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Abstract

Purpose: To identify patterns of visual field (VF) loss based on unsupervised machine learning 

and to identify patterns that are associated with rapid progression.

Design: Cross-sectional and longitudinal study.

Participants: A total of 2231 abnormal VFs from 205 eyes of 176 OHTS participants followed 

over approximately 16 years.

Methods: VFs were assessed by an unsupervised deep archetypal analysis algorithm as well 

as an OHTS certified VF reader to identify prevalent patterns of VF loss. Machine-identified 

patterns of glaucoma damage were compared against those patterns previously identified (expert-

identified) in the OHTS in 2003. Based on the longitudinal VFs of each eye, VF loss patterns that 

were strongly associated with rapid glaucoma progression were identified.

Main Outcome Measures: Machine-expert correspondence and type of patterns of VF loss 

associated with rapid progression.

Results: The average VF mean deviation (MD) at conversion to glaucoma was −2.7 dB 

(Standard Deviation (SD) = 2.4 dB) while the average MD of the eyes at the last visit was 

−5.2 dB (SD = 5.5 dB). Fifty out of 205 eyes had MD rate of −1 dB/year or worse and were 

considered rapid progressors. Eighteen machine-identified patterns of VF loss were compared 
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with expert-identified patterns in which 13 patterns of VF loss were similar. The most prevalent 

expert-identified patterns included partial arcuate, paracentral, and nasal step defects, and the most 

prevalent machine-identified patterns included temporal wedge, partial arcuate, nasal step, and 

paracentral VF defects. One of the machine-identified patterns of VF loss predicted future rapid 

VF progression after adjustment for age, sex, and initial MD.

Conclusions: An automated machine learning system can identify patterns of VF loss and could 

provide objective, and reproducible nomenclature for characterizing early signs of visual defects 

and rapid progression in patients with glaucoma.

Precis:

We developed an artificial intelligence system that can discover and classify patterns of visual 

field loss. Some patterns of visual field loss that were previously unknown predicted future rapid 

glaucoma progression.

Introduction

Glaucoma is a heterogeneous group of disorders that represents the second leading cause 

of blindness overall, affecting up to 91 million individuals worldwide.1,2 Glaucoma has 

multiple known risk factors including age, ethnicity, and elevated intraocular pressure (IOP). 
3,4 However, subjects with one or more of these risk factors may or may not develop 

glaucoma, making an accurate disease prediction challenging.5 Since glaucoma is typically 

asymptomatic, its detection before significant vision loss is critical.6 Hence, methods for 

detecting glaucoma at earlier stages could have a significant impact on public health.

Visual field (VF) testing through standard automated perimetry (SAP) remains a clinical 

standard for glaucoma assessment. Classification of glaucomatous VF defects is important 

for several reasons: to diagnose the disease through the determination of the pattern and 

shape of the defect, to identify the severity of disease, to adjust the therapy based on the type 

of defect and quality of the life, and to determine prognosis.7 However, manual classification 

of VFs requires significant clinical training, is subjective with limited reader agreement 

(even among glaucoma specialists), and more importantly, is labor intensive.8,9

Several groups have proposed systems for classifying the severity and pattern of 

glaucomatous VF loss, which are mostly developed using cross-sectional VF data.10–13 

Other investigators have also developed staging systems as a means of classifying VF 

progression.7 An important component of managing patients with glaucoma includes 

determination of whether changes in the pattern and shape of VF loss indicates disease 

progression, which may require modification of current therapeutic interventions.

With recent advances in artificial intelligence models and significant growth in data 

availability, these methods have shown promise for providing objective systems to assess 

VF data.14–19 Unlike most machine-learning models that require large, clinically annotated 

training datasets to learn promising features, we use unsupervised learning requiring no 

annotated data. The unsupervised machine independently identifies abnormal VF patterns 

with characteristics of potential interest for predicting visual loss.17,20–22 Due to their 

unsupervised nature, these types of learning algorithms are more useful over algorithms that 

Yousefi et al. Page 2

Ophthalmology. Author manuscript; available in PMC 2023 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



use predefined assumptions and rules to build knowledge. Moreover, the learning process 

is more accessible since there is no requirement for human training expertise. Nevertheless, 

it is desirable to eventually validate these models with input from human experts to assure 

findings are clinically relevant for an effective utility.

The ability to classify patterns of VF loss is important but anticipating progression before 

it leads to substantial vision loss (i.e., forecasting rapid progression), is even more crucial 

to understanding glaucoma, targeting treatment, and preventing vision-related disability. 

While several risk factors including older age, elevated IOP, African ethnicity, and increased 

cup-disk ratio may contribute to glaucoma onset and progression 23, we propose an objective 

approach based on machine-identified patterns of VF loss to predict those who may 

experience rapid glaucoma progression and future vision loss.

Method

Subjects and Data

Appropriate data use agreements were signed to utilize the de-identified data from the 

Ocular Hypertension Treatment Study (OHTS). The study was conducted according to the 

tenets of Helsinki. The OHTS was a prospective, multi-center investigation (22 centers 

across the US) that sought to prevent or delay the onset of VF loss in patients with elevated 

IOP (at moderate risk of developing glaucoma). All risk factors were measured at baseline 

prior to disease onset and clinical data were collected for approximately 16 years (phases 1 

and 2 from 1994 to 2008). Clinical examination data and fundus photographs were collected 

every six months over the course of the study. Details of the OHTS study and the procedures 

for identifying glaucoma have been described previosuly.24

Briefly, VFs were initially collected using the Humphrey Field Analyzer (Carl Zeiss 

Meditec, Dublin, California) 30–2 pattern, full threshold or SITA Standard strategy, white-

on-white perimetry. Two VF tests had to meet reliability criteria of <33% false positives and 

false negative, and <33% fixation loss errors, be classified as normal by three readers of 

the OHTS Visual Field Reading Center (VFRC) (including C.A.J), and exhibit a Corrected 

Pattern Standard Deviation (CPSD) within the 95% age specific population norm, as well 

as a Glaucoma Hemifield Test (GHT) result within the 97% age-specific population norm 

(“within normal limits”).

Visual fields had to be normal and reliable in both eyes on two consecutive assessments as 

determined by the VFRC, and the optic nerves had to be normal in both eyes on clinical 

examination and in stereoscopic optic disc photographs as determined by the OHTS Optic 

Disc Reading Center (ODRC). If one of the two baseline VFs were not reliable or consistent 

with the other VF, a third test was requested by the VFRC. Follow-up VF assessments 

were performed at 6-month intervals. Due to VF variability, three reliable and reproducible 

abnormal VFs were required to meet the abnormality criteria for an OHTS VF endpoint. 

However, at the time of conversion to glaucoma, only one dependable VF was available for 

each eye in the OHTS dataset. A total of 2,231 VFs corresponding to the onset date of a 

glaucomatous VF endpoint (assigned based on VF abnormality) as well as the respective 
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follow-up visits (VFs corresponding to visits after glaucoma onset) were included in this 

study (one VF per visit).

Unsupervised machine learning model: Archetypal analysis25 is basically a matrix 

factorization method where a dataset (matrix) is decomposed as archetypes that lie on 

(or adjacent to) convex hull (enclosing shape) of input data points. Therefore, archetypes 

present a convenient method to capture extreme properties of a large number of VFs. 

Deep archetypal analysis26–30 is a layered framework that performs multiple archetypal 

analysis-based factorizations on the input data (matrix) and its subsequent factors. Deep 

archetypal analysis systematically divides the input data into small groups, thus capturing 

both local and global characteristics of the data. We loaded the 2,231 abnormal VFs from 

176 OHTS participants into a deep archetypal analysis algorithm to identify deep VF 

archetypes that could be of interest in characterizing VF loss. The deep archetypal analysis 

identified underlying patterns without supervision or any additional clinical parameter as 

input. The only parameter that we provided to the DAA algorithm was the number of 

patterns we expected to identify. We examined different numbers of archetypes and observed 

that 18 patterns generated the minimum reconstruction error (the root mean square error 

of initial and reconstructed VFs were assessed objectively and the number of archetypes 

corresponding to minimum error was selected as the optimal number) as well as providing 

a mutually exclusive set of patterns (evaluated subjectively by C.A.J). We refer to these 18 

patterns as machine-identified patterns of VF loss (Fig. 1) and refer to those patterns that 

were identified in the initial OHTS study as expert-identified patterns of VF loss (Fig. 2).

Each VF can be represented as a weighted combination of these 18 machine-identified 

patterns of VF loss while this is not necessarily true for expert-identified patterns of VF loss. 

To compare machine- and expert-identified patterns of VF loss, we obtained the mutually 

exclusive patterns of VF loss identified by OHTS certified VF readers (Fig. 2).13 Next, one 

of the three OHTS certified VF readers (C.A.J.) was asked to identify the correspondence 

between these 18 machine-identified patterns with those originally identified in the 2003 

OHTS VF classification study.13 We added another classification, called “other”, in case any 

of these machine-identified patterns of VF loss did not correspond to any of the original 

OHTS classifications. We then computed the agreement between the reader and the machine 

and assessed which patterns were present in both machine-identified and expert-identified 

groups and which patterns were missing.

To investigate the most prevalent pattern of VF loss among the 18 machine-identified 

patterns, we decomposed each VF to these 18 machine-identified deep archetypal patterns. 

We then established a correspondence between each VF and the most contributing machine-

identified pattern based on the largest weight (other machine-identified patterns may have 

non-zero weights). VFs were subsequently clustered to 18 groups corresponding to 18 

machine-identified patterns based on largest weight of each VF. To identify the extent and 

severity of glaucoma in eyes in each cluster, we computed the average Mean Deviation 

(MD) of eyes in that cluster.

To investigate the association between machine-identified patterns of VF loss and rapid 

progression, we assessed if the machine-identified patterns of VF loss corresponding to only 
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the first visit of the sequence of VFs of each eye can predict rapid VF progression. To 

account for variation in MD of different visits, for each eye, the MD rate was calculated 

based on the linear regression of MD at all visits and recording the slopes. Eyes with 

rapid VF progression had MD rate of −1 dB/year or worse. We used generalized estimating 

equations (GEE) 31 to identify associations to account for both eyes of same subjects.

Results

A total of 205 eyes (of 3,272 eyes) from 176 subjects (of 1,636 participants) in the OHTS 

were determined to reach a glaucomatous VF endpoint. The average MD from the 205 VFs 

at the time of conversion (glaucoma onset) was −2.7 dB (±2.4; SD) while the average MD of 

the eyes at the last visit was −5.2 dB (±5.5). The average MD of all 2,231 longitudinal VFs 

was −4.2 dB (±4.7).

A total of 50 out of 205 eyes had MD rate of −1 dB/year or worse with mean rate of MD 

decline of −1.9 dB/year (SD=±1.4, quantiles= [−10.3, −2.1, −1.6, −1.3, −1.0]) and were 

considered rapid progressors. Eyes that were not progressing rapidly had a mean rate of MD 

decline of 0.2 dB/year (SD= ±2.1, quantiles= [−1.0, −0.32, −0.11, 0.14, 21.4]).

Figure 1 shows 18 machine identified patterns of VF loss that were prevalent in the VFs 

of the OHYS study. Figure 2 presents 18 expert-identified patterns of VF loss that were 

recognized by the OHTS team from the same subset of VFs previously.

Table 1 shows the correspondence between machine- and expert-identified patterns of 

VF loss as reviewed by one of the OHTS certified VF readers (C.A.J). Patterns without 

correspondence were labeled as other. The OHTS certified VF reader agreed that deep 

VF archetype P1 is normal, thus there was no correspondence for this archetype among 

expert-identified patterns of defect.

Machine-identified archetypes P2, P1, P4, and P10 were the most prevalent patterns in the 

VFs of OHTS participants at the glaucoma conversion visit with 21%, 17%, 10%, and 8%, 

contributions, respectively (based on analysis of the predominant pattern). The contributions 

of the remaining patterns were less than 5% across all VFs. Machine-identified archetype 

P2 was identified as a temporal wedge defect, which was also prevalent in the OHTS initial 

study. Table 2 shows all patterns and a brief, corresponding explanation based on the initial 

OHTS study.

Figure 3 shows the box plot of the MD values of clusters of VFs with predominant machine-

identified patterns of VF loss. Eyes in which the P1 pattern was predominant (P1 had the 

highest weight among all 18 DAA patterns) had the least global severity as expected, since 

this pattern was normal, while eyes with P18 as the predominant pattern had the deepest 

global severity.

We calculated MD rates of all eyes using the slopes of linear regression models based on 

the VF test corresponding to the glaucoma conversion date and follow up VFs. We then 

decomposed the VFs of all eyes corresponding to the glaucoma conversion date only (visits 

that each eye converted to glaucoma based on the VF endpoint). While P15 pattern was 
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present in 52% of the VFs of fast progressing eyes, P15 was present in only 9% of the 

non-progressing eyes (we considered P15 is present if its weight was greater than 1% no 

matter if P15 is predominant or not).

Machine-identified pattern P15 at the time of glaucoma conversion predicted those with 

future rapid MD progression. In the GEE model, once we used P15 as the only independent 

variable to predict rapid progression, estimate, standard error, Wald, and p value were 14.8, 

4.3, 11.6, and 0.0006, respectively. When we entered the other machine-identified patterns, 

initial MD (at the glaucoma onset visit), sex, and age in the GEE equation (accounted for 

covariates), still the only significant factor that predicted rapid glaucoma progression was 

P15 (estimate, standard error, Wald, and p value were 15.3, 5.9, 6.8, and 0.009, respectively). 

In fact, P15 pattern was present in 52% of the VFs of fast progressing eyes, however P15 

was present in only 9% of the non-progressing eyes.

Figure 4 shows VFs collected from three OHTS participants at the time of conversion to 

glaucoma (based on VF endpoint). The VFs were decomposed to 18 deep archetypes based 

on the proposed unsupervised machine learning technique. The upper panel shows the VF 

of the left eye of a 60-year-old patient with initial MD of 1.2 dB that the weight of its 

P15 pattern was 0%. The rate of MD progression of this subject was −0.32 dB/year, and 

the subject was a non-rapid progressor. The middle panel represents the VF of the left eye 

of a 40-year-old patient with initial MD of −6.8 dB in which the weight of its P15 pattern 

was 0%. The rate of MD progression of this subject was 0.50 dB/year thus a non-rapid 

progressor. The lower panel represents the VF of the right eye of a 75-year-old patient with 

initial MD of −6.7 dB in which the weight of its P15 pattern was 16%. The rate of MD 

progression of this subject was −2.46 dB/year so was progressing rapidly.

Discussion

We observed that for 13 of the machine-identified patterns of VF loss, there is a general 

agreement between a certified VF grader on the corresponding expert-determined patterns.

Except for P11 which was identified as quadrantanopia, there was no pattern reflecting a 

neurological defect based on the machine-identified patterns of VF loss. However, OHTS 

readers had identified homonymous patterns of VF loss in the OHTS dataset. The algorithm 

identified patterns of VF loss (see Table 1: P3, P14, and P15) that were not recognized in 

the OHTS classification study. There was a tendency towards macular and foveal loss in 

machine-identified patterns of VF loss. For instance, pattern P3 likely corresponds to VF 

defects in the macula and fovea regions. Patterns P14, P15, and P17 that were absent in 

the OHTS study but present in our model partially included macular and corneal regions. 

Both the machine-identified (Fig. 3) and the expert-identified13 temporal wedge pattern of 

VF loss had a relatively small MD compared to other patterns of VF loss. Also, both studies 

identified that the total loss pattern has the deepest MD.

While the experts in the initial OHTS study identified only one class for partial arcuate 

patterns of VF loss, the algorithm discovered four subtypes of partial arcuate patterns of VF 

loss (P4, P10, and P12). P4 was of particular note as the arcuate in the inferior region of the 
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VF was not highlighted in the initial OHTS study, but this rare pattern was discovered by 

machine learning.

There may be several reasons for the discrepancy between machine-identified and expert-

identified patterns of VF loss, one of which could be the process that was followed to 

identify such patterns manually. OHTS readers limited the findings to a single prominent 

pattern for each VF and did not classify more complicated patterns that were likely a 

combination of multiple simpler patterns. However, the machine algorithm does not exclude 

any pattern and tries to decompose more complex VFs to those 18 deep archetypes and then 

select one with highest weight as the prominent pattern.

We derived patterns of VFs of all eyes at the glaucoma conversion visit in which the average 

MD across all eyes was only −2.7 dB. Therefore, it is expected that the predominant patterns 

mostly include P1 to P4. In fact, P1, P2, and P4 contributed to approximately 50% of the 

weight across all VFs (17%, 21%, and 10%, respectively). The other patterns contributed 

about 5% or less. The difference between the weights of the P15 pattern in non-rapid and 

rapid progressors was statistically significant (based on GEE test accounting for both eyes 

of subjects, age, and initial MD). Visual field testing is the most common method to assess 

glaucoma progression in clinical practice. It also reflects functional vision loss which likely 

has a more direct impact on patient quality of life. As such, the weight of P15 pattern 

(which was not recognized in the initial OHTS study) could be used to predict future rapid 

glaucoma progression.

Overall, computer algorithms are more consistent compared to groups of glaucoma 

specialists and well-trained readers in making subjective judgements concerning VF 

patterns and shapes. While human experts may not follow the guidelines and procedures 

precisely32, computer algorithms consistently follow such guidelines and procedures and 

can reproduce the same results from the same corresponding guidelines. Computers can 

produce algorithms at a much faster and more consistent, uninterrupted pace compared to 

practitioners faced with other clinical duties. Machine algorithms may help us move beyond 

the limitations of human cognition if they can identify hidden patterns corresponding to 

preclinical and early stages of the disease process.

While computer algorithms are inherently objective, human experts are more likely to be 

subjective regardless of how we specify procedures and blind them to records. The computer 

algorithms we developed did not take into account any other clinical characteristics of 

OHTS patients except for the VF. Although OHTS VF graders did not have access to 

any other information when they categorized patterns, they did have a background and 

experience in recognizing VF loss patterns consistent with glaucoma and also patterns that 

are not consistent with glaucoma (e.g., retinal and neurologic disorders). Such background 

information and experience can be an advantage, but it eventually introduces sources of bias 

leading to assessments that are not completely objective.

The present investigation has some limitations: (1) All the OHTS patients had reliable 

and consistent normal VFs and optic discs when they entered the study at baseline. The 

ensuing VF loss therefore represents early deficits and may not be representative of more 
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advanced glaucomatous functional deficits. (2) Another limitation is that findings may not 

be broadly applicable to all glaucoma patients as our findings were derived from patients 

with elevated IOP, open angles and no evidence of secondary cause for glaucoma. (3) The 

current investigation was directed towards recognizing patterns and shapes of baseline (at 

the onset date) VF loss associated with rapid glaucomatous progression, but not longitudinal 

changes in VF characteristics that would be associated with glaucomatous progression. (4) 

The correspondence analysis between the ML VF patterns and the expert-derived patterns 

was inherently qualitative and somewhat subjective but conducted by an OHTS VFRC 

expert. (5) Findings may not be broadly applicable to all glaucoma patients as our study 

just investigated ocular hypertensive patients with open angles and no evidence of secondary 

cause for glaucoma. (6) Additional computational power is required to be able to perform 

the AA determinations. (7) To be useful in a busy clinical setting and for this algorithm to be 

readily and rapidly accessible to practitioners, this system would have to be integrated into 

clinical systems which would require system development and regulatory approval.

In summary, the current study indicates that deep archetypal analysis of VF results can be 

used to identify patterns and shapes of functional loss. Moreover, one pattern was found 

to be predictive of future rapid progression. With further refinements of this process and 

implementation of larger glaucomatous datasets displaying representing a wide range of 

severity and combined with longitudinal assessment, this procedure could become a valuable 

and useful tool for practitioners who manage glaucoma patients.

Conclusion

We have developed an AI system that can identify prevalent patterns of VF loss without 

human intervention. While expert classification of VF loss is labor-intensive with poor 

agreement among experts, machine learning algorithm can discover and classify patterns of 

VF loss quickly in a consistent manner. This new AI system can aid glaucoma specialists in 

identifying patterns of VF loss objectively and may aid in identifying those patients at higher 

risk of developing particular types of VF loss that may impact their daily activity and quality 

of living.
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Figure 1. 
Deep archetypal analysis (DAA) identified 18 patterns of loss from visual fields of the 

Ocular Hypertension Treatment Study (OHTS) participants who reached a glaucomatous 

visual field endpoint in 2003.
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Figure 2. 
Three OHTS certified visual field readers identified (mutually exclusive) abnormal visual 

field patterns denoted in black from the OHTS participants who reached a glaucomatous 

visual field endpoint in 2003.
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Figure 3. 
Boxplot of the visual field mean deviation (MD) values of 18 clusters of visual fields 

corresponding to machine-identified patterns of visual field loss (archetypes). Eyes with 

predominant archetype number 1 had the least and eyes with predominant archetype number 

18 had the worst average MD.
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Figure 4. 
Three sample abnormal visual fields of eyes with no rapid progression and rapid 

progression. Upper: An abnormal visual field with MD of 1.2 dB (at the time of conversion 

to glaucoma based on visual field endpoint) was decomposed into 18 deep archetypes in 

which the weight of the P15 pattern was 0%. This eye did not progress rapidly. Middle: 

An abnormal visual field with MD of −6.8 dB was decomposed into 18 deep archetypes in 

which the weight of the P15 pattern was 0%. This eye did not progress rapidly. Lower: An 
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abnormal visual field with MD of −6.7 dB was decomposed to deep archetypes in which the 

weight of the P15 pattern was 16%. This eye progressed rapidly.
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Table 1.

Correspondence between machine-identified (based on Fig. 1 labels) and expert-identified (based on labels in 

Figure 2) patterns of visual field loss by one of the OHTS certified visual field readers.

Machine 
Identified 
Pattern 
(Fig 1)

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18

Expert 
Identified 
Pattern 
(Johnson)

Other L8 Other L7 L1 L2 L2 L1 L7 L7 L12 L7 L15 Other Other L14 Other L18

Pattern 
Name 
(Johnson)

Normal Temporal 
Wedge

Macula Partial 
Arcuate

Nasal 
Step

Paracentral Paracentral Nasal 
Step

Partial 
Arcuate

Partial 
Arcuate

Quadrant Partial 
Arcuate

Peripheral 
Rim

Altitudinal Altitudinal Arcuate Multiple 
Foci

Total 
Loss
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Table 2.

Category of the machine-identified and expert-identified patterns of visual field loss.

Nerve fiber bundle abnormalities

Altitudinal (Alt) Severe visual field loss throughout the entire superior or inferior hemifield that respects the horizontal midline. 
The entire horizontal midline demonstrates abnormality.

Arcuate (Arc)
Significant visual field loss in the nerve fiber bundle region. 
Extends across contiguous abnormal points from the blind spot to at least 1 point outside 15° adjacent to the nasal 
meridian.

Nasal Step (NS)
Limited field loss adjacent to the nasal horizontal meridian. 
Includes at least 1 abnormal point at or outside 15° on the meridian. 
Cannot include more than 1 significant point (on either plot) in the nerve fiber bundle region on the temporal side.

Paracentral (Pc)
A relatively small visual field abnormality in the nerve fiber bundle region. 
Generally, not contiguous with the blind spot or the nasal meridian. 
Does not involve points outside 15° that are adjacent to the nasal meridian.

Partial Arcuate (PArc)

Visual field loss in the nerve fiber bundle region that extends incompletely from the blind spot to the nasal 
meridian. 
The defect is generally contiguous with either the blind spot or the nasal meridian. 
Must include at least 1 abnormal location in the temporal visual field.

Temporal Wedge (TW) A small visual field defect that is temporal to the blind spot.

Non-nerve fiber bundle abnormalities

Central (C)
Visual field loss that is predominantly in the macular region. 
The foveal threshold must have a P value of less than 0.05. 
Can be associated with a single hemifield and paired with another defect.

Hemianopia (H) Hemianopia (H): A visual field defect that respects the vertical meridian. 
Involves essentially all points in a vertical hemifield.

Inferior Depression 
(ID)

2 or more abnormal points in the very inferior region.

Partial Hemianopia 
(PH)

A visual field defect that respects the vertical meridian. 
Greater than 1 quadrant but less than a complete vertical hemifield.

Partial Peripheral Rim 
(PPR)

Generally continuous field loss outside 15°. 
Not in all quadrants. 
Must have some curvature.

Peripheral Rim (PR)
Generally continuous visual field loss outside 15° in all 4 quadrants. 
Usually no visual field loss inside 15° on either deviation plot. 
Must be visual field loss temporal to the blind spot.

Quadrant (Q) Significant visual field loss throughout an entire quadrant that respects the vertical and horizontal midlines. 
Essentially all points must have a P value of less than .05 on the total deviation plot.

Superior Depression 
(SD)

Two or more abnormal points in the very superior region.

Total Loss (TL) Severe widespread visual field loss (MD <=−20.00 dB).

Vertical Step (VS) Limited visual field loss that respects the vertical meridian. 
Includes at least 2 abnormal points at or outside 15° along the vertical meridian.

Widespread (Wsp)

Diffuse visual field loss that includes all 4 quadrants. 
The glaucoma hemifield test may show a general reduction of sensitivity or the mean deviation must show a P value 
of less than .05. 
The corrected pattern SD must not show a P value of less than .05. 
Most abnormal points on the total deviation plot are not abnormal on the pattern deviation plot.
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