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Abstract
Non-randomised studies assessing COVID-19 
vaccine effectiveness need to consider multiple 
factors that may generate spurious estimates 
due to bias or genuinely modify effectiveness. 
These include pre-existing immunity, vaccination 
misclassification, exposure differences, testing, 
disease risk factor confounding, hospital admission 
decision, treatment use differences, and death 
attribution. It is useful to separate whether the 
impact of each factor admission decision, treatment 
use differences, and death attribution. Steps 
and measures to consider for improving vaccine 
effectiveness estimation include registration of 
studies and of analysis plans; sharing of raw 
data and code; background collection of reliable 
information; blinded assessment of outcomes, e.g. 
death causes; using maximal/best information in 
properly-matched studies, multivariable analyses, 
propensity analyses, and other models; performing 
randomised trials, whenever possible, for suitable 
questions, e.g. booster doses or comparative 
effectiveness of different vaccination strategies; 
living meta-analyses of vaccine effectiveness; 
better communication with both relative and 
absolute metrics of risk reduction and presentation 
of uncertainty; and avoidance of exaggeration 
in communicating results to the general public. 

Introduction 

Vaccines represent a major advance against the 
COVID-19 pandemic. For several vaccines, phase 
III randomised trials showed high efficacy for 
reducing symptomatic infections. Randomised 
trials had less than ideally desired data on hospi-
talisations and deaths. For example, in a living 
systematic review of COVID-19 vaccines versus 
placebo, among 35 randomised trials with 219 864 
participants there was a sum of only 41 deaths.1 
However, subsequent observational studies found 
also real-world effectiveness for severe outcomes 
and death.2 While many non-randomised observa-
tional studies are performed for COVID-19 vaccine 
research, there are many reasons to be cautious 
with them, as they can easily be flawed.3–6 Here, I 
discuss how to mitigate these flaws.

The framework considers a comparison of the 
outcomes of vaccinated versus unvaccinated indi-
viduals in non-randomised data. Outcomes are 
grouped here for convenience into three catego-
ries: infections (variously defined, for example, 

symptomatic, severe or any documented (including 
asymptomatic)), hospitalisations and deaths.

Factors influencing vaccine effectiveness 
estimates
Pre-existing immunity
Vaccine effectiveness may be adding only a small 
absolute benefit in people with some pre-existing 
immunity, while the benefit may be substantially 
larger in those without pre-existing immunity. The 
typical reason for pre-existing immunity is prior 
infection. Prior infection may or may not have 
been documented, since most infections remain 
undocumented.7 The literature on the additional 
benefits of hybrid immunity (prior infection plus 
vaccination) versus only vaccination and versus 
only prior infection is still contentious and 
evolving.8

People with pre-existing infections are 
increasingly commonly distinguished in obser-
vational studies, but documented infections are 
only a minority and many more people have been 
infected without having had positive documenta-
tion with PCR or antigen test. Some studies may 
use serology to document prior infection, but even 
those may miss infected individuals who never 
mounted detectable antibodies or seroreverted.

If the vaccine effect (relative risk reduction) 
is E(prior) and E(notprior) in those with and 
without prior infection, respectively, the propor-
tion of those who have prior infection is P and 
the proportion of prior infection is the same in 
the vaccinated and unvaccinated groups—then 
the observed effect will be E(prior)P+E(notprior)
(1−P). If the ratio E(prior)/E(notprior)=R, then the 
observed effect will be E(notprior)(RP+1 P). If R is 
negligible (ie, the vaccine adds negligible value 
to people previously infected), this simplifies to 
E(notprior)(1−P). The same concept can be extrap-
olated also to vaccine-induced pre-existing immu-
nity, for example, where vaccine boosters or other 
schedules of repeated vaccination are considered. 
Other things being equal, vaccine effectiveness is 
expected to decrease over time, as more people get 
infected or vaccinated. Conversely, vaccine effec-
tiveness may increase again, if natural or vaccine-
induced immunity wanes over time.

Pre-existing immunity may differ in the vacci-
nated versus unvaccinated groups for various 
reasons. For example, due to health-seeking 
behaviour, vaccinated people may have been more 
diligent to protect themselves and thus have lower 
proportion of prior infection. Meta-analyses show 
that younger, poorer, less educated people and 
minorities are less willing to get vaccinated in 
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developed countries,9 and typically these populations had higher 
infection rates before vaccines emerged.10 11 In developing nations, 
conversely, the dynamics of vaccination uptake may be different.12 
Conversely, some policies may prioritise vaccinating people with 
higher proportion of prior infection. For example, nursing home 
residents were highly prioritised and such populations already had 
4–5-fold higher prior infection rates (as determined by seropreva-
lence studies) than the general population in 2020.13 14

Vaccination misclassification
In most vaccine programmes, documentation of vaccination is 
accurate. However, some studies may rely on self-report data. 
Moreover, vaccination status still needs to be defined and there 
can be differences on whether someone is defined as vaccinated 
immediately after vaccination or after some period has elapsed 
and if so, how long that period is. Different definitions may cause 
misclassification. Non-differential, independent misclassification 
spuriously decreases estimates of vaccine effectiveness. However, 
misclassification may also be differential and may also depend on 
outcomes, for example, if self-report is influenced by recall bias. 
The magnitude and sometimes even the direction of such bias 
are difficult to specify and require careful scrutiny of the specific 
setting and circumstances.

Exposure differences
The vaccinated group may become more heavily exposed to the 
virus after vaccination, if they feel liberated to engage in more 
frequent, massive and high-risk exposures. This phenomenon of 
risk compensation decreases the benefit of vaccination.15 Some 
data have suggested little change in protective behaviour early 
after vaccination.16 However, guidance by public health authori-
ties may occasionally encourage risk compensation, for example, 
if some measures (eg, masks) are removed only for vaccinated 
individuals. For example, many countries in 2021 offered public 
health narratives that encouraged the vaccinated individuals to 
regain their lives, while keeping more restrictions or extra require-
ments for testing for the unvaccinated. Sometimes, unvaccinated 
people are entirely banned from some high-risk settings, while 
vaccinated people have no restrictions. For example, unvacci-
nated healthcare workers have been paused from their jobs in 
several countries. Conversely, the vaccinated group may be less 
heavily exposed to the virus, if they are so health conscious that 
they engage in fewer exposures compared with the unvaccinated 
group, despite some liberation of activities after vaccination. 
Differences in exposure between the vaccinated and unvaccinated 
groups may extend also to differences in exposure to specific viral 
strains with different risk-taking behaviours. Furthermore, some-
times vaccines may have genuine differences in efficacy against 
different viral strains.

Testing
The vaccinated group may be more frequently tested (and thus 
more likely to document infection) if they are more health 
conscious and/or have better access to testing compared with the 
unvaccinated group. Conversely, the vaccinated group may be less 
frequently tested, if the vaccination reduces the severity of the 
infection and thus fewer infected people have any symptoms; if 
the vaccination induces a sense of security and people are less 
worried to be tested (even if symptomatic) and if public health 
authorities encourage more frequent testing for the unvaccinated. 
The same reasons may lead to more or less use of more sensitive 
testing detection methods as opposed to less sensitive ones (eg, 

PCR with different circle threshold or PCR vs rapid tests or self-
tests).

Testing interpretation may also differ, thus causing misclas-
sification of outcomes. For example, it may be more likely to 
call indeterminate tests positive for unvaccinated rather than for 
vaccinated people, although this is a lesser concern for tests that 
are well standardised and not subjectively interpreted. One may 
still misclassify outcomes such as ‘symptomatic COVID-19 infec-
tion’, since one makes a judgement call based on both testing 
results and patient symptoms.

Disease risk factor confounding
The vaccinated group may have a higher background risk of 
developing severe disease after infection compared with the 
unvaccinated group, if vaccination has been prioritised for people 
at higher risk of COVID-19 consequences (older age, presence 
of comorbidities). Early deployment of COVID-19 vaccines in 
most countries used such priority rules.17 The opposite situation 
may also happen, if some extremely high-risk people are prefer-
entially left unvaccinated, for example, if people with terminal 
illness are spared vaccination because of perceived futility or 
because of concern about potential vaccine adverse effects with 
extreme frailty.18 Adjusting for age and sex, people who choose 
to be vaccinated are often far more healthy (‘healthy vaccinee 
effect’), for example, in a US study, vaccinated people had mark-
edly decreased risk of dying from non-COVID-19 causes (adjusted 
relative risk 0.34–0.54).19 Matched designs, standard multivariable 
adjustments, propensity matching, instrumental variables and 
more complex causal modelling may be used with variable success 
each time, depending on how well confounders are known, meas-
ured and incorporated in the modelling.

Hospital admission decision and treatment use
The vaccinated group may have a higher chance of being admitted 
to the hospital, if their socioeconomic and demographic profile is 
such that it leads to better access to and coverage of hospital care 
than the unvaccinated group and/or if more serious background 
risk leads to hospital admission more readily. Conversely, the 
unvaccinated group may have a higher chance to be admitted in 
the hospital, if for the same clinical presentation and other things 
being equal, there is a perception that lack of vaccination portends 
serious outcomes. Hospital admission may then also affect the risk 
of death. All these considerations are speculative, and one needs 
to probe empirically if such biases exist in different circumstances 
and settings. Similar reasons may lead to differential access to and 
use of treatment modalities that may affect hard outcomes. Biases 
could also arise from counting people admitted with a COVID-19-
positive test versus people admitted due to COVID-19.

Death attribution
The vaccinated group may have a lesser chance of having deaths 
attributed to COVID-19 rather than to other causes, if vaccines are 
perceived as very effective, while unvaccinated people may have 
their deaths attributed to COVID-19 more easily. Conversely, the 
unvaccinated group may have a lower chance of having deaths 
attributed to COVID-19, if the unvaccinated group deaths occur 
in environments that are less able to pursue COVID-19 diagnosis 
(eg, disadvantaged populations). There is no direct evidence to 
date for differential death attribution based on vaccination 
status, but there is evidence that deaths can be overattributed to 
COVID-19,20 21 while in other situations COVID-19 deaths may be 
missed,20 so the differential attribution according to vaccination 
status is possible as a form of diagnosis bias.
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Outcomes affected
As shown in table  1, all of these factors may impact the esti-
mated effects for deaths. With the exception of death attribu-
tion and treatment use choices after hospital admission, all other 
factors may also impact the estimated effects for hospitalisations. 
Pre-existing immunity, vaccination misclassification, exposure 
differences and testing bias may impact the estimated effects for 
infection outcomes.

Spurious versus genuine effects
It is useful to separate whether the impact of each factor on esti-
mated vaccine effectiveness is spurious (bias) or genuine (effect 
modification) (table  1). Selection, confounding or information 
(misclassification) biases generate effectiveness estimates not 
representing the true magnitude of vaccine benefits: the true 
benefit may be larger or smaller than what is observed. These 
biases should be removed or adjusted for. Conversely, genuine 

effect modification should be considered (rather than removed or 
adjusted for) in understanding real-world vaccine effectiveness. 
In effect modification, the benefit is truly different in different 
people, settings and circumstances.

For pre-existing immunity, its impact can be either genuine 
or spurious. When pre-existing immunity is unrelated to vacci-
nation status, its impact represents genuine effect modification: 
vaccines are more effective when there is no pre-existing immu-
nity and may have no added benefit when pre-existing immunity 
is saturated. Conversely, when pre-existing immunity levels differ 
in vaccinated and unvaccinated groups, observed vaccine effec-
tiveness is biased.

Exposure differences that are induced by vaccination (risk 
compensation) may be seen as effect modification. Conversely, 
when pre-existing differences in the exposure risk are pervasive 
(carried forward also after vaccination becomes available), this 
generates spurious estimates of benefit. Both patterns may coexist.

Vaccination misclassification, testing, disease risk factor 
confounding, hospital admission decision and treatment use and 
death attribution generate spurious effect estimates. There are 
some exceptions, however, that might be seen as effect modifica-
tion induced by vaccination: for example, vaccinated people may 
have less testing and thus fewer infections detected early and may 
be managed less aggressively.

Problems in implementation of vaccination (eg, bad batch 
effects, spoiled vaccines (eg, storage in inappropriate temperature) 
or missed/delayed doses) may diminish effectiveness. Genuine 
heterogeneity of effectiveness across populations may also exist 
without necessarily obvious, identifiable biological or other 
reasons.

Assessing and correcting effectiveness estimates
The direction and magnitude of impact for each factor on esti-
mated effectiveness may vary depending on circumstances, 
specific settings and chosen study design and cannot be general-
ised. One should think carefully about each factor and, whenever 
possible, collect information that allows taking it into account in 
analysing and interpreting results.

If reliable data can be collected, factors that represent biases 
can be corrected or adjusted for using traditional approaches for 
selection bias (eg, adjusting for potential background seropreva-
lence differences, exposure differences and testing intensity) and 
confounding (eg, adjusting for disease severity risk factors). Sero-
prevalence studies are doable, but they have many potential biases 
themselves,22 and require cautious interpretation. Exposure risk 
and intensity are typically measured by mobility tracking. These 
data often pertain to whole population group-level estimates with 
ecological bias and are not very useful for understanding vaccine 
effectiveness. Individual-level data of exposure risk and intensity 
may also be captured by questionnaires and by tracking tools, 
but may still have substantial error (measurement error, reporting 
bias, response/non-response bias and volunteer bias).23 COVID-19 
testing data are more tractable, but one needs additional infor-
mation on indications of testing (eg, testing may be performed 
for symptoms or for routine screening). Vaccination misclassifica-
tion is best addressed by using reliable register data and avoiding 
self-reporting. Outcome misclassification may be diminished by 
assessments of outcomes in audited medical records blinded to 
vaccination status.

Design considerations for vaccine effectiveness studies 
predate this pandemic3–5 and are being revisited in the 
COVID-19 setting.6 For factors that can be measured, 
various adjustment approaches (including propensity score 

Table 1  Factors influencing estimated COVID-19 vaccine 
effectiveness: outcomes affected and type of influence

Factors
Outcomes 
affected*

Influence on effectiveness 
estimate†

Pre-existing immunity  �   �

 � Same in V and UNV I, H, D Genuine

 � Different in V and UNV I, H, D Spurious (selection bias)

Vaccination 
misclassification

I, H, D Spurious 
(misclassification)

Exposure difference  �   �

Induced by perceived 
vaccine protection

I, H, D Genuine

Pre-existing, carried 
forward

I, H, D Spurious (selection bias)

Testing  �   �

Typical diagnosis bias I, H, D Spurious (selection bias, 
misclassification)

Affecting treatment H, D Genuine

Disease risk factor 
confounding

H, D Spurious (confounding 
bias)

Hospital admission 
decision

 �   �

Induced by perceived 
vaccine protection

H, (D)‡ Genuine

Other reasons H, (D)‡ Spurious (selection bias, 
confounding)

Treatment use difference  �   �

Induced by perceived 
vaccine protection

D, (H)§ Genuine

Other reasons D, (H)§ Spurious (selection bias, 
confounding)

Death attribution D Spurious 
(misclassification)

*The outcomes considered here are infection (I), hospitalisation (H) 
and death (D).

†There are two major types of influence: genuine impact represents 
effect modification (ie, the vaccine effectiveness is genuinely different 
in different groups, settings, etc) and conversely, spurious impact 
means bias (ie, the vaccine effectiveness is different from what is being 
estimated).

‡May affect death outcome if hospital admission affects the risk of 
death (not necessarily so).

§For treatments that are applied before hospitalisation and may affect 
the need for hospitalisation.

UNV, unvaccinated; V, vaccinated.
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and marginal structural models) may be used. Their ability 
to remove bias depends on whether key factors have been 
measured, measurements are accurate and models are properly 
constructed. Given that many important factors are difficult to 
measure reliably, some designs try to circumvent the need for 
measuring these factors by making cases and controls similar 
by design choice. Two such options are the test-negative 
case–control24–26 and case–crossover designs.27 28

The test-negative case–control design enrols only individ-
uals who seek care and receive testing for the same/similar 
clinical reasons. In principle, this may remove the impact 
of differences in health-seeking behaviour that influences 
several factors discussed above. The design had been applied in 
influenza vaccines, noting congruence with randomised trial 
results.29 However, as opposed to influenza, people get tested 
for COVID-19 for very different reasons, beyond symptoms, 
for example, contact with known case and repeated work-
related screening.6 Differences in health-seeking behavior 
(plus underlying differences in exposure and propensity 
to get tested and to receive other medical care that affects 

incidence of symptoms, for example, getting vaccinated for 
other respiratory pathogens) are not necessarily eliminated in 
test-negative case–control studies.

Case–crossover studies consider the same individual on 
different time periods where vaccination status changes, for 
example, when unvaccinated (control period) and after he/
she has been vaccinated. Case–crossover studies had known 
problems even before the COVID-19 era.28 The design is most 
suitable if exposure is intermittent, effect is immediate and 
transient and outcomes occur abruptly. COVID-19 vaccination 
fits some but not all of these features. Moreover, vaccination 
induces potentially additional changes in behaviour and protec-
tion measures, as discussed above. Perhaps most importantly, 
epidemic activity may differ between compared time periods. 
Epidemic wave fluctuations over time may induce large changes 
both in the background risk of exposure and in what people 
do to limit exposure, based on perceptions and estimates of 
epidemic activity.

Table 2  Some measures to consider for improving the reliability of evidence from non-randomised studies of COVID-19 vaccine effectiveness

Measures to consider Rationale Challenges

Overarching measures  �   �

 � Registration of studies and analysis plans Allows to know what studies and analysis 
plans were preconceived and adhered 
to original plans and reduces degrees of 
freedom for data dredging

Most observational studies are non-
registered or are registered after the 
analyses are done; there is debate on 
whether retrospective designs should/
could be meaningfully registered; analytical 
plans are rarely registered in sufficient 
detail

 � Sharing of raw data and code Allows independent validation of analyses 
and optimises the use of the data in 
overarching syntheses of data from multiple 
studies

Sharing has been limited for various 
reasons (privacy, consent and legal 
issues, as well as reluctance of primary 
investigators)

Better data collection  �   �

 � Background collection of reliable information on 
seroprevalence, exposures, testing, disease risk 
factors, risk profiles on hospital admission and use of 
treatments

Allows for better adjustments and 
exploration of effect modification

Some of this information may be biased or 
very difficult to collect reliably

 � Blinded assessment of outcomes, for example, death 
causes

Allows removing some outcome 
misclassification biases

Blinding records requires time and 
resources and a committed effort

Better designs  �   �

 � Use of maximal/best information in properly matched 
studies, multivariable analyses, propensity analyses 
and other models

Designs that consider and hopefully address 
more biases are better

Observational studies are unlikely to ever 
eliminate all possible biases

 � Performing randomised trials, whenever possible, 
for suitable questions (eg, use of booster doses, 
comparative effectiveness of different vaccination 
strategies)

Removes many of the biases Reluctance to perform randomised trials 
when data suggest large efficacy (but this 
may be less of a concern for comparative 
effectiveness), randomised trials also have 
biases

Systematic review  �   �

 � Living reviews and meta-analyses Provide bird’s eye view of evolving evidence Meta-analyses have their own, long list of 
biases

Better communication  �   �

 � Use of both relative and absolute metrics of risk 
reduction and presentation of uncertainty

Allows better comprehension of the 
magnitude of the benefit

Poor ability of many/most people to 
understand risks and other quantitative 
metrics

 � Avoidance of exaggeration in communicating results to 
the general public

Minimises misconceptions, confusion, panic 
(eg, from misleading claims of loss of vaccine 
effectiveness) or dangerous behaviour 
changes (eg, from misleading claims of 
retaining high effectiveness even with high 
exposures)

There is an avid market seeking immediate 
information on what is new on the 
pandemic and vaccines and sensationalism 
is prominent; the anti-vax movement 
makes confusion worse by adding extra 
misinformation
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Improving evidence and inferences
Realisation of the complexity of these factors should lead to 
great caution in interpreting estimates of COVID-19 vaccine 
effectiveness from non-randomised studies. Even greater caution 
is needed when effects or changes in effects are modest. If a 
vaccine is 95%–100% effective, biases may affect exact estimates 
of effectiveness, but large benefit is still readily demonstrable. 
Conversely, claims for different effects for the same vaccine on 
different outcomes, for different vaccines, for the same vaccine 
over time, for different viral strains or for different dosing sched-
ules require extra caution, since the comparative treatment 
effects (if non-null) may be subtle. Moreover, the factors that 
shape effectiveness estimates could change over time and in 
different settings.

Table 2 lists some steps and measures that may improve the 
reliability of inferences in non-randomised studies, their ratio-
nale and some challenges that exist in their implementation. They 
include overarching measures (registration and sharing prac-
tices), better data collection, better design for analyses, systematic 
reviews of the evidence and improvements in communication of 
information.

Given the complex difficulties faced by non-randomised 
studies, randomised trials remain indispensable. While placebo-
controlled trials are difficult to justify when a vaccine shows large 
efficacy in short-term trial results, longer-term follow-up is still 
quintessential. Questions of comparative assessments where effec-
tiveness differences may be subtle or even null (eg, use of booster 
doses, head-to-head comparisons of different vaccines or of 
different vaccine strategies) should be approached by randomised 
trials.

For both observational and randomised designs, transpar-
ency and wide availability of the relevant data are essential.30 
Finally, collection of reliable information on effectiveness should 
be coupled with collection of reliable information on adverse 
events to allow meaningful comparisons of benefits and harms of 
different vaccination strategies on absolute risk scales.
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