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Abstract

Confounding remains one of the major challenges to causal inference with observational data. This 

problem is paramount in medicine, where we would like to answer causal questions from large 

observational datasets like electronic health records (EHRs) and administrative claims. Modern 

medical data typically contain tens of thousands of covariates. Such a large set carries hope 

that many of the confounders are directly measured, and further hope that others are indirectly 

measured through their correlation with measured covariates. How can we exploit these large 

sets of covariates for causal inference? To help answer this question, this paper examines the 

performance of the large-scale propensity score (LSPS) approach on causal analysis of medical 

data. We demonstrate that LSPS may adjust for indirectly measured confounders by including tens 

of thousands of covariates that may be correlated with them. We present conditions under which 

LSPS removes bias due to indirectly measured confounders, and we show that LSPS may avoid 

bias when inadvertently adjusting for variables (like colliders) that otherwise can induce bias. We 

demonstrate the performance of LSPS with both simulated medical data and real medical data.
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1. Introduction

Causal inference in the setting of unmeasured confounding remains one of the major 

challenges in observational research. In medicine, electronic health records (EHRs) have 

become a popular data source for causal inference, where the goal is to estimate the causal 

effect of a treatment on a health outcome (e.g., the effect of blood-pressure medicine on 

the probability of a heart attack). EHRs typically contain tens of thousands of variables, 

including treatments, outcomes, and many other variables, such as patient demographics, 

diagnoses, and measurements.

Causal inference on these data is often carried out using propensity score adjustment [1]. 

Researchers first select confounders among the many observed variables, either manually 

(based on medical knowledge) or empirically. Then they estimate a propensity model using 

those selected variables and employ the model in a standard causal inference method 

that adjusts for the propensity score (the conditional probability of treatment). While this 

strategy is theoretically sound, in practice researchers may miss important confounders in 

the selection process, which leads to confounding bias, or may include variables that induce 

other types of bias (e.g., a “collider” or a variable that induces “M-bias”).

In this paper, we study a closely related, but different, technique, known as large-scale 

propensity score (LSPS) adjustment [2]. LSPS fits an L1-regularized logistic regression 

with all pre-treatment covariates to estimate the propensity model. LSPS then uses standard 

causal inference methods, with the corresponding propensity scores, to estimate the causal 

effect. For example, LSPS might be used with matching [3, 4, 5] or subclassification [6].

In contrast to the traditional approach of explicitly selecting confounders, LSPS is a 

“kitchen-sink” approach that includes all of the covariates in the propensity model. While 

the L1-regularization might lead to a sparse propensity model, it is not designed to select the 

confounders in particular. Instead, it attempts to create the most accurate propensity model 

based on the available data, and LSPS diagnostics (described below) use covariate balance 

between treatment and control groups (i.e., that covariates are distributed similarly in the two 

groups) to assess whether all covariates are in fact adjusted-for in the analysis regardless of 

their L1-regularization coefficient.

The discussion over how many covariates to include in a propensity model is an old one [7, 

8, 9, 10, 11, 12, 13] and considers–in the setting of imperfect information about variables–

the tradeoff between including all measured confounders versus including variables that may 

increase bias and variance [14, 15]. To address this issue, LSPS uses only pre-treatment 

covariates to avoid bias from mediators and simple colliders, and it uses diagnostics and 

domain knowledge to avoid variables highly correlated with the treatment but uncorrelated 

with outcomes (known as “instruments”). Including such variables can increase the variance 

of the estimate [14, 15, 16, 17] and can amplify bias [18, 19, 20, 21, 22, 23].

In medicine, empirical studies of the performance of LSPS have shown it to be superior to 

selecting confounders [2, 24, 25, 26]. Consequently, LSPS has been used in a number of 

studies, both clinical [27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37] and methodological [38, 39, 

40, 41, 42, 43].
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Further, researchers have studied whether LSPS may also address indirectly measured 

confounders [34, 40, 44]. The hope behind these studies is that when we adjust for many 

covariates, we are likely to be implicitly adjusting for the confounders that are not directly 

measured but are correlated with existing covariates. Hripcsak et al.[34] and Schuemie et al.

[40] used LSPS to estimate the causal effect of anti-hypertension drugs, adjusting for about 

60,000 covariates. An important confounder, baseline blood pressure, was not contained in 

most of the data sources. In the one source that did contain blood pressure, adjusting for 

all the other covariates but no blood pressure resulted in (nearly) balancing blood pressure 

between propensity-score-stratified cohorts; the resulting causal inference was identical to 

the one obtained when including blood pressure in the propensity model.

Based on this observation, Chen et al.[44] studied the effect of dropping large classes of 

variables from the LSPS analysis, using balance of the covariates between the treatment 

and control groups as a metric for successful adjustment (i.e., is every covariate in the 

propensity model balanced between the cohorts). If all the variables of one type were 

eliminated from the propensity model (e.g., medical diagnoses), then the inclusion of a 

large number of other variables (e.g., medications, procedures) resulted in the complete 

balancing of the missing variables. Even more striking, if all variables related to one medical 

area like cardiology were dropped from the model (e.g., all cardiology-related diagnoses, 

procedures, medications, etc.), then the rest of the covariates still balanced the dropped 

cardiology covariates. Yet if too few covariates were included, such as just demographics, 

then balance was not achieved on the other covariates. Based on these studies, LSPS appears 

to be adjusting for variables that are not included but correlated with the included covariates.

In this paper, we explore conditions under which LSPS can adjust for indirectly measured 

confounders. In particular, we provide some theoretical assumptions under which LSPS is 

robust to some indirectly measured confounders. They are based on the “pinpointability” 

assumption used in Wang and Blei [45, 46]. A variable is pinpointed by others if it can 

be expressed as a deterministic function of them, though the function does not need to be 

known. In the context of causal inference from EHR data, we show that if confounders 

that are indirectly measured but can be pinpointed by the measured covariates, then LSPS 

implicitly adjusts for them. For example, if high blood pressure could be conceivably 

derived from the many other covariates (e.g., diagnoses, medicines, other measurements) 

then LSPS implicitly adjusts for high blood pressure even though it is not directly measured.

From a theoretical perspective, pinpointability is a strong and idealized assumption. But 

in practice, several empirical observations showed that important confounders that are not 

directly measured often appear to undergo adjustment when LSPS is used. Therefore, there 

might be hope that some of the indirectly measured confounders are capturable by the 

existing covariates. We do not assert LSPS as a magical solution to unmeasured confounding

—the assumption is strong—but as an attempt to better understand the empirical success 

of LSPS in adjusting for indirectly measured confounders. To explore this phenomenon, 

we use synthetic data to empirically study the sensitivity of LSPS to the degree to which 

pinpointability is violated. We find that under perfect pinpointability, adjusting for measured 

covariates removes the bias due to indirectly measured confounding. As the data deviates 

from pinpointability, adjusting for the measured covariates becomes less adequate.
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Finally, we study real-world medical data to compare LSPS to a traditional propensity score 

method based on previously used manually selected confounders. We find that removing a 

known confounder has a bigger impact on a traditional propensity score method than on 

LSPS, presumably because it is indirectly measured. This finding suggests that including 

large-scale covariates with LSPS provides a better chance of correcting for confounders that 

are not directly measured.

The paper is organized as follows. Section 2 describes the LSPS algorithm, the 

pinpointability assumption, and the effect of pinpointability on M-structure colliders, 

instruments, and near-instruments. Section 3 studies the impact of violations of 

pinpointability on the fidelity of the estimated causal effects. Section 4 presents empirical 

studies comparing LSPS to classical propensity-score adjustment (with manually selected 

covariates), and methods that do not adjust. Section 5 compares LSPS to other approaches to 

adjusting for indirectly measured confounding and makes connection to other related work. 

Section 6 concludes the paper.

2. The Large Scale Propensity Score Algorithm

In this section, we summarize the LSPS algorithm, describe an assumption under which 

LSPS will adjust for indirectly measured confounding and potentially mitigate the effect of 

adjusting for unwanted variables, and make some remarks on the assumption.

2.1. The LSPS algorithm

We summarize the LSPS algorithm [2], including the heuristics and diagnostics that 

normally surround it (e.g., Weinstein [25]). Consider a study where a very large number 

of covariates are available (e.g., over 10,000) and the problem of estimating the causal effect 

of a treatment. Rather than selecting confounding covariates and adjusting for them, LSPS 

adjusts for all of the available covariates. It uses only pre-treatment covariates to avoid 

adjusting for mediators and simple colliders (which induce bias), and it uses diagnostics and 

domain knowledge to avoid “instruments,” variables that are correlated with the treatment 

but do not affect the outcome. (Such variables increase the variance of the causal estimate.)

By design, LSPS includes all measured confounders. The hope is that in real-world data, 

such as in medicine, adjusting for all the other non-confounder variables would not impart 

bias, and empirical comparisons to traditional propensity approaches seem to bear that out 

[2, 24, 25, 26]. The further hope is that by balancing on a large number of covariates, other 

indirectly measured factors would also become balanced, and this is what we address in 

Section 2.2.

The inputs to LSPS are observed pre-treatment covariates X and binary treatment T. The 

output is the estimated causal effect ν . LSPS works in the following steps.

1. Remove “instruments.”—Remove covariates that are highly correlated with the 

treatment and are unlikely to be causally related to the outcome. Univariate correlation to 

treatment is checked numerically, and domain expertise is used to determine if the highly 

correlated variables are not causally related to the outcome; if the relationship is unclear, 
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then the variable is not removed. Note these covariates are commonly called “instruments,” 

and used in instrumental variable analysis [47]. LSPS, however, does not do instrumental 

variable analysis, and removes these variables to reduce downstream variance.

2. Fit the propensity model and calculate propensity scores.—Given the 

remaining covariates, fit an L1-regularized logistic regression [48] to estimate propensity 

scores p(t | x). The regression is

p(t ∣ x) = 1

1 + e−θ⊤x
,

where θ is the vector of the regression parameters. L1-regularized logistic regression 

minimizes

ℒ(θ) = ∑
i = 1

N
− ti log p ti ∣ xi; θ − 1 − ti log 1 − p ti ∣ xi; θ + λ ∑

j = 1

M
θj ,

where λ is the tuning parameter that controls the strength of the L1 penalty.

LSPS uses cross-validation to select the best regularization parameter λ. It then refits the 

regression model on the entire dataset with the selected regularization parameter. Finally, it 

uses the resulting model to extract the propensity scores for each datapoint.

3. Check the equipoise of the propensity model.—In this step, LSPS assesses 

whether the conditional distribution of assignment given by the propensity model is too 

certain, i.e., whether the treatment and control groups are too easily distinguishable. The 

reason is that a propensity model that gives assignments probabilities close to zero or one 

leads to high-variance estimates [15], e.g., because it is difficult to match datapoints or 

create good subclasses.

To assess this property of the propensity model, LSPS performs the diagnostic test of 

Walker et al. [49]. This diagnostic assesses the overlapping support of the distribution of 

the preference score, which is a transformation of the propensity score1, on the treatment 

and control groups. If there is overlapping support (at least half the mass with preference 

between 0.3 and 0.7) then the study is said to be in equipoise. If a study fails the diagnostic, 

then the analyst considers if an instrument has been missed and removes it, or interprets the 

results with caution.

4. Match or stratify the dataset based on propensity scores and then check 
covariate balance.—Matching [3, 4, 5] or subclassification [6] on propensity scores can 

1Define the preference score Pref as a transformation of the propensity score p(t | x) that adjusts for the probability of treatment p(t = 
1).

ln[Pref /(1 − Pref] = ln[p(t ∣ x)/(1 − p(t ∣ x)] − ln[p(t = 1)/(1 − p(t = 1)] .
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be used to create groups of individuals who are similar. The details about the two methods 

are provided in Supplementary S1. The remaining of the algorithm is explained in the 

context of 1-to-1 matching. Once the matched groups are created, balance is assessed by 

computing the standardized mean difference (SMD) of each covariate between the treated 

group and the control group from the matched dataset

SMD =
xt = 1 − xt = 0
σt = 1

2 + σt = 0
2 /2

,

where xt = 1 and xt = 0 are the mean of the covariate in the treated and the control group 

respectively, and σt = 1
2  and σt = 0

2  are the variance of the covariate in the treated and the 

control group respectively. Following Austin[50], if any covariate has a SMD over 0.1 [50], 

then the comparison is said to be out of balance, and the study needs to be discarded (or 

interpreted with caution).

5. Estimate the causal effect.—The last step is to use the matched data to estimate 

the causal effect. In the simulations in Section 3, the causal effect of interest is the average 

treatment effect

ATE = E Yi(1) − Yi(0) ,

where Yi(1) and Yi(0) are the potential outcomes for a subject under treatment and under 

control.

To estimate the ATE using matched data, a linear regression is fitted on the matched data 

with a treatment indicator variable. The coefficient of the treatment indicator is the average 

treatment effect. When subclassification is used to create balanced subclasses, the effect is 

estimated within each subclass and then aggregated across subclasses. The weight for each 

subclass is proportional to the total number of individuals in each subclass.

In the empirical studies of Section 4, the causal effect of interest is hazard ratio (the outcome 

Y is time to event). When matching is used, we fit a Cox proportional hazards model 

[51] on the matched dataset to estimate the hazards ratio. When subclassification is used, 

we fit a Cox model within each subclass and then weigh the conditional hazards ratio by 

the size of the subclass to obtain the marginal hazards ratio. More details are provided in 

Supplementary S2.

2.2. Adjusting for indirectly measured confounders

As noted in the introduction, LSPS has been found to adjust for known but indirectly 

measured confounders [34, 40, 44]. We describe here an assumption under which LSPS will 

adjust for indirectly measured confounding.

Consider the causal graph in Fig.1 for an individual i (the subscript is omitted in the graph), 

where Ti ∈ {0, 1} is a binary treatment, Yi is the outcome (either binary or continuous), 

Xi ∈ {0, 1}M is a high-dimensional vector of observed pre-treatment covariates with length 
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M (which includes observed confounders and other variables), and U ∈ ℝ is the indirectly 

measured confounder. The goal is to estimate the causal effect of treatment T on the 

outcome Y. To do so, we need to adjust for both pre-treatment covariates X (including 

directly measured confounders) and U (indirectly measured confounder). We assume that 

there are no other unmeasured confounders.

In the following sections, we will demonstrate that LSPS can still produce unbiased causal 

estimates even in the presence of indirectly measured confounders. We first introduce 

Assumption 1, which indicates the relationship between measured covariates and indirectly 

measured confounders.

Assumption 1. (Pinpointability of indirectly measured confounder) An unmeasured 
confounder U is said to be pinpointed by measured covariates if

p(u ∣ x) = δ(f(x)) (1)

where δ(·) denotes a point mass at f(·).

In other words, the indirectly measured confounder U can be represented by a deterministic 

function f of the measured covariates X. Theorem 1, building upon Assumption 1, formally 

states the conditions that LSPS needs in order to obtain unbiased causal estimates by only 

conditioning on measured covariates. We use the potential outcome framework by Rubin 

[52]. Let Yi(1) and Yi(0) denote the potential outcome under treatment and under control 

respectively for an individual i.

Theorem 1. The treatment and the potential outcomes are independent conditioning on all 
confounders, both the directly measured (X) and indirectly measured (U),

T ⫫ Y (1), Y (0) ∣ X, U . (2)

Under the pinpointability assumption, the above conditional independence can be reduced to 
only conditioning on the measured covariates,

T ⫫ Y (1), Y (0) ∣ X . (3)

In other words, the causal effect of the treatment on the outcome is identifiable by only 

adjusting for the measured covariates X. We do not need to know the indirectly measured 

confounders U or its functional form f(·).

PROOF. Theorem 1 relies on the marginalization over U in computing the propensity score 

using high-dimensional measured covariates,

p(t ∣ x) = ∫ p(t ∣ u, x)p(u ∣ x)du (4)

= p t ∣ u*, x , (5)
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where u* = f(x).

When U is weakly pinpointed by X, or in other words, f(X) measures U with error, the 

average treatment effect is not point identifiable. Assuming identification holds conditional 

on the unmeasured confounder, Ogburn and VanderWeele [53] show that the average 

treatment effect adjusting for the noisy measured confounder is between the unadjusted 

and the true effects, under some monotonicity assumptions. We extend the work by Ogburn 

and VanderWeele [53] to conditions where additional confounders and covariates exist.

Theorem 2. Let T be a binary treatment, Y be an outcome, XC be all measured confounders, 

U be an ordinal unmeasured confounder, and U′ be the noisy measurement of U. Assume 
that the measurement error of U is tapered and nondifferential with respect to T and Y 
conditional on XC, and that E Y ∣ T , U, XC = xC  and E T ∣ U, XC = xC  are monotonic in U 

for each value xC in the support of XC. Then the average treatment effect adjusting for the 
measured covariates lies between the true effect and effect adjusting for only the measured 
confounders, that is, ATEtrue ≤ ATEcov ≤ ATEconf or ATEtrue ≥ ATEcov ≥ ATEconf, where 
ATEtrue = EXC, U[Y (1)] − EXC, U[Y (0)], ATEcov = EXC, U′[Y ∣ T = 1] − EXC, U′[Y ∣ T = 0], and 

ATEconf = EXC[Y ∣ T = 1] − EXC[Y ∣ T = 0].

Theorem 2 states that the average treatment effect adjusting for all measured covariates 

(i.e., by LSPS) is bounded between the true effect and the effect adjusting for 

only the measured confounders. Nondifferential misclassification error means that 

p U = u′ ∣ U = u, T = t, Y = y, XC = xc = p U = u′ ∣ U = u, T = t′, Y = y′, XC = xc′  for all y, y′ 

∈ , t, t′ ∈ {0, 1}, and xc, xc′ ∈ XC. Tapered misclassification error means that the 

misclassification probabilities pij = p(U′ = i|U = j), i, j ∈ {1, …, K} is nonincreasing in 

both directions away from the true unmeasured confounder.

We show that Theorem 1 and Theorem 2 hold in the simulations with various degrees of 

pinpointability. Proof of Theorem 2 is an extension of the work by Ogburn and VanderWeele 

[53], and is given in the Supplement.

2.3. Effect of pinpointing on instruments and M-bias

Because LSPS uses a large number of covariates, there is a concern that adjusting for these 

covariates will induce bias due to M-structure colliders, instrumental variables (IVs), and 

near instrumental variables (near-IVs). As noted above, our goal is not to do instrumental 

variable analysis but rather to remove their potential effect of increasing variance and 

amplifying bias. IVs are addressed in part by domain knowledge and diagnostics, but some 

IVs may remain. In this section, we discuss how LSPS in the setting of pinpointing may 

address them.

2.3.1. Effect on IV and near-IV—Instrumental variables [47] may persist despite 

LSPS’s procedures. In the setting of unmeasured confounding, IV can cause bias 

amplification as shown numerically [54, 55] and proved theoretically in various scenarios 

[18, 19, 20, 21, 22, 23]. Insofar as pinpointing adjusts for indirectly measured confounding 

Zhang et al. Page 8

J Biomed Inform. Author manuscript; available in PMC 2022 November 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Fig.2a), even if there are IVs in the propensity score model, they will not produce bias 

amplification [22].

Near-instrumental variables (near-IVs) [15], which are weakly related to the outcome and 

strongly related to the treatment, may also lead to bias amplification [15, 18, 22], and the 

bias amplification or the confounding may dominate. Just as for IVs, pinpointing (Fig.2b) 

may reduce bias amplification by reducing indirectly measured confounding [22], while the 

confounding is eliminated by adjusting for the near-IV.

2.3.2. Addressing M-bias—Despite the use of pre-treatment variables, bias through 

colliders is still possible due to causal structures like the one in Fig. 2c, known as an 

M-structure, causing M-bias. In this case, two unobserved underlying causes create a path 

from T to Y via a collider that can precede T in time. If the collider is included in the many 

covariates, then this can induce bias. LSPS may be able to address M-bias in the following 

way. If the common cause between the treatment and the collider (Z1) can be pinpointed by 

the measured covariates, then this will block the back-door path from T to Y. Similarly, the 

common cause between the outcome and the collider (Z2) could be pinpointed, also blocking 

the path. The assertion that one or both of these common causes is pinpointed is similar to 

the assertion that U is pinpointed.

3. Simulations

We use the simulation to show that, under the assumption of pinpointability, LSPS 

can adjust for the indirectly measured confounding, and as the condition deviates from 

pinpointability, bias in LSPS increases, and the estimate by LSPS is between the true effect 

and the effect adjusting for only measured confounders. In this simulation, we assume 

that the large number of covariates X are derived from a smaller number of underlying 

latent variables V. This data generating process induces dependencies among the measured 

covariates, mimicking the dependencies observed in EHR.

3.1. Simulation setup

Each simulated data set contains N = 5, 000 patients, M = 100 measured covariates 

(including 10 measured confounder), 1 indirectly measured confounder, 10 latent variables, 

a treatment and an outcome. The data set is D = vi, xi, ui, ti, yi i = 1
N , where vi is a vector of 

latent variables, vi = (vi1, …, vi10); xi is a vector of measured covariates, xi = (xi1, …, xiM); 

ui, ti and yi are all scalar, representing the indirectly measured confounder, treatment and 

outcome respectively.

Below are the steps to simulate data for patient i.

1. Simulate the latent variable vi as

vi Bernoulli 0.5 K .

2. Simulate measured covariates xi as
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xi Bernoulli sigmoid vi⊤βx ,

where βx ~ (0, 0.1)K×M.

3. Simulate the indirectly measured confounder ui as

ui = xi⊤βu

where βu ~ (0, 1)M. Notice that u is a deterministic function of x. To allow 

only a small subset of the covariates pinpoint u, we randomly select 90% of the 

βu and set their value to 0.

4. Simulate the treatment ti as

ti  Bernoulli sigmoid xi⊤γx + uiγu ,

where the effect of the indirectly measured confounder on the treatment γu = 1, 

γx ~ (0.5, 1) for the 10% of covariates that serve as measured confounders. 

The rest of the γx are set to 0.

5. Simulate the outcome yi as

yi N xi⊤ηx + uiηu + tiν, 0.1 ,

where the true causal effect ν = 2, the effect of the indirectly measured 

confounder on the outcome ηu = 1, ηx ~ (0.5, 1) for the covariates that serve 

as measured confounders and 0 otherwise.

The above steps illustrate the simulation under pinpointability. To increase the deviation 

from pinpointability, we add an increasing amount of random noise to the indirectly 

measured confounder. To do so, we modify the simulation of ui in Step 3 to be

ui = xi⊤βu + ϵi

where ϵi ~ (0, σ2). To increase deviation from pinpointability, we increase σ2 from 10−4 

to 104. At each pinpointability level, the Gaussian noise is non-differential with respect to 

the treatment, outcome, and the measured covariates, and decreasing in both directions away 

from the true unmeasured confounder. We simulate 50 datasets at each pinpoitability level.

3.2. Statistical analysis

We demonstrate LSPS’s capacity in adjusting for unmeasured confounding relative to other 

methods under varied degree of pinpointability. Specifically, we compared the following five 

methods:
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• unadjusted: no covariate was adjusted for.

• manual without U: adjust for all confounders not including U

• manual (oracle): adjust for all confounders including U

• LSPS without U: adjust for all measured covariates not including U

• LSPS: adjust for all covariates including U

Notice that manual with U coincides with oracle in this simulation, because manual with 

U adjusts for nothing but the confounders, both measured and unmeasured. In practice, 

because the confounding structure is rarely known, it is unlikely a manual method captures 

all the confounders.

For the four methods that adjust for confounders, we estimated propensity scores with 

L1-regularized logistic regression (and selected the regularization parameter with cross-

validation). We then used 1:1 matching and subclassification (results not shown) to create 

a balanced dataset. To estimate the average treatment effect, we fit a linear regression 

model on the balanced dataset. We then calculated the mean, 95% confidence interval, and 

root-mean squared error (RMSE) of the effect estimates.

The RMSE, defined as follows, can be calculated because the true treatment effect is known 

in the simulation (ν = 2). This metric is not applicable to the empirical study because the 

true effect of medications is unknown in practice.

RMSE = 1
S ∑

s
νs − ν 2,

where νs is the effect estimate at simulation s, and we simulate a total of S = 50 datasets at 

each given pinpointability condition.

3.3. Results

Fig. 4 shows the results of the simulation. When pinpointability holds reasonably well, 

the unmeasured confounder has a bigger impact on the manual method than on LSPS. As 

pinpointability gets weaker, adjusting for large-set of covariates becomes less adequate for 

accounting for the unmeasured confounder, and the estimated treatment effect approaches 

the estimate from the method adjusting for only the measured confounders.

Under strong pinpointability, the estimates from the two large-scale approaches (LSPS 

without U and LSPS) have almost the same bias, variance, and RMSE compared to the 

estimate from the oracle. The manual approach (manual without U) does not benefit 

from pinpointability because it does not include covariates that assist pinpointing. As the 

condition deviates from strong pinpointability, the large-scale approach (LSPS without U) 

becomes increasingly biased, approaches and eventually overlaps the estimate from the 

manual without U approach. This simulation result matches Theoreom 2 that ATEcov is 

between ATEconf and ATEtrue under certain monotoniticty assumptions. In the simulation, 
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ATEconf is given by manual without U, ATEcov is given by LSPS without U, and ATEtrue is 

given by manual with U.

4. Empirical studies

We now use real data to compare LSPS to the traditional propensity-score adjustment 

(with manually selected covariates) to adjusting for confounding. With an EHR database, 

we compared the effect of two anti-hypertension drugs, hydrochlorothiazide and lisinopril, 

on two clinical outcomes, acute myocardial infarction (AMI) and chronic kidney disease 

(CKD). For both outcomes, type 2 diabetes mellitus (T2DM) is a known confounder. Thus, 

by including or excluding T2DM in an adjustment model while keeping other covariates the 

same, we can assess a method’s capacity in adjusting for a known confounder that is not 

directly measured but may be correlated with measured covariates.

4.1. Cohort and covariates

We used a retrospective, observational, comparative cohort design [56]. We included all 

new users of hydrochlorothiazide monotherapy or lisinopril monotherapy and defined the 

index date as the first observed exposure to either medication. We excluded patients who 

had less than 365 days of observation prior, a prior hypertension treatment, initiated another 

hypertension treatment within 7 days, or had the outcome prior to index date. We followed 

patients until their end of continuous exposure, allowing for maximum gaps of 30-days, or 

their end of observation in the database, whichever came first.

For the LSPS-based approach, we used more than 60,000 covariates in the EHR database, 

including demographics, all medications in the 365 days prior to index date, all diagnoses 

in the 365 days prior to index date, and the Charlson Comorbidity Index score, as baseline 

covariates in the propensity model.

For traditional PS adjustment, covariates were selected by experts for inclusion in related 

hypertension drug studies [57, 58, 59, 60, 61], including T2DM, anti-glycemic agent, age 

groups, female, index year, coronary artery disease, myocardial infarction, asthma, heart 

failure, chronic kidney disease, atrial fibrillation, Charlson index - Romano adaptation, 

Platelet aggregation inhibitors excl. heparin, Warfarin, corticosteroids for systemic use, 

dipyridamole, non-steroidal anti-inflammatory drugs(NSAIDS), proton-pump inhibitors 

(PPIs), statins, estrogens, progestogens, body mass index (BMI), chronic obstructive 

pulmonary disease(COPD), liver disease, dyslipidemia, valvular heart disease, drug abuse, 

cancer, HIV infection, smoking and stroke.

Most covariates (e.g., diagnoses, medications, procedures) were encoded as binary, that is, 

1 indicates the code is present in the patient’s medical history prior to treatment, and 0 

otherwise. For some variables that are often considered as continuous (e.g., lab tests), LSPS 

does not impute the value because imputation could do more harm than good when missing 

mechanism is not known. Instead, LSPS encodes the lab ordering pattern as binary variables. 

Residual error appears as measurement error.
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The study was run on the Optum© de-identified electronic health record database of 

aggregated electronic health records.

4.2. Statistical analysis

We examined a method’s capacity in adjusting for confounding that is not directly 

measured by comparing the effect estimates from each method with or without access 

to the confounder. We excluded all variables related to T2DM, including diagnoses and 

anti-glycemic medications in models without access to indirectly measured confounders. We 

included an unadjusted method as a baseline for comparison. Specifically, we studied the 

following five methods (analogous to the five methods in the simulation):

• unadjusted: no covariate was adjusted for.

• manual: adjust for a list of manually selected confounders.

• manual without T2DM: adjust for a list of manually selected confounders 

without T2DM-related confounders.

• LSPS: adjust for all pre-treatment covariates in the database.

• LSPS without T2DM: adjust for all pre-treatment covariates in the database 

without T2DM-related confounders.

For the four methods that adjust for confounders, we estimated propensity scores with 

L1-regularized logistic regression (and selected the regularization parameter with cross-

validation). We used subclassification and stratified the dataset into 10 subclasses. To 

estimate the treatment effect, we fit a Cox proportional-hazards model [51] to estimate 

the hazard ratio (HR). We then calculated the mean and 95% confidence interval of the HR.

4.3. Results

Fig. 5 shows the results of empirical studies. These results show that the T2DM had a bigger 

impact on the manual methods than on the LSPS methods. The impact was determined 

by comparing the absolute difference in effect estimates between the two manual models 

versus the two LSPS-based models. In the CDK study, the absolute difference between the 

two manual methods was 0.09 (Manual without T2DM: HR 0.77 [95% CI, 0.71–0.83]; 

Manual: HR 0.86 [95% CI, 0.79–0.93]), higher than the absolute difference between the two 

LSPS-based methods, which was 0.05 (LSPS without T2DM: HR 0.84 [95% CI, 0.77–0.92]; 

LSPS: HR 0.89 [95% CI, 0.82–0.97]). In fact, the estimates for manual with T2DM, LSPS 

with T2DM, and LSPS without T2DM were all closer to each other than to manual without 

T2DM. Therefore, whether manual with T2DM or LSPS with T2DM is actually closer to 

ground truth, LSPS without T2DM is closer to either one than is manual without T2DM.

This finding suggests that by including large-scale covariates, one has a better chance of 

correcting for confounders that are not directly measured. The pinpointability assumption is 

more likely to hold when there are many measured covariates.
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5. Discussion

We have illustrated conditions under which LSPS adjusts for indirectly measured 

confounding and the impact of violations of such conditions on effect estimation. We have 

found in previous practice, in our current simulations, and in our current real-world study 

that indirectly measured (or unused) confounding can be adjusted for in LSPS, apparently 

working better than smaller, manually engineered sets of covariates that are also missing the 

confounder.

Even though pinpointing in the current simulation is achieved by generating the unmeasured 

confounder from a function of the measured covariates, this does not suggest the causal 

direction between the unmeasured confounder and the measured covariates. In medicine, 

it is likely that an unmeasured confounder (e.g., a disease such as T2DM) induces 

dependencies among large-scale clinical covariates (e.g., medications for treating the 

disease, laboratory tests for monitoring the disease, and other diseases that often co-occur 

with the disease can be correlated). In other words, the unmeasured confounder could be a 

latent variable in a factor model, and the strength of pinpointing depends on the number of 

measured covariates and the degree of dependency among the covariates.

We describe here methods that are related to LSPS. These methods are related to LSPS 

in different ways. Section 5.1 compares and contrasts LSPS to other methods that also 

address unmeasured confounding in causal effect estimation. Section 5.2 compares LSPS 

to another propensity score-based method that also uses large-scale covariates. Section 5.3 

draws similarity between LSPS and another method for causal effect estimation in the 

presence of indirectly measured confounding where pinpointability is a required assumption.

5.1. Relation to proxy variable, multiple imputation and residual bias detection

Studies such as those by Kuroki and Pearl [62], Miao et al.[63], and Tchetgen Tchetgen 

et al.[64] have shown that causal effects can be identified by observing proxy variables of 

confounders that are not directly measured. In this case, the confounder is known but not 

measured, there is sufficient knowledge of the structural causal model such that proxies can 

be selected, and there is the knowledge that there are no other unmeasured confounders. In 

contrast, LSPS does not require explicit knowledge of the causal model.

Another approach is to use measured covariates to explicitly model unmeasured confounders 

using multiple imputation [65, 66]. While it differs from our approach, it exploits the same 

phenomenon, that some covariates contain information about unmeasured confounders. 

This is in contrast to LSPS, where there is no explicit model of unmeasured confounders; 

adjusting for measured covariates should be effective for causal inference as long as the 

measured covariates pinpoint the unmeasured confounders.

Given the need to assume no additional unmeasured confounding—additional in the sense 

of not being pinpointed or not having proxies—a complementary approach is to estimate 

the degree of residual bias, potentially including additional unmeasured confounding. Large-

scale use of negative and synthetic positive controls [42, 41] can detect residual bias and 
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can additionally be used to calibrate estimates to assure appropriate coverage of confidence 

intervals. LSPS is usually coupled with such empirical calibration [43, 42].

5.2. Relation to high-dimensional propensity score adjustment

LSPS adjusts for all available pre-treatment covariates. In practice, because the sample size 

is limited, regularized regression selects a subset of variables to represent the information 

contained in the whole set of covariates, but the goal is to represent all the information 

nonetheless. Therefore, LSPS diagnostics [42, 2] test balance not just on the variables that 

regularized regression included in the model, but on all the covariates. All covariates are 

retained because even those that are not direct confounders may still contribute to the 

pinpointing of the unobserved confounders. Therefore, LSPS is not a confounder selection 

technique.

LSPS is distinct from techniques that attempt to select confounders empirically [67]. Some 

of these techniques also start with large numbers of covariates, but they attempt to find the 

subset that are confounders using information about the treatment and outcome. They then 

adjust for the selected covariates. As long as all confounders are observed and then selected, 

adjusting for them should eliminate confounding. It may not, however, benefit from the 

pinpointing that we identify in this paper. Unlike LSPS, confounder selection techniques are 

dependent on the outcomes, and the outcome rates are often very low in medical studies, 

potentially leading to variability in selection. Empirical studies [44] show that adjusting for a 

small number of confounders does not successfully adjust for unobserved confounders, and 

an empirical comparison of the methods favored LSPS [2].

5.3. Relation to the deconfounder

LSPS and the deconfounder [45, 46] are distinct but share several features. The 

deconfounder is a causal inference algorithm that estimates unbiased effects of multiple 

causes in the presence of unmeasured confounding. Under the pinpointability assumption 

(unmeasured confounders are pinpointable by multiple causes), the deconfounder can 

infer unmeasured confounders by fitting a probabilistic low-rank model to capture the 

dependencies among multiple causes. The deconfounder has been applied to EHR data for 

treatment effect estimation in the presence of unmeasured confounding [68]. Both methods 

thus can be shown to address unmeasured confounders when there is pinpointing.

6. Conclusions

In summary, LSPS is a confounding adjustment approach that includes large-scale pre-

treatment covariates in estimating propensity scores. It has previously been demonstrated 

that LSPS balances unused covariates and can adjust for indirectly measured confounding. 

This paper contributes to understanding conditions under which LSPS adjusts for indirectly 

measured confounders, and how causal effect estimation by LSPS is impacted when such 

conditions are violated. We demonstrated the performance of LSPS on both simulated and 

real medical data.
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Figure 1: 
Causal graphs to estimate the treatment effect of T on the outcome Y. (a) Causal graph 

under no pinpointability. The unmeasured confounder U is not pinpointed by X. (b) 

Causal graph under perfect pinpointability. The unmeasured confounder U is a deterministic 

function of the measured covariates X. (c) Causal graph under weak pinpointability. The 

unmeasured confounder is only partially pinpointed by X. Random variables are represented 

with circles, deterministic variables are represented with squares, measured variables are 

shaded, indirectly measured or unmeasured are not shaded, strong pinpointing is presented 

with a solid line, and weak pinpointing is presented with a dash line.
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Figure 2: 
Causal graph of a) instrumental variable, b) near-instrumental variable and c) M-structure 

collider. The dashed line with a solid dot means that the variable by the solid dot can 

be pinpointed by the measured covariates. We use different subscripts to distinguish the 

measured covariates playing different roles in the causal graph.
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Figure 3: 
Causal diagram of the simulation to estimate the effect of the treatment T on the outcome 

Y. The high-dimensional measured covariates X are induced by a low-dimensional latent 

variable V. The unmeasured confounder U is simulated as a function of the measured 

covariates X. When the function is deterministic, U is pinpointed by X. When the function 

is stochastic, U is weakly pinpointed by X. The degree of pinpointability is varied by adding 

varied amount of noise into the function.
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Figure 4: 
Sensitivity analysis of pinpointability in Simulations 1. As pinpointability of the indirectly 

measured confounder decreases, LSPS’s ability to adjust for the indirectly measured 

confounder decreases. (a) The mean and 95% CI of the estimated average treatment effect. 

(b) The RMSE of the estimated average treatment effect.
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Figure 5: 
Comparison of hazard ratio from the unadjusted model and four models adjusting for 

confounders. The indirectly measured (or unused) confounder T2DM had a bigger impact 

on the HR estimated by manual models than by LSPS. (a) HR of the two anti-hypertensive 

medications on AMI. (b) HR of the two anti-hypertensive medications on CKD.
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