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Abstract

Contrastive learning has demonstrated promising performance in image and text domains

either in a self-supervised or a supervised manner. In this work, we extend the

supervised contrastive learning framework to clinical risk prediction problems based on

longitudinal electronic health records (EHR). We propose a general supervised contrastive loss

ℒContrastive Cross Entropy + λℒSupervised Contrastive Regularizer for learning both binary classification

(e.g. in-hospital mortality prediction) and multi-label classification (e.g. phenotyping) in a unified

framework. Our supervised contrastive loss practices the key idea of contrastive learning, namely,

pulling similar samples closer and pushing dissimilar ones apart from each other, simultaneously

by its two components: ℒContrastive Cross Entropy tries to contrast samples with learned anchors

which represent positive and negative clusters, and ℒSupervised Contrastive Regularizer tries to contrast

samples with each other according to their supervised labels. We propose two versions of the

above supervised contrastive loss and our experiments on real-world EHR data demonstrate that

our proposed loss functions show benefits in improving the performance of strong baselines

and even state-of-the-art models on benchmarking tasks for clinical risk predictions. Our loss

functions work well with extremely imbalanced data which are common for clinical risk

prediction problems. Our loss functions can be easily used to replace (binary or multi-label)

cross-entropy loss adopted in existing clinical predictive models. The Pytorch code is released at

https://github.com/calvin-zcx/SCEHR.
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I. Introduction

With the accumulation and better availability of electronic health records (EHR) [1], [2],

health analytics becomes one of the most important frontiers for data mining and artificial
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intelligence [3]. Public EHR databases [4] and benchmark suite [5] provide great resource

to develop advanced data mining and machine learning algorithms for critical clinical risk

prediction problems including in-hospital mortality prediction, disease phenotyping, hospital

readmission, etc. [5], [6]. These problems can be formulated as a binary or multi-label

classification problem using longitudinal EHR event sequence (by concatenating visits of

individual patients over time) and solved by minimizing its corresponding classification

loss [e.g. (multi-label or binary) cross-entropy loss] [5]–[7]. Although great endeavors

have been devoted to developing complex deep learning models for these clinical risk

prediction problems [5], [8]–[17], limited progress has been made over past years on these

tasks regarding their performance [17]. In contrast with the majority of current research in

designing more advanced predictive models, in this paper, we show that replacing widely

adopted cross entropy loss by supervised contrastive loss is a promising way to improve the

performance of existing models for clinical risk prediction based on longitudinal EHR data.

Recently, contrastive learning [18], which aims at learning data instance representations

by bringing similar instances closer and push dissimilar instances further away from each

other, has shown promising results in image classifications [19], [20], medical image

understanding [21], and so on [22]. These methods mainly follow a self-supervised strategy

[22], [23], which build augmented data with pseudo-labels to deal with the issue of lacking

sufficient supervised information. The latest research finds that supervised information can

provide additional benefits for contrastive learning in both computer vision [24] and natural

language processing tasks [25]. We argue that the general idea of contrastive learning

should also be helpful for clinical risk prediction tasks. However, application of contrastive

learning in clinical risk prediction scenarios is challenging because: 1) the patient data

(such as EHRs) for clinical risk prediction are usually more complex than images or

texts in that the clinical events involved are of mixed types, high-dimensional, sparse and

noisy; 2) it is challenging to augment EHR with computational methods because of the

intrinsic complexity of disease mechanisms; 3) predicted clinical outcomes could also be

heterogeneous. Therefore, if contrastive learning strategies can be beneficial to clinical risk

prediction problems is still an open question.

In this paper, we propose SCEHR, a Supervised Contrastive learning framework for clinical

risk predictions using longitudinal Electronic Health Record data. We illustrate the idea of

SCEHR in Figure 1. The key component of SCEHR is a general supervised contrastive
loss ℒSupervised Contrastive = ℒContrastive Cross Entropy + λℒSupervised Contrastive Regularizer for

solving binary classification (e.g. in-hospital mortality prediction) and multi-label

classification (e.g. phenotyping) in a unified framework. We propose two versions (Eq.

10 and Eq. 11) of the above supervised contrastive loss to implement the key idea

of contrastive learning, i.e., pulling similar samples closer and pushing dissimilar ones

apart from each other, which can be achieved by minimizing the two components of our

ℒSupervised Contrastive. Specifically, for an arbitrary neural encoder that maps clinical time

series into embedding representations, the ℒContrastive Cross Entropy learns a positive anchor

and a negative anchor (for each class) respectively and tries to contrast the distance between

targeted samples and the learned positive anchor versus the distance between the targeted

samples and the learned negative anchor, guided by the supervised labels (e.g. positive/dead
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for in-hospital mortality prediction, or existence of some medical concepts for phenotyping

classification). The ℒSupervised Contrastive Regularizer tries to contrast every pair of samples

with the same labels versus every pair of samples with different labels in a mini-batch.

By leveraging supervised information, SCEHR doesn’t need data augmentation and pseudo-

labels. In addition, we also demonstrate the relationship between ℒSupervised Contrastive and

the triplet loss [26].

We validate SCEHR together with two versions of our proposed supervised contrastive

losses on benchmarking clinical risk prediction tasks, including in-hospital mortality

prediction and phenotyping [5], on a big real-world EHR database (MIMIC-III) [4]. We

find that both versions of our proposed loss functions can improve strong baseline models

and state-of-the-art models. We further investigate our modeling performance when the level

of data imbalance changes. We find that our proposed loss functions work much better

than binary cross entropy loss under extreme imbalance situation (say, positive ratio ≤ 1%),

which is common in prediction problems with rare clinical outcomes. We further visualize

our learned embeddings to interpret the effects of our proposed supervised contrastive

losses. It is worthwhile to highlight our contributions as follows:

• Novelty. We propose a general supervised contrastive loss

ℒContrastive Cross Entropy + λℒSupervised Contrastive Regularizer and its two instances

for solving supervised binary classification and multi-label classification in a

unified framework. SCEHR is one of the first applying supervised contrastive
learning to clinical risk predictions with longitudinal EHR data.

• Effectiveness. SCEHR can improve both strong baseline models and the state-

of-the-art models for clinical risk prediction tasks, including in-hospital mortality

prediction and phenotyping. SCEHR does well with extreme data imbalance

situation.

• Flexibility. Our proposed supervised contrastive loss functions can be easily

used to replace (multi-label or binary) cross entropy loss based on existing

clinical predictive models. Our PyTorch code is open-sourced at https://

github.com/calvin-zcx/SCEHR.

The outline of this paper is: survey (Sec. II), problem definition (Sec. III), proposed method

SCEHR (Sec. IV), experiments (Sec. V), and conclusions (Sec. VI).

II. Related Work

Deep predictive models using EHR data.

Applying deep models for clinical risk prediction problems (e.g. in-hospital mortality

prediction, phenotyping, decompensation, length-of-stay prediction, readmissions, etc.)

based on longitudinal electronic health record (EHR) data [1], [2], [6] show great potentials

in improving health care. These tasks are usually formulated as binary or multi-label

classification problems by optimizing multi-label or binary cross-entropy loss. Most of

research endeavors have been devoted to developing more advanced deep models or trying

to incorporate more data to capture the complexity of diseases and the EHR data, including
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but not limited to RNNs [5], [8], transformers [9], reverse distillation [10], variational

inference [11], deep feature selection [12], attentions [13]–[16], an so on. However, despite

the fast pace of modeling innovations, much slower progress has been made over past

years on these tasks concerning their performance [17]. Instead of designing more complex

deep predictive models, here we explore another direction: trying to innovate the default

(binary or multi-label) cross entropy loss widely used in existing clinical predictive models.

We focus on state-of-the-art models [5], [15], [17] which were benchmarked on public

MIMIC-III data [4] considering limitations of using private EHR data.

Contrastive Learning.

Contrastive learning [18], [22], aiming at learning good representations by bringing similar

samples closer and push dissimilar samples away from each other through constructing

contrastive loss functions, has shown promising results in image classifications [19], [20],

medical image understanding [21], videos [27], etc. The idea of ”contrastive” loss functions

can date back to metric learning [28], triplet loss [26], Siamese neural networks [29], and the

negative sampling loss of word2vec [30]. The majority of contrastive learning literature

adopted self-supervised techniques [22], [23], [31], [32] by building augmented data

with pseudo-labels. Recently, by explicitly using supervised labels, supervised contrastive

learning has shown better performance for image classification [24] and NLP tasks [25]. To

our best knowledge, only one paper [7] tried the contrastive idea for binary classification

with EHR data, which adopted the negative sampling loss of word2vec [30] by negatively

sampling on built heterogeneous information networks [33]. Different from all the above

research, we propose a general supervised contrastive loss (together with its two versions)

for solving binary classification and multi-label classification in a unified framework using

longitudinal EHR data.

III. Problem Definition

In this section, we define our focused clinical risk prediction problems with longitudinal

electronic health records (EHR) data. Let xi ∈ ℝTi × D represent one patient’s clinical time

series data, which consist of D-dimensional clinical concepts (e.g. individual measurements

during his/her stay in ICU) over time Ti. Specifically, xi, t, d ∈ ℝ represents the dth ∈ {1,

2, …, D} clinical concept (e.g. diastolic blood pressure) measured at timestamp t ∈ {1,

2, …, Ti} for patient i. In total, there are N patients denoted as X = {x1, x2, …, xN}

and Ti (i ∈ {1, 2, …, N}) usually varies for different patients according to their length

of stay, say, in ICU. Additional static features, e.g. demographic features, are denoted as

S ∈ ℝN × DS and si ∈ ℝ1 × DS represents patient i’s features. For simplicity, we use X =

(X, S) to represent all the clinical time series and additional static features (if exist) for

modeling. We use Y ∈ 0, 1 N × DY  to denote the targeted clinical outcomes, e.g. in-hospital

mortality events, the existence of phenotype conditions, etc., which will occur beyond the

observational window Ti (i ∈ {1, 2, …, N}) for each patient, and DY ∈ ℕ+.

Zang and Wang Page 4

Proc IEEE Int Conf Data Min. Author manuscript; available in PMC 2022 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Our primary goal is to learn a predictive model ℱΘ:X Y , which predicts the probability of

the occurrence of clinical outcomes denoted as Y . The Θ are learnable modeling parameters.

Regarding the value of DY , the above problem formulation encompasses two special cases:

• Binary classification problem (DY = 1), namely, ℱΘ:X Y  where Y

∈ {0, 1}N×1. Tasks including in-hospital mortality prediction, physiologic

decompensation, etc., belong to this category.

• Multi-label classification problem (DY > 1), namely, ℱΘ:X Y  where

Y ∈ 0, 1 N × DS, which can be formulated as solving multiple binary

classifications simultaneously. The phenotype classification (phenotyping) task

belongs to this category.

We will detail the above tasks in the experiment sections. We learn the parameters Θ of ℱΘ
by minimizing the loss function:

argmin
Θ

ℒ ℱΘ(X), Y (1)

given supervised information Y , and Y = ℱΘ(X) are the predicted outcomes.

In contrast with the majority of existing efforts in designing ℱΘ, in this paper, we show that

the supervised contrastive learning loss ℒSupervised Contrastive proposed as follows is also an

effective way to improve the performance of clinical predictive models.

IV. Supervised Contrastive Learning Framework for EHR

In this section, we introduce our Supervised Contrastive Learning for EHR (SCEHR) model

in detail. We show the outline of our SCEHR in Figure 1 as a roadmap for this section and

we summarize the overall learning process of our SCEHR in Algorithm 1.

A. General Supervised Contrastive Loss

Let ΦΘ be any learnable neural encoder for clinical time series X, which maps X into its

embedding representation Z by Z = ΦΘ(X). We further define a linear mapping f and a

non-linear squeeze function σ (e.g. sigmoid or softmax functions) which maps the learned

representations to the predicted probability by Y = σ ∘ f(Z). We propose the following

general form of Supervised Contrastive Loss for binary or multi-label classification

problems:

ℒSupervised Contrastive = ℒContrastive Cross Entropy +
λℒSupervised Contrastive Regularizer

(2)

Our ℒSupervised Contrastive(Y , Z, Y ) loss consists of two parts: a (supervised) contrastive cross

entropy loss ℒcontrastive cross entropy which is a function of predicted labels Y  against its

ground truth labels Y; and a supervised contrastive regularizer ℒsupervised contrastive regularizer
which regularizes the learned embedding representation Z by the supervised information

Y . The regularizer is scaled by a non-negative hyper-parameter λ. We will detail several
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choices of the above losses for both binary classification and multi-label classification as

follows.

B. Contrastive Cross Entropy for Binary Classification

Let x ∈ X, z ∈ Z, y ∈ Y , and y ∈ Y  represent clinical time series of one patient, its

embedding representation, its ground-truth clinical outcomes, and its predicted outcomes

respectively. We use u, v to represent the learned anchors of positive or negative clusters

respectively, which are modeled as the row vectors of the weight matrix of a linear mapping

f.

The Binary Cross Entropy (BCE) loss is widely used for clinical risk classification when

there are two outcomes coded as 1 or 0, say mortality for positive cases and non-mortality

for negative cases. The equation for BCE loss, denoted as ℒBCE, is:

ℒBCE

= − 1
N ∑

i = 1

N
yilog yi + 1 − yi log 1 − yi

= − 1
N ∑

i = 1

N
yilog σ uTzi + 1 − yi log 1 − σ uTzi

= − 1
N ∑

i = 1

N
yilog σ uTzi + 1 − yi log σ −uTzi

= − 1
N ∑

i = 1

N
yilog σ sim u, zi + 1 − yi log σ sim −u, zi

(3)

where σ(x) = 1
1 + e−x ∈ (0, 1) is the Sigmoid function and 1 − σ(x) = 1

1 + ex = σ( − x). If we

define a distance measure sim(u, zi) = uTzi as the dot product of two data samples,

intuitively, minimizing the BCE loss tries to make positive samples zi (yi = 1) close to

the anchor u. Similarly, for negative samples zi ( yi = 0), the BCE loss makes zi close to −u.

Here we propose Contrastive Binary Cross Entropy (CBCE) loss, denoted as ℒCBCE, as

follows:

ℒCBCE

= − 1
N ∑

i = 1

N
yilog σ uTzi σ −vTzi + 1 − yi log σ vTzi σ −uTzi

= − 1
N ∑

i = 1

N
yilog σ sim u, zi σ sim −v, zi

+ 1 − yi log σ sim v, zi σ sim −u, zi

(4)

which is the first version of our ℒContrastive Cross Entropy term. The above ℒCBCE loss

explicitly learns positive anchor u and negative and v separately. Minimizing the CBCE

loss makes positive sample zi (when yi = 1) closer to positive anchor u than to the negative

anchor v by pulling zi closer to u and at the same time pushing zi away from v. Similarly,

for a negative sample zi (when yi = 0), minimizing the loss makes zi closer to negative
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anchor v than to the positive anchor u by pulling zi closer to v and at the same time pushing

zi away from u. Intuitively, two learned anchors u and v represent positive cluster and

negative cluster respectively, and the location of each sample representation z is determined

by contrasting the force sim(u, z) with the force sim(u, z) in a product form. We show the

math of these contrastive forces in the following subsection. In all, Equation 4 contrasts each

sample with positive and negative anchors in a product form.

Following the similar idea of ℒCBCE, we can also view a two-dimensional softmax cross

entropy as our second instance of the contrastive cross entropy loss ℒcontrastive Cross Entropy.

We denote Contrastive Softmax Cross Entropy (CSCE) as ℒCSCE, which is defined by

the following equation:

ℒCSCE

= − 1
N ∑

i = 1

N
{yilog exp uTzi

exp uTzi + exp vTzi

+ 1 − yi log exp vTzi
exp uTzi + exp vTzi

}

= − 1
N ∑

i = 1

N
{yilog exp sim u, zi

exp sim u, zi + exp sim v, zi

+ 1 − yi log exp sim v, zi
exp sim u, zi + exp sim v, zi

}

(5)

Equation 5 contrasts each sample with positive and negative anchors in a ratio form, which

is a two-dimensional softmax function followed by a negative likelihood loss. Taking one

positive sample zi (when yi = 1) as an example, minimizing the above loss tries to pull zi

closer to the positive anchor u than to the negative anchor v by pulling zi to u and at the

same time push zi away from v.

C. Supervised Contrastive Regularizer

Compared with the ℒContrastive Cross Entropy which compares each sample’s distance

to the learned positive anchor with its distance to the learned negative anchor, the

ℒSupervised Contrastive Regularizer tries to explore pair-wise relationships between data samples

in a mini-batch. Specifically, the ℒSupervised Contrastive Regularizer tries to pull the data pairs

with the same labels closer and push data pairs with different labels away from each

other. Based on the supervised contrastive loss proposed in [24], we propose a simplified

Supervised Contrastive loss as the Regularizer (SCR), which is defined by the following

equation:

ℒSCR(Z, Y ) =
−1
N ∑

i = 1

N 1
Nzi − 1 ∑

j = 1

N
1i ≠ j1yi = yjlog exp sim zi, zj /τ

∑k = 1
N 1i ≠ kexp sim zi, zk /τ

(6)
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where N is the number of samples in a mini-batch, Nzi is the number of samples sharing the

same label as data zi, sim zi, zj =
ziTzj

zi zj
, and τ is the positive temperature hyper-parameter.

Here we do not adopt self-supervised data augmentation strategy [19], [24] and we only

use existing supervised information Y. As a result, for each data sample zi, we consider its

distance to other N − 1 samples and contrast these pair-wise distances according to if two

samples share the same label as ratio form as detailed in the Equation 6.

D. Relationship with Triplet Loss

All the above contrastive losses ℒCBCE, ℒCSCE and ℒSCR can be approximated by a triplet

loss. As for the ℒCBCE, the (product form) contrastive term log[σ(uTz)σ(−vTz)] between

sample representation z and two anchors u, v can be approximated as:

argmin
Θ

− log σ uTz σ −vTz

= argmin
Θ

− log 1
1 + exp −uTz

− log 1
1 + exp vTz

= argmin
Θ

log 1 + exp −uTz + log 1 + exp vTz

≈ argmin
Θ

exp −uTz + exp vTz

≈ argmin
Θ

vTz − uTz + 2, 0

= argmin
Θ

αvTz − αuTz + 2α , 0

(7)

where α is a positive scalar, Θ represents learnable parameters of u, v, and z = Φ(x). The

above two approximations are achieved by uTz → +∞ and vTz → −∞.

As for the ℒCSCE, the (ratio form) contrastive term log
exp uTz

exp uTz + exp vTz
 can be

approximated as:

argmin
Θ

− log exp uTz
exp uTz + exp vTz

= argmin
Θ

log (1 + exp((v − u)Tz))

≈ argmin
Θ

exp((v − u)Tz)

≈ argmin
Θ

vTz − uTz + 1, 0

= argmin
Θ

αvTz − αuTz + α , 0

(8)

where the approximations are achieved by (v − u)Tz → −∞ and α is a positive scalar.

Though different forms, both contrastive cross entropy losses ℒCBCE and ℒCSCE try to

make the distance between z and the targeted anchor u smaller than the distance between z
and negative anchor v. Similar argument applies to the ℒSCR as the ratio form contrastive

term ℒCSCE. This is the major reason why all the above losses are named as contrastive.
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E. Generalization to Multi-label Classification

We further generalize the above binary classification losses to multi-label classification

losses. A typical clinical prediction application is phenotyping which tries to predict the

existences of multiple clinical conditions. We model multi-label classification as solving

multiple binary classifications simultaneously. Here we define our general multi-label form

of ℒSupervised Contrastive as follows:

ℒSupervised Contrastive
c =

1
C ∑

c = 1

C
ℒContrastive Cross Entropy

c + λℒSupervised Contrastive Regularizer
c (9)

where C is the number of classes. Equation 2 is a special case of Equation 9 when C = 1.

Based on the aforementioned contrastive cross entropy losses ℒCBCE, ℒCSCE (sec. IV-B),

and the supervised contrastive regularizer ℒSCR (sec. IV-C), here we propose following two

versions of our general supervised contrastive loss:

• Our general multi-label form ℒCBCE + λℒSCR is:

1
C ∑

c = 1

C
ℒCBCE

c + λℒSCR
c

= −1
CN ∑

c = 1

C
∑
i = 1

N
yi, clog σ ucTzi σ −vcTzi

+ 1 − yi, c log σ vcTzi σ −ucTzi

+ λ
Nyi, c − 1 ∑

j = 1

N
1i ≠ j1yi, c = yj, clog exp sim zi, zj /τ

∑k = 1
N 1i ≠ kexp sim zi, zk /τ τ

}

(10)

• Our general multi-label form ℒCSCE + λℒSCR is:

1
C ∑

c = 1

C
ℒCSCE

c + λℒSCR
c

= −1
CN ∑

c = 1

C
∑
i = 1

N
{yi, clog exp ucTzi

exp ucTzi + exp vcTzi

+ 1 − yi, c log exp vcTzi
exp ucTzi + exp vcTzi

+ λ
Nyi, c − 1 ∑

j = 1

N
1i ≠ j1yi, c = yj, clog exp sim zi, zj /τ

∑k = 1
N 1i ≠ kexp sim zi, zk /τ

}

(11)

It is worthwhile to mention that the above two multi-label classification losses encompass

binary-classification losses as special cases when C = 1. For simplicity, we use general form

ℒSupervised Contrastive = ℒContrastive Cross Entropy + λℒSupervised Contrastive Regularizer to denote

both binary and multi-label cases.
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F. Summary

We summarize the overall learning framework of our SCEHR in Algorithm 1. We illustrate

the main idea of our SCEHR in Figure 1. The major outputs of algorithms are the targeted

neural encoder ΦΘ for X, the learned positive anchors U = uc i = 1
C  for each of C classes,

the learned negatives anchors V = vc i = 1
C  for each of C classes V = vc i = 1

C . The predicted

probability of data i belonging to the positive cases of class c (e.g. the predicted risk of

in-hospital mortality for mortality prediction task and c = 1 represents positive/mortality)

are σ ucTzi / σ ucTzi + σ vcTzi  and exp ucTzi / exp ucTzi + exp vcTzi  for Eq. 10 and Eq. 11

respectively. In general, our SCEHR can be used for existing clinical risk prediction models

which are used for binary or multi-label classifications by replacing cross entropy losses

with our Eq. 10 and Eq. 11. The PyTorch implementations of our SCEHR are open-sourced

at https://github.com/calvin-zcx/SCEHR.

V. Experiments

We validate our SCEHR on a real-world electronic health records (EHR) database, Medical

Information Mart for Intensive Care (MIMI-III) [4], which is publicly available. Following

benchmarking works [5], we validate our SCEHR by answering the following questions:

• In-hospital mortality prediction (Sec. V-A) tries to predict in-hospital mortality

states, namely a binary classification task, of ICU patients given their first 48-

hour data in ICU. The early-prediction of at-risk patients is the key for patient

stratification to improve healthcare results. Our question is: Can our SCEHR

improve the performance of benchmarking models for in-hospital mortality

prediction task?
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• Phenotyping classification (Sec. V-B) tries to predict the existence of 25

common clinical conditions (coded by ICD-9 codes in EHR) of patients in ICU,

namely a multi-label classification task, given their data in ICU with varying

length of time. The phenotyping is key for diagnosis, comorbidity detection,

and quality surveillance [34]. Our question is: Can our SCEHR improve the

performance of typical benchmarking models for phenotyping task?

• Data Imbalance Analysis (Sec. V-C). Positive cases in the EHR data always

make up a smaller proportion than the negative cases. Our question is: How will

our SCEHR perform under different levels of data imbalance?

• Embedding Visualization (Sec. V-D). Our SCEHR is supposed to pull similar

data embeddings closer and push dissimilar ones apart. Our question is: What

will the learned embeddings look like by our SCEHR on the real-world EHR

data?

Datasets.

Following the benchmark tasks [5] on the MIMI-III dataset [4], 17 medical concepts

(including Capillary refill rate, Diastolic blood pressure, Fraction inspired oxygen, Heart

Rate, etc.) observed over time are selected as features, which are further feature-engineered

into 76 dimensional medical time series data for predictive models. As for the mortality

prediction, the first 48 hour time series are used, leading to xi ∈ ℝ48 × 76 medical time series

for each patient. Besides, the latest works [15] also included additional 12 dimensional static

features based on demographics (e.g. ethnicity, gender, age, height, weight, etc.) to improve

the performance. The supervised labels are {0, 1}N for N patients. As for the phenotyping

classification, the time length Ti of xi ∈ ℝTi × 76 varies depends on the length of stay in ICU.

The labels for phenotyping multi-label classification are {0, 1}N×25. The splitting of the

train, validation, and test datasets are summarized in Table I, and the statistics of the varying

Ti for phenotyping classification are summarized in Table II.

We implemented our codes by Python 3.9.1, Pytorch-1.7.1, Cuda 10.1 and trained all

the models on 1 GeForce RTX 2080 Ti GPU and 16 CPU cores in Linux server with

Ubuntu 18.04.2 LTS. We open-source our codes at https://github.com/calvin-zcx/SCEHR

and refer to [4] for the public MIMIC-III dataset and [5] for the data pre-processing and

benchmarking codes.

A. In-hospital Mortality Prediction

Setup.—The in-hospital mortality prediction, which is formulated as a binary classification

problem, is always learned by optimizing binary cross entropy (BCE) loss in existing works

[5], [15]. In this task, we evaluate our SCEHR ‘s capability of improving benchmark models

for mortality prediction by replacing the BCE loss.

To be comparable with benchmark models, we adopt the most widely used: a) LSTM-based

models (a 2-layerd LSTM model with 7, 697 learnable parameters) [5] ; and b) the state-of-

the-art attention-based model Concare (a complex channel-wise GRU model with attention

layers and using additional static demographic features, leading to 322, 706 learnable
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parameters in total) [15], and compare these models with a) their original binary cross

entropy loss ℒBCE; b) binary cross entropy loss with supervised contrastive regularizer

ℒBCE + λℒSCR; c) our contrastive binary cross entropy loss with supervised contrastive

regularizer ℒCBCE + λℒSCR; d) our contrastive softmax cross entropy loss with supervised

contrastive reularizer ℒCSCE + λℒSCR To be consistent with baseline implementations, we

control for the same learning settings, including Adam optimizer [35] with learning rate

0.001, dropout 0.3, weight decay 0, and only grid search for best AUROC performance

among two varying hyper-parameters, namely, batch size {128, 256, 512, 1024} and λ ∈
[0, 0.01]. The hidden dimensions of Z, namely the penultimate layer for contrastive learning

regularizer are 16 for LSTM and 32 for Concare. We set the maximum epochs of training for

LSTM and Concare are 100 and 150 respectively. We set the temperature τ = 0.1 for all the

following experiments.

We evaluate the performance of this binary classification by the widely-adopted benchmark

metrics, including AUROC which is the area under the receiver operating characteristic

curve; AUPRC which is the area under the precision and recall (also known as sensitivity)

curve; Accuracy which is the ratio of correctly predicted cases to the total cases; and min(Se,
P+) which is the upper bound of the minimum of different sensitivity and precision pairs.

Results.—Table III and Table IV show that our SCEHR improves the best performance

of both the benchmark LSTM model and the state-of-the-art Concare model with respect to

all the four metrics for the in-hospital mortality prediction task on the MIMIC-III dataset.

More specifically, we find both two contrastive losses ℒCBCE + λℒSCR and ℒCSCE + λℒSCR
outperforms ℒBCE w.r.t all the metrics. The ℒCBCE + λℒSCR achieved the best AUROC,

AUPRC, Accuracy, while the ℒCSCE + λℒSCR achieved similar AUROC and the best

min(Se, P+) for both models, regardless of the different complexity of two benchmark

models. Besides, simply applying the regularizer λℒSCR to ℒBCE also improves the best

AUROC performance of using bare ℒBCE for LSTM.

We observe similar empirical running times for different losses under the same predictive

model. All the above loss functions finish 100 epochs with 256 batch size within 3 minutes

for the LSTM-based model and 45 minutes for the Concare model.

In conclusion, ℒCBCE + λℒSCR or ℒCSCE + λℒSCR improves the performance of strong

benchmarking model LSTM and the state-of-the-art Concare model by replacing

BCE loss. Both two supervised contrastive terms, namely ℒContrastive Cross Entropy and

ℒSupervised Contrastive Regularizer can introduce additional performance improvement.

B. Phenotyping Classification

Setup.—The phenotyping, which is formulated as a multi-label classification problem, is

learned by optimizing the mean of multiple binary cross entropy losses (BCE) in existing

benchmarking models [5]. In this task, we evaluate our SCEHR’s ability to improve the

benchmarking phenotyping models by replacing the BCE loss.
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We examined the LSTM-based model (a 1-layerd LSTM model with 348, 441 learnable

parameters) 1 [5] under different losses, including a) multi-label cross entropy loss

ℒBCE; b) multi-label cross entropy loss with multi-label supervised contrastive regularizer

ℒBCE + λℒSCR; c) our multi-label contrastive binary cross entropy loss with multi-label

supervised contrastive regularizer ℒCBCE + λℒSCR; d) our multi-label contrastive softmax

cross entropy loss with multi-label supervised contrastive reularizer ℒCSCE + λℒSCR.

We evaluate multi-label classification performance by standard metrics including Micro-
AUROC, Macro-AUROC, and weighted-AUROC [36]. We adopt the same setting for

consistency, including Adam optimizer with learning rate 0.001, dropout 0.3, weight

decay 0, and we grid search for best micro-AUROC performance among two varying

hyper-parameters, namely, batch size {128, 256, 512, 1024} and λ ∈ [0, 0.01]. The hidden

dimension of Z, namely the penultimate layer for contrastive learning regularizer is 256.

Results.—Table V reports different AUROC scores, we find that our SCEHR improves

benchmarking LSTM models w.r.t all the metrics. More specifically, our ℒCSCE + λℒSCR
and applying ℒSCR directly to BCE loss achieved the best performance, indicating the

benefits of introducing supervised contrastive terms.

C. Data Imbalance Analysis

Setup.—We further investigate the performance of our loss functions when the number

of positive cases in the training data is imbalanced at different levels. We studied the

in-hospital mortality prediction by the benchmarking LSTM model. As shown in Table I,

the original ratio of positive cases in the training dataset is 13.53%. We downsample the

training data with different levels of positive cases, namely, 5%, 1%, and 0.1%, and keep

the test data the same. The number (with the ratio of positive cases in the round brackets)

of patients in down-sampled training datasets are 13, 374 (5%), 12, 825 (1%), 12, 708

(0.1%), respectively. Follow the same experimental setting as section V-A, we search the

best AUROC performance on the hyper-parameter space spanned by batch size {128, 256,

512, 1024} and λ ∈ [0, 0.01].

Results.—We report the AUROC achieved by different losses under different data

imbalance levels (the ratio of positive cases) in Figure 2. We find consistent improvements

of our ℒCBCE + λℒSCR and ℒCSCE + λℒSCR over the BCE loss under different imbalance

levels. Besides, introducing the self-supervised regularizer to BCE also improves, but not as

significant as ℒCBCE + λℒSCR and ℒCSCE + λℒSCR. When the prevalence of positive cases

is very rare, say 0.1%, we find that our ℒCBCE + λℒSCR and ℒCSCE + λℒSCR outperforms

BCE a lot.

In conclusion, our experimental result implies that when the focused clinical outcome is rare

(e.g. rare diseases) in EHR datasets, namely, a very small fraction of positive cases among

1We choose standard LSTM benchmarking model because different LSTM benchmarks in [5] have similar auroc performance, and the
state-of-the-art Concare [15] can not be applied to time series with varying length.
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the total population, replacing the BCE loss by our ℒCBCE + λℒSCR and ℒCSCE + λℒSCR
can improve binary classification performance.

D. Embedding Visualization

Setup.—We here try to visualize embedding representations of each patient in the test

dataset learned by different losses to illustrate the effect of supervised contrastive terms.

All the representations are learned by the same LSTM-based mortality predictive model

as discussed in Section V-A under different losses, including a) the BCE loss ℒBCE;

b) BCE loss with supervised contrastive regularizer ℒBCE + λℒSCR; c) contrastive binary

cross entropy loss with supervised contrastive regularizer ℒCBCE + λℒSCR; d) contrastive

softmax cross entropy loss with supervised contrastive reularizer ℒCSCE + λℒSCR. We

control for batch size 256 for all the learning processes. We plot the 16-dimensional hidden

representations Z by t-SNE [37] with 50 perplexity under 1000 iterations. The t-SNE is

initialized by PCA as suggested in [38].

Results.—We show embedding visualizations in Figure 3. Compared with the BCE plot

(Figure 3a), we find that all the loss functions with supervised contrastive terms (Figure

3b–d) better squeeze positive samples near the red cross and negative samples near the red

circle, implying their ability to pull representations with the same label closer and push

representations with different labels apart. What’s more, compared with ℒBCE + λℒSCR,

our ℒCBCE + λℒSCR and ℒCSCE + λℒSCR show more complex structures and at the same

time a relatively good gap between classes, which are possible reasons accounting for their

better performance. Visual inspection implies best class separation by our ℒCBCE + λℒSCR
in Figure 3c among others, which is consistent with the best AUROC achieved by

ℒCBCE + λℒSCR. Besides, we can also find many points that are located among data

clusters with different labels, indicating the intrinsic difficulty in clinical risk predictions

with longitudinal EHR data [17].

VI. Conclusion

In this paper, we propose a general supervised contrastive loss form

ℒContrastive Cross Entropy + λℒSupervised Contrastive Regularizer for solving both binary

classification and multi-label classification in a unified framework for clinical risk prediction

using EHR data. Our proposed loss improves the performance of strong baselines and

even state-of-the-art models on benchmarking clinical risk prediction using real-world

longitudinal EHR data, works well with extremely imbalanced data, and can be easily

used to existing clinical risk predictive models by replacing their (binary or multi-label)

cross entropy loss. Our Pytorch code is released at https://github.com/calvin-zcx/SCEHR.

For future work, more instances of the above supervised contrastive loss can be proposed.

More clinical risk predictive models, EHR datasets, and self-supervised data augmentation

techniques for longitudinal EHR data need further investigation.
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Fig. 1.
An illustration of our SCEHR. We propose a general supervised contrastive learning

loss ℒContrastive Cross Entropy + λℒSupervised Contrastive Regularizer for clinical risk prediction

problems using longitudinal electronic health records. The overall goal is to improve

the performance of binary classification (e.g. in-hospital mortality prediction) and multi-

label classification (e.g. phenotyping) by pulling (→←) similar samples closer and

pushing (←→) dissimilar samples apart from each other. ℒContrastive Cross Entropy tries

to contrast sample representations with learned positive and negative anchors, and

ℒSupervised Contrastive Regularizer tries to contrast sample representations with others in a mini-

batch according to their labels. For brevity, we only highlight the contrastive pulling and

pushing forces associated with sample i in a mini-batch consisting of two positive samples

and three negative samples
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Fig. 2.
In-hospital mortality prediction under different data imbalance levels.
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Fig. 3.
t-SNE plots of patient’s embedding representations learned by the same LSTM-based

mortality predictive model under BCE and different supervised contrastive losses on the test

dataset. Orange crosses and blue dots represent the positive and negative cases respectively.

The positive cases account for 11.56% of the total population. We highlight the learned

positive anchor by a red cross and the negative anchor by a red dot.
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TABLE I

Statistics of datasets. The ratio of positive cases is shown in the round brackets. The mortality data have binary

labels, and the phenotyping data have 25-dimensional multi-labels.

#Train #Validation #Test

Mortality 14,681 (13.53%) 3,222 (13.53%) 3,236 (11.56%)

Phenotyping 29,250 (16.54%) 6,371 (16.31%) 6,281 (16.53%)
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TABLE II

Statistics of the varying length Ti of each patient in phenotyping dataset.

Phenotyping #Train #Validation #Test

min 1 2 2

max 2804 1843 1993

mean 86.81 88.79 88.75

std. 123.87 125.56 127.66
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TABLE V

Prediction results of 25 Phenotypes by benchmarking LSTM [5] model under different losses. BCE: Multi-

label Binary Cross Entropy; CBCE: Multi-label Contrastive Binary Cross Entropy; CSCE: Multi-label

Contrastive Softmax Cross Entropy; SCR: Multi-label Supervised Contrastive Regularizer. We highlight the

best performance w.r.t different metrics.

Micro AUROC Macro AUROC Weighted AUROC

ℒBCE 0.822 0.772 0.758

ℒBCE + λℒSCR 0.824 0.775 0.761

ℒCBCE + λℒSCR 0.823 0.774 0.761

ℒCSCE + λℒSCR 0.824 0.774 0.761
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