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Abstract

The Brier score has been a popular measure of prediction accuracy for binary outcomes. However, 

it is not straightforward to interpret the Brier score for a prediction model since its value depends 

on the outcome prevalence. We decompose the Brier score into two components, the mean squares 

between the estimated and true underlying binary probabilities, and the variance of the binary 

outcome that is not reflective of the model performance. We then propose to modify the Brier 

score by removing the variance of the binary outcome, estimated via a general sliding window 

approach. We show that the new proposed measure is more sensitive for comparing different 

models through simulation. A standardized performance improvement measure is also proposed 

based on the new criterion to quantify the improvement of prediction performance. We apply 

the new measures to the data from the Breast Cancer Surveillance Consortium and compare the 

performance of predicting breast cancer risk using the models with and without its most important 

predictor.
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1 Introduction

Developing a risk prediction model for binary outcomes has been very popular in clinical 

research and practice. For example, the Framingham risk score was developed to predict 

the ten-year risk of developing coronary heart disease. Since its first development,1 the 

Framingham risk score has been validated in different population2 and become a useful 

risk stratification tool for cardiovascular disease in clinical practice. The Breast Cancer 

Surveillance Consortium (BCSC) risk calculator was developed to predict a woman’s five-
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year risk of developing invasive breast cancer,3 which is now commonly used for breast 

cancer screening in practice.

Guidelines on developing and validating risk prediction models have been discussed 

extensively in literature.4,5 A key exercise in developing a risk prediction model is to 

evaluate how well the model predicts the outcome. The performance of a prediction 

model is often evaluated in term of discrimination and calibration. For binary outcomes, 

discrimination refers to the model’s ability to separate those who developed the events 

from those who did not. Commonly used measures for model discrimination for binary 

outcomes include sensitivity, specificity, and C-statistic (i.e. the area under the receiver 

operating characteristic (ROC) curve).6–9 Calibration is a measure of how well the predicted 

probability of a binary outcome is in agreement with what was observed, which can be 

assessed by testing for lack-of-fit, such as the Hosmer-Lemeshow goodness-of-fit test.10 

More recent developments in the literature suggest evaluating the relationship between 

the observed outcome and corresponding predicted probabilities through graphical tools,11 

parametric models,12–14 and nonparametric smoothing methods.15 Van Calster et al.16 

summarized different calibration measures using a hierarchy of four increasingly strict 

levels, referred to as mean, weak, moderate and strong calibration.

A prediction model that has good discrimination may not be well calibrated and vice versa. 

In addition to the discrimination and calibration evaluations, statistical measures for the 

overall prediction accuracy are also necessary. The Brier score has been a popular metric for 

evaluating the overall prediction accuracy of binary outcomes since it was introduced.17 It 

is defined as the mean squared difference between the observed value of a binary outcome 

and its predicted probability. Despite its popularity in clinical prediction research, there are a 

few issues for interpreting the value of Brier score. For example, the C-statistic is a measure 

for model discrimination with values between 0.5 and 1. A larger C-statistic indicates better 

model discrimination and prediction performance. A rule of thumb is that a model with 

C-statistic greater than 0.8 is considered a well performing prediction model. Unlike the 

C-statistic, the Brier score is not defined in a standardized scale. Consequently, there is no 

single standard on how small the Brier score should be for a model with good prediction 

performance. Part of the reason is that the Brier score depends on the variance of the binary 

outcome, which is a function of the binary outcome probability. In this manuscript, we 

propose a decomposition of the Brier score, separating the part that measures the model 

prediction performance from the binary data variability determined by the underlying data 

generation mechanism. Since the data generation mechanism is unknown, it is difficult 

to have an unbiased estimate of the outcome variance. Therefore, our goal focuses on 

developing a measure that is more sensitive in comparing prediction performance than 

having an unbiased estimation.

Our work is partially motivated by the decomposition of Brier score literature. Two 

popular methods were proposed that partitioned the Brier score into either two18 or three19 

components. In the three-component setting, each component corresponds to measures of 

the so-called reliability, resolution and uncertainty respectively. The uncertainty component 

is defined as the variance of a Bernoulli experiment with the probability of an event 

calculated as the average proportion of events occurred over all samples. It is calculated as 
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if all subjects in the sample have the same probability of the binary outcome. However, the 

uncertainty component is not truly reflective of the data variability since different subjects 

may have different probabilities due to different covariate values. Instead, we propose to 

estimate the variability of the Bernoulli experiment for each subject and subtract it from the 

Brier score. The modified criterion is a pure measure of model performance such that its 

lower limit is zero when the true model is used.

We also propose a scaled measure based on the modified Brier score for comparing the 

prediction performance between different models. Similar work for modifying the Brier 

score to compare different models was done by Kattan and Gerds.20In their work, the Brier 

score was scaled by comparing to a null model in which there is no predictor. The model 

improvement was defined as the reduction of the Brier score relative to the null model.

The rest of the article is organized as follows. We first describe the proposed modified 

criterion, followed by its estimation in two different settings. We then describe two 

extensions of the modified criterion. We demonstrate the performance of the modified 

criterion through simulation with an application to the BCSC risk prediction. We conclude 

the article with a discussion and brief summary.

2 A modified criterion

Let Y ∈ {0, 1} denote a binary outcome. Assume Y ~ Bernoulli(p), where p is the true 

probability of Y = 1. Let r denote a predicted probability of Y = 1. The prediction accuracy 

for r can be characterized by its squared difference from the observed binary outcome Y, 

that is, (r − Y)2. Its expectation can be decomposed as

E{(r − Y )2} = E{(r − p) + (p − Y ) 2

= E{(r − p)2} + 2E{(r − p)(p − Y )} + E{(p − Y )2}
= (r − p)2 + 2(r − p){p − E(Y )} + E{(p − Y )2}
= (r − p)2 + E{(p − Y )2}

(1)

The last step follows because p = E(Y). Note that r is considered a fixed quantity whose 

prediction accuracy is to be evaluated.

In the decomposition, the first component is the squared difference between the true and 

predicted probability of Y = 1. It measures how close the predicted probability r is to the true 

probability p and is a reflection of the prediction performance for r. The second component 

is the variance of Y, that is, Var(Y) = E{(p − Y)2}. It is determined by the underlying 

data generation mechanism for Y, and is not reflective of prediction performance. The 

decomposition is similar to what was proposed by Murphy18 where the two components 

are referred to as the reliability and resolution measures, respectively. Since the second 

component in equation (1) has nothing to do with the predicted probability r, we propose to 

use only the first component, that is, (r − p)2 to evaluate the prediction accuracy.

For a total of N subjects with observed outcome Yi, outcome probability pi and 

corresponding predicted probability ri, i = 1, . . . , N, the Brier score is defined as
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BS = 1
N ∑

i = 1

N
ri − Y i

2
(2)

Similar to equation (1), the Brier score can also be decomposed as following

BS = 1
N ∑

i = 1

N
ri − pi + pi − Yi

2

= 1
N ∑

i = 1

N
ri − pi

2 + 1
N ∑

i = 1

N
pi − Y i

2 + 1
N ∑

i = 1

N
2 ri − pi pi − Y i

(3)

Motivated by the decomposition in equation (1), we propose to use only the first term on the 

right side of equation (3) to evaluate prediction accuracy for all N subjects, and call it the 

mean square error for the probability of binary outcome (MSEP), that is,

MSEP = 1
N ∑

i = 1

N
ri − pi

2
(4)

Unlike the product term in equation (1) which is zero, the third component on the right side 

of equation (3) is in general not zero. However, as will be shown in the next section, we 

propose to estimate the true outcome probability pi such that the product term in equation (3) 

is either strictly zero or approximately zero. When the predicted probabilities ri are discrete, 

the product term is strictly zero within each stratum defined by the unique value of the 

predicted probability. When the predicted probabilities ri are continuous, the product term is 

asymptotically zero when the estimator for pi is consistent. Consequently, the MSEP can be 

seen as the Brier score subtracting the binary outcome variance.

Similar to the Brier score, a smaller value of MSEP indicates a better prediction 

performance. The smallest possible value of MSEP is zero, when the true and predicted 

probabilities are exactly the same for all subjects. Since the true outcome probability is 

not known, the MSEP cannot be calculated directly. Instead, we propose to estimate the 

MSEP by subtracting the variance of Y from the Brier score. The estimation of the outcome 

variance is given in the next section.

3 Estimation

We propose a nonparametric method for estimating the binary outcome variance. Assume 

the predicted probabilities ri have finite number of unique values, rk, k = 1, . . . , K. 

For example, this can happen if the predicted probabilities are estimated from a model 

that includes only categorical predictors. The data can be grouped into K strata, one 

corresponding to each unique rk. For each subject i, i = 1, . . . , N, who belongs to stratum k 
∈ (1, . . . , K), Var(Yi) can be estimated as following
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V ar Y i = Y k 1 − Y k (5)

where Y k is the average of Y within stratum k, that is, Y k = 1
Nk

∑j = 1
Nk Y j and Nk is the 

number of subjects in stratum k. Within each stratum k, the cross product component on the 

right side of equation (3) is

∑
i = 1

Nk
2 ri − pi pi − Yi = ∑

i = 1

Nk
2 rk − Y k Y k − Yi

= 2 rk − Y k ∑
i = 1

Nk
Y k − Yi

= 0

Consequently, the sum of cross product component across all K strata is also zero.

The MSEP can then be estimated as

MSEP = 1
N ∑

i = 1

N
ri − Y i

2 − 1
N ∑

i = 1

N
V ar Y i (6)

where V ar Y i  is estimated using equation (5).

When the number of unique predicted probabilities is large, the number of subjects within 

each stratum having the same predicted probabilities can be small so that V ar Y i  in equation 

(5) may not be stable to estimate Var(Yi). Furthermore, if a prediction model includes 

continuous predictors, it is possible that all of the predicted probabilities are unique such that 

Nk = 1 for all strata. For these scenarios, we propose a general sliding window approach to 

estimate the variance of Y.

We first sort the outcome Yi, i = 1, . . . , N based on the corresponding predicted probability 

ri, i = 1, . . . , N, that is,

r(1) < r(2) < ⋯ < r(N) Y (1), Y (2), …, Y (N) .

We then apply a moving average filter to estimate the variance for each subject i, i.e.,

V ar Y i = Y i 1 − Y i (7)

where

Y i = 1
Mi

∑
m = max (0, i − M /2)

min (i + M /2, N)
y(m),
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Mi = min (i + M /2, N) − max (0, i − M /2) and M is the width of the moving average filter. 

Since Y i is a consistent estimator of pi within each sliding window, the cross product 

component on the right side of equation (3) is approximately zero. Consequently, the MSEP 

can be estimated using equation (6) where V ar Y i  is estimated using equation (7). Note 

that the predictive probabilities are only used to order the subjects and not involved in the 

variance estimation.

In practice, it is very difficult to have an unbiased estimate of the variance and MSEP 

accordingly, since we do not know the true data generation mechanism. It is preferred to 

have an underestimated variance as otherwise the MSEP may be negative when the variance 

is overestimated. As we will show through simulation in the next section, the estimated 

outcome variance and MSEP are not very sensitive to the sliding window size. In general, 

a smaller window size is preferred given the negative consequence of overestimating the 

variance.

4 Extensions

The MSEP compares the difference between the true and predicted outcome probability. 

Sometimes, it may be useful to quantify the accuracy associated with the predicted 

probability relative to the true outcome probability. We can standardize the MSEP by taking 

its square root and then dividing by the outcome probability, referred to as the scaled root 

MSEP (SRMSEP), that is,

SRMSEP =
1
N ∑i = 1

N ri − pi
2

1
N ∑i = 1

N pi
(8)

which can be estimated as

SRMSEP = MSEP
1
N ∑i = 1

N Y i
(9)

We can also use the MSEP to compare the prediction performance for different models and 

evaluate the performance improvement. Let us consider the comparison between an existing 

model and a revised model. Assume the MSEP for the existing and revised models are 

MSEP1 and MSEP2 respectively. The performance improvement (PI) of the revised model 

compared to the existing model can be defined as

PI = MSEP1 − MSEP2
MSEP1

(10)

If the model improvement is minimal, for example, MSEP1 − MSEP2 ≈ 0, then the 

performance improvement is close to zero, that is, PI ≈ 0. If the MSEP for the revised 

model is close to zero, that is, MSEP2 ≈ 0, meaning that the revised model predicts the true 

outcome probability almost perfectly, then the performance improvement is close to one, 
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that is, PI ≈ 1. The PI is negative if the revised model is worse than the existing model, that 

is, MSEP2 > MSEP1.

The performance improvement measure can also be defined using the Brier score. Suppose 

we redefine the performance improvement in equation (10) by replacing the MSEP with the 

Brier score. Let BS1 and BS2 denote the Brier score for the existing and revised model, 

respectively. The performance improvement based on the Brier score is

PIBS = BS1 − BS2
BS1

(11)

Compared to equation (10), the numerators for the two definitions of PI are the same. 

They differ in the denominator where the denominator in equation (10) is the denominator 

in equation (11) subtracting the outcome variance. Consequently, the PI defined using the 

MSEP is less dependent on the outcome prevalence than the corresponding one using the 

Brier score. Consider again the scenario where the predicted probabilities from the revised 

model perfectly match the true outcome probabilities for all subjects, that is, MSEP2 = 0. 

The PI based on the MSEP is 1 and the PI based on the Brier score is less than 1 and its 

value depends on the outcome prevalence.

5 Simulation

We ran two simulation studies to evaluate the model prediction performance using the 

MSEP and compared it to the Brier score and index of prediction accuracy (IPA).20

We generated a binary outcome Y ~ Bernoulli(p), where

Logit(p) = β0 + β1X1 + β2X2 + β3X3

In the first simulation, X1, X2, and X3 were independent random variables following a 

Bernoulli(0.5) distribution and β0 = −1, β1 = 1, β2 = 1, β3 = 1. In the second simulation, 

X1, X2, and X3 followed a Uniform( − 1, 1) distribution with the same beta coefficients. The 

sample size for both simulations was 400, of which 200 random samples were used as the 

training data and the other 200 samples were used as the validation data.

We fit two logistic models in the training data. The first model included X1 and X2 

in the model. The second model additionally included X3 in the model. The prediction 

performance of the two models were evaluated using the estimated BS, IPA, and MSEP in 

the validation data. We also compared them with the true MSEP. The MSEP was estimated 

using equation (6) in which the outcome variance was estimated using equations (5) and 

(7) in simulations I and II, respectively. We used the moving average window size of 10 in 

estimating the outcome variance in Simulation II. Both simulations were repeated 200 times.

Based on the second simulation, we additionally evaluated the sensitivity of the proposed 

variance estimator in equation (7) with respect to the moving average window size. We 

additionally increased the sample size of the validation data to 400 and 800. We also varied 
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the β0 coefficient, that is, β0 = c( − 2, − 1, 0), which corresponds to the outcome prevalence 

of about 0.15, 0.3, and 0.5, respectively.

Figure 1 summarizes the results for the estimated BS, IPA, and MSEP for Simulation I. 

The distribution of the estimated BS and IPA for the two models overlapped, providing 

no clear evidence of model improvement by adding X3 in the model. In contrast, the 

estimated MSEPs for the two models had less overlap and provided stronger evidence 

of better performance comparing Model 2 to Model 1. In addition, the estimated MSEPs 

for both models were close to the true values despite underestimation, suggesting a good 

performance of variance estimation. Figure 2 shows the performance improvement defined 

in equation (10). As expected, the PI calculated using the estimated MSEP is underestimated 

comparing to the true value due to the variance underestimation. However, the PI based 

on the estimated MSEP showed much larger improvement in prediction accuracy than the 

corresponding one calculated using the Brier score.

Figure 3 summarizes the results for the BS, IPA, and MSEPs for Simulation II. To evaluate 

if the estimated MSEP is sensitive to how the subjects were ordered in the sliding window 

approach, the MSEPs were estimated in two ways, differed by how the outcome variable 

was sorted. The outcomes were sorted by the predicted probabilities from Models 1 and 2 

when estimating MSEP1 and MSEP2, respectively. Both estimated MSEPs showed better 

separation between the two models compared to the BS and IPA. The estimated MSEPs 

were close to their true values. In addition, the estimated MSEPs using the two different 

subject ranking were close to each other, suggesting the results were not sensitive to how the 

outcomes were sorted when applying the moving average filter.

Figure 4 shows the performance improvement comparing Models 1 and 2 in Simulation II, 

calculated using the BS, the two estimated MSEPs and true MSEP. The PI calculated using 

the two estimated MSEPs showed greater improvement compared to the one calculated 

using the Brier score, which is more consistent with the intuition that the prediction 

performance improves by adding an independent significant predictor.

We evaluated the sensitivity of variance estimation with respect to the window size in 

Simulation II. Table 1 summarizes the bias and percent bias of the estimated outcome 

variance with varying window size under different sample sizes and outcome prevalences. In 

most scenarios, the bias reduces with increasing window size, although they are all relatively 

small. With fixed window size, the bias does not reduce with increasing total sample size. 

The largest bias is about 8% when the window size is 10. When the window size is relatively 

large compared to the total sample size (e.g. window size of 40 and total sample size of 

200), the bias becomes negative, suggesting the variance is overestimated.

6 Data analysis

The Breast Cancer Surveillance Consortium (BCSC) was established in 1994 by the 

National Cancer Institute (NCI) to prospectively collect breast cancer risk factors at the 

time of each mammography screening, and ascertain outcomes for all women.21 Using the 

BCSC dataset, Barlow et al.22 developed a risk prediction model to estimate the probability 
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of breast cancer diagnosis within one year after a screening mammogram. The model 

included race, ethnicity, breast density, BMI, use of hormone therapy, type of menopause, 

and previous mammographic result. The dataset included women aged between 35 and 

84 years with mammograms screened from 1 January 1996 to 31 December 2002. There 

were 2,392,998 eligible screening mammograms from women who had not been previously 

diagnosed with breast cancer and had one prior mammogram in the preceding five years. Of 

those, 568,215 mammograms were from premenopausal women and 1726 were diagnosed 

with breast cancer within one year of the screening. The final model for premenopausal 

women included four predictors: age, breast density, number of first-degree relatives with 

breast cancer, and a prior breast procedure. Of the four predictors, breast density was the 

most significant predictor of breast cancer incidence.

Using four-fold cross validation method, we fit two logistic models: the model that 

included all predictors other than the breast density (Model 1) and the model with all 

four predictors (Model 2). Table 2 summarizes the comparison of the two models using 

different measures in the validation set. We first evaluated the performance of both models 

using the Brier score. The Brier scores are 3.0271e − 03 and 3.0266e − 03 for Models 

1 and 2, respectively. The performance improvement comparing Model 1 versus 2 using 

the Brier score is 3.0271e − 03 − 3.0266e − 03
3.0271e − 03 × 100% = 0.018%. Since the Brier score for the 

null model in which there is no predictor is 3.0284e − 03, the IPAs for Models 1 and 2 

are 0.042% and 0.060%, respectively. Next, we calculated the proposed MSEP measure. 

Since all the predictors in the model are categorical variables, we estimated the outcome 

variability based on Model 2 using equation (5) and calculated the MSEP using equation 

(6) accordingly. The estimated MSEPs for Models 1 and 2 are 6.0207e − 06 and 5.4617e 
− 06, respectively. The performance improvement comparing Model 1 versus 2 using the 

MSEP is 6.0207e − 06 − 5.4617e − 06
6.0207e − 06 × 100% = 9.28%, suggesting a large improvement when 

breast density was included in the risk prediction model. We also calculated the SRMSEP 

for Model 2. There were 568,215 records in the data with 1726 breast cancer events. 

Consequently, the breast cancer incidence is 1, 726/568, 215 = 0.00304. The SRMSEP for 

Model 2 is 5.4617e − 06/0.00304 = 0.769, indicating the error for the predicted probability of 

cancer incidence is on average 76.9% of the true outcome probability. Although there was 

a big improvement in predicting breast cancer incidence by including the breast density in 

Model 2, the error associated with the predicted probability is still quite large relative to the 

true outcome probability. Additional work may be required to improve the breast cancer risk 

prediction model.

7 Summary

We proposed a modified criterion based on the Brier score to evaluate and compare model 

performance for predicting binary outcomes. We decomposed the Brier score into the mean 

square error for the estimated probabilities and the intrinsic variance in the data. Since the 

variance of the binary outcome is not reflective of the model performance, we subtracted 

it from the Brier score and used only the first component, referred to as the MSEP, as the 

criterion for evaluating model performance. We showed the MSEP is more sensitive than the 

Yang et al. Page 9

Stat Methods Med Res. Author manuscript; available in PMC 2022 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Brier score for quantifying the improvement when comparing the prediction performance of 

different models using the same dataset.

A key step in estimating the MSEP is to estimate the variance of binary outcomes. If the 

prediction model includes all categorical predictors, as was the case in the BCSC example, 

it is natural to group the subjects based on their predicted probabilities, which have a 

finite number of unique values, and calculate the variance for all subjects who have the 

same predicted probability. To handle the scenario of small number of subjects within each 

group, which is especially the case when there are continuous predictors in the model, we 

proposed a sliding window approach to estimate the variance for each subject by borrowing 

information from neighboring subjects who have similar outcome probabilities. The average 

outcome within the sliding window is a consistent estimator of the true outcome probability, 

a necessary condition for the product term in the Brier score decomposition to be zero.

A key parameter that needs to be specified is the window size when estimating the outcome 

variance using the sliding window approach. Using the simulation, we showed the estimated 

outcome variance is relatively insensitive to the window size. In the scenarios with a range 

of sample size and outcome prevalence, the largest bias is about 8%. We observed the bias 

reduces as the window size increases in most scenarios. However, in the few scenarios where 

the windows size is relatively large compared to the sample size (e.g. window size is 40 

and sample size is 200), the bias is negative suggesting the variance is overestimated. Since 

we do not know the true model for the outcome, it is very difficult to have an unbiased 

estimate of the outcome variance. It is possible to develop an asymptotic procedure to have 

consistent estimate of the variance and MSEP accordingly, in which the optimal window 

size may depend on the sample size, outcome prevalence and other factors. Future research 

is required for selecting the optimal window size, which is beyond the scope of this work. 

In practice, a smaller window size is preferred as otherwise the proposed MSEP measure 

can be negative when the variance is overestimated (i.e. the Brier score is smaller than 

the estimated outcome variance). Consequently, we used the window size of 10 in both 

simulations and the BCSC data analysis. The sliding window approach is similar to the 

smoothing methods that have been used to estimate the calibration curve in literature.15 

Other methods may also be considered in estimating the outcome probability and associated 

variance, for example, kernel smoothing, repetitive sliding window. It will be interesting 

to see the comparison of performance using different methods in estimating the outcome 

variance, which can be another future direction of research.

A prediction model is meant to provide a tool for clinicians to improve decision-making in 

practice, which is not necessarily the true model for the relationship between predictors and 

outcome. To evaluate the performance of a new prediction model, it is important to compare 

it to a null model,20 or a currently established model. On the other hand, it is also important 

to know the gap between the current model performance with respect to the “true” model, 

that is, how well can we predict the outcome using the existing data. Our proposed MSEP 

measure falls in the latter category. Since the expected MSEP is zero for the true model, the 

MSEP reflects the model performance with respect to the true model. It is complimentary to 

evaluate a candidate model by comparing it to both the null and “true” models.
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Figure 1. 
The comparison of BS, IPA, estimated and true MSEPs between the two models in 

Simulation I where all predictors are binary variables. MSEPs: mean square error for the 

probability of binary outcomes; BS: Brier score; IPA: index of prediction accuracy. Model 1 

includes X1 and X2 as the predictor. Model 2 additionally includes X3 in the model.
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Figure 2. 
Performance improvement between the two models defined using the BS, estimated and true 

MSEPs in Simulation I. MSEPs: mean square error for the probability of binary outcomes; 

BS: Brier score.
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Figure 3. 
The comparison of BS, IPA, estimated and true MSEPs between the two models in 

Simulation II where all predictors are continuous variables. The MSEP1 and MSEP2 were 

estimated by ranking the subjects based on their predicted probabilities from Models 1 and 

2, respectively. MSEPs: mean square error for the probability of binary outcome; BS: Brier 

score; IPA: index of prediction accuracy. Model 1 includes X1 and X2 as the predictor. 

Model 2 additionally includes X3 in the model.
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Figure 4. 
Performance improvement between the two models defined using the BS, estimated and true 

MSEPs in Simulation II. The MSEP1 and MSEP2 were estimated by ranking the subjects 

based on their predicted probabilities from Models 1 and 2, respectively. MSEPs: mean 

square error for the probability of binary outcome; BS: Brier score.
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