to
regulate the occurrence and development of ccRCC [37].
More importantly, we found that patients with high HOT-
TIP expression were less sensitive to clinical therapeutic
drugs, including gemcitabine, pazopanib, sunitinib, and
XL-184, than patients with low HOTTIP expression, indicat-
ing that high HOTTIP expression may lead to drug resis-
tance in ccRCC patients.

HULC, a universal oncogenic lncRNA in human can-
cers, was reported to be strongly overexpressed in several
cancer types, including hepatocellular carcinoma, gastric
cancer, pancreatic cancer, and osteosarcoma [38]. However,
the role of HULC in ccRCC still remains largely unclear. We
predicted that the increased expression (~6 folds) of HULC
in ccRCC tumor tissues might promote lymphatic metastasis
and poor prognosis. CCND1 might be regulated by HULC
through the interaction with mir-155 in ccRCC. Similarly,
it has been previously revealed that HULC knockdown
induced cell growth arrest and apoptosis through inhibiting
CCND1 expression in diffuse large B-cell lymphoma cells
[39]. The overexpression of PCGEM1, as a prostate-specific

Up-regulated mRNA
Down-regulated mRNA
Up-regulated miRNA

Down-regulated miRNA

Down-regulated lncRNA
Up-regulated lncRNA

Figure 2: The ceRNA regulatory network of ccRCC. Expression levels and different RNA types are represented by different colors and
different shapes, respectively. ceRNA: competitive endogenous RNA.
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lncRNA, was correlated with high risk of prostate cancer [40,
41]. On the contrary, we found that the downregulation of
PCGEM1 might prolong metastasis status and shorten sur-

vival time of ccRCC patients. To the best of our knowledge,
this study firstly reported the potential functions of HULC,
HOTTIP, and PCGEM1 in ccRCC to date. Furthermore,

Gene number
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Extracellular matrix disassembly
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Somatic stem cell population maintenance
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Response to calciumion
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signaling pathway via death domain receptors
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RNA polymerase II promoter
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Figure 3: Top 15 enriched Gene Ontology biological process terms of DEmRNAs in the ceRNA network. The size of balls represents gene
number, and different colors represent P value.

Table 4: KEGG1 pathway analysis of the DEmRNAs involved in the ceRNA network.

Pathway ID Description P value Numbers of DEmRNAs

hsa05206 MicroRNAs in cancer 6.39E-05 CCND1, E2F2, MMP16, VIM, HMGA2

hsa04660 T cell receptor signaling pathway 4.60E-04 ITK, CTLA4, CARD11

hsa04060 Cytokine-cytokine receptor interaction 5.30E-04 FASLG, IL20RB, CXCL10, CCL20

hsa04110 Cell cycle 7.37E-04 CCND1, CDC6, E2F2

hsa04152 AMPK signaling pathway 7.54E-04 SCD, CCND1, CD36

hsa00514 Other types of O-glycan biosynthesis 9.62E-04 GXYLT2, ST6GAL1

hsa05161 Hepatitis B 1.17E-03 FASLG, CCND1, E2F2

hsa05219 Bladder cancer 1.63E-03 CCND1, E2F2

hsa05202 Transcriptional misregulation in cancer 2.10E-03 SPI1, SIX4, HMGA2

hsa05200 Pathways in cancer 2.31E-03 SPI1, FASLG, CCND1, E2F2
1KEGG: Kyoto Encyclopedia of Genes and Genomes.
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we also verified lncRNA PVT1 to be an oncogenic lncRNA
in ccRCC. It has been reported that ccRCC has the strongest
upregulated expression of PVT1 among all cancer types and
served as a prognostic factor of renal cancer [42, 43].

However, since our study was conducted based on
TCGA cohort by computational analysis, future studies
should be designed to verify these lncACT cross-talks and

their multiple functions in ccRCC progression. In conclu-
sion, our study has built a newly identified ceRNA network
of ccRCC based on hundreds of clinical specimens from
TCGA. The ceRNA network discloses that many oncogenes
and antioncogenes might contribute to ccRCC development,
which can expand our understanding of the roles of
lncACTs in tumorigenesis. Importantly, we have identified

Table 5: The lncRNAs tightly correlated with ccRCC patients’ clinical characteristics.

Comparisons Downregulated Upregulated

Tumor size (T3 +T4 vs. T1 +T2) C12orf77, HULC, TCL6 HOTTIP

Lymph node (N1 vs. N0) HULC

Metastasis status (M1 vs. M0) C8orf49, PCGEM1, HULC ERVMER61-1 LINC00200

Pathologic stage (stage III + IV vs. stage I + II) C12orf77, HULC, TCL6
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Figure 4: Kaplan-Meier curves for five DElncRNAs (a) and two DEmiRNAs (b) associated with overall survival. Horizontal axis, overall
survival time (years); vertical axis, survival function. Patients were divided into “high” group (≥median) and “low” group (<median)
according to the gene expression levels.
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several lncRNAs to be potential prognostic factors and
molecular targets for ccRCC patients.
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