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Abstract: The liquid chromatography–mass spectrometry (LC-MS)-based metabolomics approach
is a powerful technology for discovering novel biologically active molecules. In this study, we
investigated the metabolic profiling of Orchidaceae species using LC-HRMS/MS data combined with
chemometric methods and dereplication tools to discover antifungal compounds. We analyze twenty
ethanolic plant extracts from Vanda and Cattleya (Orchidaceae) genera. Molecular networking and
chemometric methods were used to discriminate ions that differentiate healthy and fungal-infected
plant samples. Fifty-three metabolites were rapidly annotated through spectral library matching and
in silico fragmentation tools. The metabolomic profiling showed a large production of polyphenols,
including flavonoids, phenolic acids, chromones, stilbenoids, and tannins, which varied in relative
abundance across species. Considering the presence and abundance of metabolites in both groups of
samples, we can infer that these constituents are associated with biochemical responses to microbial
attacks. In addition, we evaluated the metabolic dynamic through the synthesis of stilbenoids in
fungal-infected plants. The tricin derivative flavonoid- and the loliolide terpenoidfound only in
healthy plant samples, are promising antifungal metabolites. LC-HRMS/MS, combined with state-
of-the-art tools, proved to be a rapid and reliable technique for fingerprinting medicinal plants and
discovering new hits and leads.

Keywords: liquid chromatography–mass spectrometry; untargeted metabolomics; metabolic dynamic;
antifungal compounds

1. Introduction

Orchidaceae is one of the largest and most diverse families in the plant kingdom,
with more than 28,000 species and 763 genera [1,2]. Orchidaceae species, popularly known
as orchids, are sold commercially for presenting beautiful and diverse flowers and the
economically important spice known as vanilla [3]. Many species have been studied
for their chemical composition and pharmacological activities, including anticancer, anti-
inflammatory, antioxidant, neuroprotective, antivirus, and antimicrobial [3]. Several orchid
species are known to produce stilbenoids, phytoalexins responsible for protection against
predation and antimicrobial activities [4–6]. Orchinol and hircinol are two stilbenoid
compounds isolated from the Orchis and Loroglossum genera, respectively, which were
reported with antifungal activity and play a role in the defense of orchid tubes [7].

Considering the antifungal activity of the secondary metabolites present in orchids
and the low rate of new drug discovery, there is an urgent need to develop fast and
efficient methodologies for screening new antimicrobial agents. Since the classic process
of screening bioactive natural products is a time-consuming and labor-intensive step,
analytical techniques applied to separating and characterizing phytocompounds stand out
for their high ability to dereplicate complex samples and detect constituents even at low
concentrations that can be useful in planning new drugs [8,9].
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Mass spectrometry (MS)-based analytical platforms are established as the technique of
choice in metabolomic investigations due to their high selectivity, sensitivity, speed, and
versatility in detecting a wide range of analytes with different physicochemical properties.
In addition, the development of increasingly sensitive instruments allows the detection
of trace-level molecules and provides analysis with sub-ppm mass accuracy that allows
describing the molecular formula with high precision based on the mass defect [10,11].
In this way, the high resolving power offered by this new equipment provides essen-
tial information for reliable annotation and accurate quantification of metabolites [12].
Ultrahigh-resolution mass spectrometry hyphenated to ultra-resolution chromatographic
techniques represents one of the most widely employed high-throughput screening tech-
nologies in metabolomic approaches and yields greater metabolic coverage in natural
product research [11,13–15].

Liquid chromatography coupled with mass spectrometry (LC-MS) could offer ad-
vantages in the metabolomic analysis, such as its better resolution of the complex sample
allowing a good evaluation of molecular diversity content. In addition, it provides more de-
tailed information on the metabolic composition of the samples by some chromatographic
parameters such as retention time and peak shape of the analytes, allows comparison with
standards improving the confidence level in structural annotations, distinguishing isobaric
and isomeric metabolites that are not resolved through the fragmentation pattern and
accurate molecular mass [16–19].

Numerous applications of LC-HRMS/MS, combined with state-of-the-art tools for
structural annotations (such as Classical Molecular Networking [20], Dereplicator+ [21],
Network Annotation Propagation [22], and Moldiscovery [23]), are reported in the litera-
ture, and many findings obtained from their applications have boosted analytical research
throughout and metabolites coverage. This approach has been widely employed to annotate
flavonoids and selaginellins of the roots and shoots from Selaginella convolute [24]; phenolic
compounds of the leaves and seeds from Erythrina velutina [25]; several metabolites, includ-
ing four phenanthrene with the antinociceptive activity of the roots from Laelia anceps and
Cyrtopodium macrobulbon [26]; several flavonoids and alkaloids of the bulbs and flowers
from Fritillaria thunbergii [27]; various compounds of the leaves, stems and roots from
Peperomia pellucida, including compounds annotated for the first time for the genus [28];
and unique cassaine-type diterpenoids of the leaves from Erythrophleum suaveolens and
E. ivorense, which were employed to distinguish morphologically-close species [29].

Thus, the present study aimed to explore the presence and abundance of secondary
metabolites in healthy and fungal-infected plants from the Orchidaceae family to select
potential antimicrobial candidates and a metabolic dynamic assessment. The metabolite
production of ten species of Orchidaceae belonging to the genera Vanda and Cattleya
was evaluated using tandem mass spectral libraries, in silico fragmentation tools, and
chemometric methods from MS data obtained by Orbitrap LC-MS.

2. Results

In this work, we used ultrahigh-resolution mass spectrometry coupled with liquid
chromatography to investigate the metabolic dynamic of healthy and fungal-infected
plants of the same botanical family to identify substances with antifungal properties.
Metabolome-based antifungal screening approach was evaluated in twelve species of
the Orchidaceae family by evaluating the spectral similarity of samples and applying
chemometric methods. Initially, the ions were discriminated using data mining and or-
ganization tools from the GNPS—Global Natural Products Social Molecular Networking
(https://ccms-ucsd.github.io/GNPSDocumentation/ (accessed on 16 August 2022) plat-
form, and the structural annotation of the metabolites was based on accurate mass (m/z),
MS/MS fragmentation pattern, chromatographic retention time, and chemotaxonomy data
from Orchidaceae family. We used metadata and data mining tools according to the GNPS
platform documentation, and the structural information and metabolic coverage data were
inspected in detail. All library hits classified as gold (thoroughly characterized as struc-
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tures), silver (compound crude extract), and bronze (partial annotation) [20] were evaluated,
and chemophenetics data from the Orchidaceae family confirmed the metabolic annotation.

The structural annotation of the metabolites was confirmed through the analysis
of candidates and their analogs suggested by the natural products databases, reference
mass spectral libraries, and spectral similarity networks resulting in level 2 identification
according to the Metabolomic Standard Initiative-MSI [30].

Lyophilized extracts from two groups of samples (healthy and fungal-infected plants)
of species of the genus Vanda (five samples) and Cattleya (five samples) were submitted
to the evaluation of the presence of metabolites through metabolite annotations were
based on searching the experimental spectra against the GNPS spectral library using the
tools Classical Molecular Networking—MN [20], Dereplicator+ [21], Network Annota-
tion Propagation—NAP [22], Moldiscovery [23], MS2LDA [31], MolNetEnhancer [32],
and analysis of chromatographic data such as retention time and UV spectra unit of
absorbance. The ion abundance assessment was performed using the Feature-Based Molec-
ular Networking—FBMN [33] tool obtained from MS/MS data in positive ionization mode
(ESI(+)). Annotations with high spectral similarity were prioritized, resulting in the struc-
tural annotation of 50 compounds.

2.1. Comprehensive Structural Annotation of Orchidaceae Species Using Molecular Networking

To obtain hits with higher structural similarity and the biosynthetic origin within
molecular families from molecular networking, the threshold for the cosine score similarity
was set to 0.7.

LC-HRMS/MS-based untargeted metabolomics approaches showed a considerable
variation in compounds mainly belonging to the class of secondary metabolites of the
flavonoids, stilbenoids, phenolic acids, chromones, tannins, terpenoids, and steroids.
Dereplication methodologies have been extensively applied in plant metabolomics and
provided the structural annotation of fifty-three metabolites belonging to different classes
of natural products in aglycone and heteroside form. However, most putatively annotated
polyphenols were classified as heterosides, mainly glycosylated flavonoids. Among the
fifty-three compounds annotated, 35 metabolites were annotated as flavonoids (22 flavones,
7 flavonols, 1 flavanone, and 5 isoflavones) and 10 stilbenoids. Regarding the phenols class,
10 compounds were annotated, being 50% cinnamic acids derivatives. Among the 20 ter-
penoids detected, were annotated 9 diterpenoids, 2 monoterpenoids, 7 sesquiterpenoids,
and 2 triterpenoids. The library matches showed alkaloids (8) classified as tryptophan
alkaloids (1), anthranilic acid alkaloids (3), nicotinic acid alkaloids (3), and histidine al-
kaloids (1). Other oxygenated aromatic metabolites belonging to the coumarins (5), an-
thraquinones (1), xanthones (1), and chromones (1) classes were found in low abundance
(Figure 1). Furthermore, a wide array of primary metabolites was detected in all samples,
such as carbohydrates, amino acids, and lipids.

The library matches using the classical molecular network (MN) from Cattleya and
Vanda genera assessment in both physiological conditions (healthy and fungal-infected)
yielded a total of 1.220 hits with 315 unique library compounds. We found 60 hits with a
high confidence level, a high number of hits with gold classification, represented by spectral
similarity greater than 90% (cosine score > 0.9), mz error (ppm) less than 5, and a high
amount of shared peaks in the MS/MS spectrum. The analysis of the candidates suggested
by the spectral library after inspection of the profile of MS/MS fragmentation patterns,
evaluation of high-resolution calculation of empirical formula, and chromatographic analy-
sis data, yielded the compounds described in Table 1. All the annotated metabolites have
been previously described in the Orchidaceae family [34,35].

From the MS/MS fragmentation pattern analysis, it was observed that the O-glycosylated
phenolic compounds were more abundant than the C-glycosylated compounds. O-glycosylated
flavonoids exhibited a neutral loss of a sugar moiety, which corresponds to a loss of 162 Da
for hexosides, 146 Da for deoxyhexosides and 132 Da for pentosides. The O-glycosylated
flavonoids Rutin (C27H30O16), Saponarin (C27H30O15), Isovitexin 2′′-O-arabinoside (C26H28O14),
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Isoschaftoside (C26H28O14), Tricin 5-glucoside (C23H24O12), Isorhamnetin 3-galactoside
(C22H22O12), Hyperoside (C21H20O12), and Isovitexin (C21H20O10) were identified by the
consecutive losses of sugar moieties, and the flavonoids aglycone Acacetin, 4′-Methoxy-
6-methylflavone, and Liquiritigenin were identified by fragments originating from retro
Diels–Alder reactions, and data from chromatographic analysis such as UV spectra and
retention times. In addition, it was possible to perform structure-based propagation
and guided detection of phenolic compounds not annotated by the spectral library. The
stilbenoids Rhapontin, Erianin, 3-O-Methylgigantol, Gigantol, Dendrosinene B, Tristin,
3′-O-Methylbatatasin III, 3-[2-(3-hydroxyphenyl)ethyl]-5-methoxyphenol, and Thunalbene,
metabolites found in both Vanda and Cattleya genera, were putatively annotated through
accurate mass precursor and characteristic product ions such as consecutive losses of
C2H2O and methoxyl groups.

Table 1. Results of the metabolite annotation from Orchidaceae species (Vanda and Cattleya) through
LC-HRMS/MS analysis in positive ion mode ESI.

Genus RT (Min) Exact Mass Molecular
Formula Metabolite Name Chemical Class

Vanda 1.72 122.037 C7H6O2 4-Hydroxybenzaldehyde Phenolic acid

Vanda 1.77 124.052 C7H8O2 3-hydroxybenzyl alcohol Benzenoid

Vanda 24.22 134.073 C9H10O Cinnamic alcohol Phenylpropanoid

Vanda/Cattleya 2.02 150.068 C9H10O2 4-methoxy-3-methylbenzaldehyde Benzenoid

Vanda 28.78 162.068 C10H10O2 4-Methylcinnamic acid Phenylpropanoid

Vanda 1.72 164.047 C9H8O3 p-coumaric acid Phenylpropanoid

Cattleya 12.53 168.042 C8H8O4 Benzoic acid, 2,4-dihydroxy-, methyl ester Phenolic acid

Vanda 20.78 196.110 C11H16O3 Loliolide Terpenoid

Vanda 29.26 210.089 C11H14O4 Sinapyl alcohol Phenylpropanoid

Vanda/Cattleya 16.80 224.068 C11H12O5 Sinapic acid Phenylpropanoid

Vanda/Cattleya 22.06 242.094 C15H14O3 Thunalbene Stilbenoid

Vanda/Cattleya 29.32 244.109 C15H16O3
3-[2-(3-hydroxyphenyl)ethyl]-5-

methoxyphenol Stilbenoid

Cattleya 31.36 254.058 C15H10O4 Daidzein Isoflavonoid

Vanda 27.28 256.074 C15H12O4 Liquiritigenin Flavonoid

Vanda/Cattleya 33.93 258.125 C16H18O3 3′-O-Methylbatatasin III Stilbenoid

Vanda/Cattleya 260.104 C15H16O4 Tristin Stilbenoid

Vanda/Cattleya 30.11 260.105 C15H16O4 Dendrosinene B Stilbenoid

Vanda 33.56 266.094 C17H14O3 4′-Methoxy-6-methylflavone Flavonoid

Vanda/Cattleya 39.50 272.177 C18H24O2 Galaxolidone Terpenoid

Vanda/Cattleya 28.65 274.121 C16H18O4 Gigantol Stilbenoid

Vanda/Cattleya 32.23 274.121 C16H18O4
3-Methoxy-5-[2-(3-methoxyphenyl)ethyl]-1,2-

benzenediol Stilbenoid

Cattleya 31.93 284.068 C16H12O5 Acacetin Flavonoid

Vanda/Cattleya 31.68 289.143 C17H20O4 3-O-Methylgigantol Stilbenoid

Cattleya 34.35 298.084 C17H14O5 Afrormosin Isoflavonoid

Cattleya 10.01 300.120 C14H20O7 Salidroside Phenol

Vanda 36.41 300.136 C18H20O4
2,3,5,7-tetramethoxy-9,10-

dihydrophenanthrene Stilbenoid

Vanda/Cattleya 31.44 318.146 C18H22O5 Erianin Stilbenoid
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Table 1. Cont.

Genus RT (Min) Exact Mass Molecular
Formula Metabolite Name Chemical Class

Vanda 31.22 330.147 C19H22O5
3-(4-hydroxy-3-methoxyphenyl)propyl

3-(4-hydroxyphenyl)propanoate Phenol

Cattleya 26.91 348.209 C24H28O2 Bexarotene Terpenoid

Vanda/Cattleya 22.81 374.230 C19H34O7

(2R,3S,4S,5R,6R)-2-(hydroxymethyl)-6-[4-(4-
hydroxy-2,6,6-trimethylcyclohexen-1-

yl)butan-2-yloxy]oxane-3,4,5-triol
Terpenoid

Vanda/Cattleya 17.70 389.217 C19H32O8

(2R)-4-[(1S)-1-Hydroxy-2,6,6-trimethyl-4-oxo-
2-cyclohexen-1-yl]-2-butanyl

beta-D-glucopyranoside
Terpenoid

Vanda/Cattleya 35.31 390.204 C22H30O6

7b,9-Dihydroxy-3-(hydroxymethyl)-1,1,6,8-
tetramethyl-5-oxo-1,1a,1b,4,4a,5,7a,7b,8,9-

decahydro-9aH-cyclopropa [3,4]benzo
[1,2-e]azulen-9a-yl acetate

Terpenoid

Vanda/Cattleya 21.65 420.142 C21H24O9 Rhapontin Stilbenoid

Vanda 16.08 432.105 C21H20O10 Isovitexin Flavonoid

Vanda/Cattleya 12.84 432.163 C19H28O11 Darendoside A Phenylethanoid

Cattleya 44.93 442.381 C30H50O2 Allobetulinol Terpenoid

Vanda 16.61 448.100 C21H20O11 Homoorientin Flavonoid

Vanda 22.65 464.095 C21H20O12 Hyperoside Flavonoid

Vanda 24.66 478.111 C22H22O12 Isorhamnetin 3-galactoside Flavonoid

Cattleya 29.47 492.127 C23H24O12 Tricin 5-glucoside Flavonoid

Vanda 1.80 564.148 C26H28O14 Isoschaftoside Flavonoid

Cattleya 21.31 564.148 C26H28O14 Isovitexin 2′’-O-arabinoside Flavonoid

Cattleya 18.13 582.231 C28H38O13

2-[[5-(4-hydroxy-3,5-dimethoxyphenyl)-6,7-
bis(hydroxymethyl)-1,3-dimethoxy-5,6,7,8-

tetrahydronaphthalen-2-yl]oxy]-6-
(hydroxymethyl)oxane-3,4,5-triol

Lignan

Vanda/Cattleya 15.80 594.158 C27H30O15 Saponarin Flavonoid

Vanda 22.84 610.153 C27H30O16 Rutin Flavonoid

To narrow the focus to identify metabolites with antifungal potential using the strat-
egy of investigating the metabolome of healthy plants compared with the metabolome
of fungal-infected plants from the Cattleya and Vanda genera, we eliminate metabolites
common to all species. The two set plants shared about 75% of their metabolome. Healthy
plant species exhibited a richness of secondary metabolites (approximately 60% of hits)
compared to fungal-infected plants (approximately 40% of hits), evidencing the role of these
metabolites in defense against microbial attack. The attack of pathogens on plants generates
a biochemical response. Therefore, the production of these chemical constituents in in-
fected plants belonging to the same genus or species may be suppressed by environmental
factors [36–38]. In addition, the quantitative alterations of these metabolites may also be a
consequence of environmental stimuli, explaining the low abundance of some compounds
in plants of the same species affected by microbiological attacks. Moreover, other factors,
such as nutrient and water availability in the soil, can influence metabolic pathways and
considerably affect the synthesis of secondary metabolites with antimicrobial action [39,40].
The chromatographic profile and molecular networking show subtle differences between
the sample groups for both species analyzed under the same chromatographic and spectro-
metric conditions (Figure 2).
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The metabolites cinnamic alcohol (phenylpropanoid), tricin 5-glucoside (flavonoid),
loliolide (terpenoid), and allobetulinol (terpenoid) were detected only in samples of
healthy plants. In contrast, the metabolites 3-(4-hydroxy-3-methoxyphenyl)propyl 3-(4-
hydroxyphenyl)propanoate (phenol), salidroside (phenol), isovitexin (flavonoid), rutin
(flavonoid), homoorientin (flavonoid), hyperoside (flavonoid), 2,3,5,7-tetramethoxy-9,10-
dihydrophenanthrene (stilbenoid/phenanthrenoid), 4′-methoxy-6-methylflavone (flavonoid),
isoshaftoside (flavonoid), sinapyl alcohol (phenylpropanoid), liquiritigenin (flavonoid),
gigantol (stilbenoid), 3-O-Methylgigantol (stilbenoid), 4-methylcinnamic acid (phenyl-
propanoid), and isorhamnetin 3-galactoside (flavonoid) were detected only in samples of
fungal-infected plants. Although the sample sets share a wide metabolic diversity, the
metabolites were found at different levels of abundance since the activation of the plant
defense mechanism can result in the greater activation of a biosynthesis pathway and
suppress the synthesis of other metabolites. The flavonoids afrormosin, acacetin, and
stilbenoids were primarily found in fungal-infected plants, while nitrogen compounds
were found predominantly in samples from healthy plants. Since the infection by microor-
ganisms induces biochemical alterations in the host organism in an attempt to defend itself
from the aggressive agent [41–44], a wide diversity of metabolites was found in fungal-
infected plants (Figure 3). The tricin derivative flavonoid, and the loliolide terpenoid, found
only in healthy plant samples, are reported in the literature with promising antifungal
activity [9,45,46].
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The metabolic dynamics of Orchidaceae species were also evaluated through the
synthesis of stilbenoids by fungal-infected plants and healthy plants, whose evaluation
showed that the compounds, thunalbene (C1) and dendrosinene B (C4), were found in
high concentration in healthy plants compared to fungal-infected plants. In contrast,
the stilbenoids, batatasin III (C2) and 3′-O-Methylbatatasin III (C3), were found in low
concentration in healthy plants compared to fungal-infected plants, while 3-Methoxy-5-[2-
(3-methoxyphenyl)ethyl]-1,2-benzenediol (C5) and 3-O-Methylgigantol (C6) were detected
only in fungal-infected plants (Figure 4). Stilbenoids are a group of plant phytoalexin
polyphenols produced by plants as a defense mechanism against microbial infection [47,48].
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2.2. Structural Annotation Strategy Using In Silico Fragmentation Tools to the Fingerprinting of
Healthy and Fungal-Infected Plants from Orchidaceae

From the evaluation of the secondary metabolism of the genera Vanda and Cattleya,
145 and 202 unique metabolites were detected in samples of fungal-infected plants and
healthy species from the genus Cattleya, respectively. For the genus Vanda, 146 and
166 unique metabolites were detected in fungal-infected plants and healthy species sam-
ples, respectively. The molecular diversity found in healthy plant samples evidences a
greater capacity of plants to synthesize secondary metabolites with biological action. In
order to obtain greater metabolic coverage, more sophisticated state-of-the-art tools were
applied, such as Moldiscovery, which allows obtained structural candidates with greater
accuracy and reliability. The Moldiscovery tool yielded a total of 2044 unique metabolites
and 1348 unique metabolites at a cutoff score of 15 from samples of fungal-infected plants.
While for samples of healthy plants, 2706 unique metabolites and 1768 unique metabolites
were detected at a cutoff score of 15.

Furthermore, a greater number of unique metabolites were found in healthy plant
samples (351) compared to fungal-infected plants (377) using the in silico dereplication tool
termed Dereplicator+. To obtain a more comprehensive chemical overview of both sets
of samples and chemical structural information, the MolNetEnhancer tool was applied to
detect the chemical classes present in the samples and to assist in annotating metabolites
that did not show a matching MS/MS spectrum. The analysis showed mostly a higher
number of nodes for all classes at the “superclass” level for healthy plant samples, except
for the classes of organic acids derivatives and phenylpropanoids and polyketides, which
were more abundant in fungal-infected plants (Figure 5).

In a more comprehensive investigation at the “class” level, the coumarin derivatives
were found only in healthy plant samples, while the aurone class was found only in
fungal-infected plant samples. Other chemical classes were found in both sets of samples.
However, they were detected in different proportions, such as stilbenes and cinnamic
acid derivatives that were detected mainly in samples of fungal-infected plants, and the
flavonoids, phenols, and steroids that were detected in a more significant proportion in
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healthy plant samples. Through molecular networking, we observe that the fungal-infected
plants synthesized twice as many metabolites from the shikimate natural products pathway
than healthy plants. This is because the variation of environmental conditions can silence or
activate biosynthetic pathways, which impact the synthesis or reduction of the production
of secondary metabolites.
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The propagation of structural annotations was also performed from unknown frag-
mentation mass spectrum analysis using the in silico tool Network Annotation Propagation
(NAP), which yielded 62 metabolites putatively annotated from NAP-Fusion in silico
prediction for fungal-infected plants and 45 for healthy plants samples. A Venn diagram
represents the unique metabolites number and overlapped unique metabolites putatively
annotated by classical Molecular Networking (MN), Dereplicator+, Moldiscovery, and
NAP-fusion annotated metabolites obtained from fungal-infected plants (F) and healthy
(H) plants (Figure 6).
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A significant number of flavonoids and phenols were found in high abundance in
healthy plant samples, which may be responsible for antimicrobial potential since they
are metabolites that play a central role in plant defense against pathogen attacks [49]. The
dereplication and data mining tools employed in this study provided chemical refine-
ment of metabolomics results for exploration and guided the selection of candidates with
antimicrobial potential.

2.3. Chemometrics Methods Applied to Orchidaceae Plants Spectral Analysis

Principal component 1 (PC1) and PC2 explained 24.31% and 15.34% of the variation,
respectively, as shown in Figure 7. Both Figure 7A,B are biplot scores of the same PCA,
with (A) showing the genus (Vanda and Cattleya) differentiation and (B) the healthy and
fungal-infected samples separation. In fact, only the healthy and fungal-infected separa-
tion was successful, mainly in the PC1. In this way, PLS-DA and OPS were applied to
classify samples as healthy or fungal-infected to find the variables that contribute more to
this separation.

Molecules 2022, 27, x FOR PEER REVIEW 11 of 16 
 

 

 
Figure 6. Venn diagram for the unique metabolites number and NAP-fusion annotated obtained of 
the workflows classical Molecular Networking (MN), Dereplicator+, Moldiscovery, and NAP from 
fungal-infected plants (F) and healthy (H) plants. 

A significant number of flavonoids and phenols were found in high abundance in 
healthy plant samples, which may be responsible for antimicrobial potential since they 
are metabolites that play a central role in plant defense against pathogen attacks [49]. The 
dereplication and data mining tools employed in this study provided chemical refinement 
of metabolomics results for exploration and guided the selection of candidates with anti-
microbial potential. 

2.3. Chemometrics Methods Applied to Orchidaceae Plants Spectral Analysis 

Principal component 1 (PC1) and PC2 explained 24.31% and 15.34% of the variation, 
respectively, as shown in Figure 7. Both Figure 7A,B are biplot scores of the same PCA, 
with (A) showing the genus (Vanda and Cattleya) differentiation and (B) the healthy and 
fungal-infected samples separation. In fact, only the healthy and fungal-infected separa-
tion was successful, mainly in the PC1. In this way, PLS-DA and OPS were applied to 
classify samples as healthy or fungal-infected to find the variables that contribute more to 
this separation. 

 
Figure 7. Samples visualization in 2-D space using scores from PCA with (A) Vanda and Cattleya and 
(B) healthy and fungal-infected samples. PC: principal component. 

Figure 8A shows the PLS-DA scores with two latent variables (LV), explaining 
58.61% of the variance with the selected variables by OPS. In this case, with the selection 
of only 80 variables for both classes (healthy and fungal-infected), the separation was 

Figure 7. Samples visualization in 2-D space using scores from PCA with (A) Vanda and Cattleya and
(B) healthy and fungal-infected samples. PC: principal component.

Figure 8A shows the PLS-DA scores with two latent variables (LV), explaining 58.61% of
the variance with the selected variables by OPS. In this case, with the selection of only
80 variables for both classes (healthy and fungal-infected), the separation was accentu-
ated in LV1, with 27.62% of explained variance. These 80 variables can be divided into
three groups: 62 common variables between healthy and fungal-infected samples, and
10 healthy and 8 fungal-infected variables, as shown in Figure 8B. For each group (healthy
or fungal-infected samples), the most important variables were the 10 and 8 different
variables highlighted in the loadings plot (Figure 8B). These 18 variables were previously
described in Table 1.
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In the healthy samples group, the most important selected variables were loliolide
(m/z 196.110), 4-methoxy-3-methylbenzaldehyde (m/z 150.068), erianin (m/z 318.146),
isorhamnetin 3-galactoside (m/z 478.111), isovitexin 2′′-O-arabinoside (m/z 564.148), cin-
namic alcohol (m/z 134.073), tricin 5-glucoside (m/z 492.127), isoshaftoside (m/z 564.148),
acacetin (m/z 284.068), and allobetulinol (m/z 442.381). Some of these variables were
detected in both groups; however, the variable selection appears only in the healthy sam-
ples group.

For the fungal-infected group, the following variables were founded: 3-[2-(3-hydroxy-
phenyl) ethyl]-5-methoxyphenol (m/z 244.109), galaxolidone (m/z 272.177), 3-(4-hydroxy-
3-methoxyphenyl) propyl 3-(4-hydroxyphenyl) (m/z 330.147), salidroside (m/z 300.147),
rutin (m/z 610.153), gigantol (m/z 274.121), isovitexin (m/z 432.105), and homoorientin
(m/z 448.100). Most of these variables were described earlier in this study as detected only
in fungal-infected samples.

In summary, our findings in chemometric data analysis were supported by the com-
prehensive structural annotation of the metabolites, being an essential tool for discovering
antifungal compounds from the Orchidaceae family.

3. Materials and Methods
3.1. Chemicals and Materials

Acetonitrile, n-hexane, and methanol HPLC-grade were purchased from Tedia Com-
pany (Fairfield,OH, USA). Formic acid, caffeine-13C3, and Supelclean C18 SPE cartridges
(3 mL) were purchased from Sigma Aldrich (St. Louis, MO, USA). Progesterone-d9 was
purchased from CDN Isotopes (Quebec, Canada). Ultrapure water was produced using
a water purification system (Master System MS2000, Gehaka, São Paulo, Brazil) with a
resistivity of 18.2 MΩcm.

3.2. Plant Material

Healthy and fungal-infected fresh leaves from five Vanda sp. and Cattleya sp. plants
were collected from a private greenhouse in Lençois Paulista, São Paulo, Brazil (22◦36′46.2′′ S
48◦50′02.1′′ W). The plants were maintained at −80 ◦C until freeze-drying and sam-
ple preparation.

3.3. Sample Preparation

The fresh leaves were frozen at −80 ◦C and then freeze-drying for 72 h. The freeze-
drying material was extracted with methanol. The solvent was removed using a Speedvac
concentrator (Thermo Scientific Savant SPD131DDA). Subsequently, the extracts were
submitted to a cleanup step (using SPE C18 cartridges) to eliminate chlorophyll and other
interferences. The final extracted material (2 mL of methanol) was concentrated in a
Speedvac concentrator. One milligram of dried extracts was made-up to 1 mL of methanol.
This solution was diluted to 1:5 (v/v) in methanol, filtered (0.45 µm), and used in LC-MS
analysis. Before the injections, the samples were spiked with a mixed standard solution
(caffeine-13C3 and progesterone-d9, at 2.5 µg mL−1).

3.4. LC-HRMS Analysis

LC-HRMS/MS analyses were performed on an HPLC-UV 1220 Infinity II (Agilent
Technologies) coupled with a Q-Exactive hybrid Quadrupole-Orbitrap high-resolution mass
spectrometer (Thermo Scientific) as well as an electrospray ionization source. The column
used in this study was an Infinity Lab Poroshell 120 EC-C18 column (4.6 × 100 mm × 2.7 µm
Agilent). All samples were analyzed using a gradient elution program. The binary mobile
phase comprised A (water with 0.1% formic acid) and B (methanol). The gradient elution
started at 5% (B) and linearly increased to 100% (B) in 40 min and kept constant for 10 min
at 100% (B). The eluent was restored to the initial conditions in 10 min. The flow rate was
set at 0.3 mL min−1. The injection volume was 30 µL, and the column temperature was
set at 35 ◦C. The electrospray ionization was operating with the following parameters:
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spray voltage 3.5 kV; capillary temperature: 269 ◦C; S-lens RF level 50 V; sheath gas flow
rate at 53 L min−1; aux gas flow rate at 14 L min−1; sweep gas flow rate 3 L min−1.
The high-resolution mass spectrometry (HRMS) was obtained under full MS/dd-MS2

mode. The mass range in the full MS scanning experiments was m/z 80–1200. The top
5 (TopN, 5, loop count 5) most abundant precursors were sequentially transferred for
collision for fragmentation acquisition. The collision energy for target analytes was 20,
30, and 35 eV. Resolving power was set at 140,000 and 70,000 for full MS and dd-MS2

acquisitions, respectively.

3.5. Compound Characterization

The files acquired in the Q-Exactive hybrid Quadrupole-Orbitrap mass spectrometer
for the methanolic extracts were converted from raw into (.mzML) format using MSConvert
software (ProteoWizard, Palo Alto, CA, US) before being processed using MZmine software,
version 2.53. We used metadata to organize compound information according to the
Global Natural Products Social Molecular Networking (GNPS) online workflow (https:
//ccms-ucsd.github.io/GNPSDocumentation/ (accessed on 16 August 2022).

Metabolite annotations were based on searching the experimental spectra against the
GNPS spectral library using the tools Classical Molecular Networking—MN [20], Feature-
Based Molecular Networking—FBMN [33], DEREPLICATOR+ [21], Network Annotation
Propagation—NAP [22], MOLDISCOVERY [23], MS2LDA [31], MolNetEnhancer [32], and
analysis of chromatographic data such as retention time and UV spectra.

3.6. Chemometric Data Analysis

Twenty samples were used in data analysis: ten Vanda and ten Cattleya samples, using
five healthy and five fungal-infected of each genus. The obtained .raw files were converted
into .cdf format and imported to Matlab R2020a (Math Works, Natick, MA, USA), where all
chemometric tools were applied.

An exploratory data analysis was carried out using principal component analysis
(PCA) [50] to visualize the Vanda and Cattleya genus and healthy and fungal-infected
samples in multidimensional space. PCA was carried out on the normalized and autoscale
dataset with twenty samples and 1,021,894 variables (m/z 80 to 1200).

Additionally, partial least squares for discriminant analysis (PLS-DA) [51], a clas-
sification method based on PLS regression, was applied in healthy and fungal-infected
samples. The ordered predictors selection (OPS) [52], a variable selection method adapted
for classification, was applied to find the more essential and interpretative variables for
healthy and fungal-infected classification.

4. Conclusions

In this study, we presented the application of the integrated metabolomics approach
and the state-of-the-art computational tools to provide acute insights regarding the charac-
terization of phytochemicals of healthy and fungal-infected leaves from Vanda and Cattleya
species. The data analysis pipelines of untargeted metabolomics analysis enabled the
characterization of a considerable variation in compounds belonging primarily to the class
of flavonoids, phenolic acids, chromones, stilbenoids, tannins, terpenoids, and steroids.
Flavonoids were identified as the major compounds in both species independent of the
physiological condition (healthy or fungal-infected). The flavonoids afrormosin, acacetin,
and stilbenoids were found chiefly in fungal-infected plants, while nitrogen compounds
were found predominantly in samples from healthy plants. The tricin derivative flavonoid,
and the loliolide terpenoid were found only in healthy plants. From the dereplication and
in silico fragmentation tools, 202 and 145 unique metabolites were detected in healthy, and
fungal-infected Cattleya leaves. For the genus Vanda, 166 and 146 unique metabolites were
detected in healthy and fungal-infected leaves. The integrated metabolomics approach
and the combination of structural annotation, data mining, and chemometric tools could
be applied as a reference dataset for MS/MS-based untargeted metabolomic analysis of

https://ccms-ucsd.github.io/GNPSDocumentation/
https://ccms-ucsd.github.io/GNPSDocumentation/
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species from the Orchidaceae. In addition, based on the interesting results shown in the
present study, the model data on the molecular annotation adopted here may be further
explored with high efficiency through other species from the Orchidaceae family.
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