Table A1.
Model | Hyperparameter | Search Space | Selected |
---|---|---|---|
LR | Regularisation strength | {0, 0.10, 0.20, …, 1} | 0.40 |
class weight | {0, 1, …, 10} | 7 | |
Maximum number of iterations | {1000, 2000, …, 10,000} | 7000 | |
GB | Learning rates | {0.01, 0.02, …, 1} | 0.10 |
Number of boosting stages | {20, 40, …, 200} | 160 | |
Minimum number of samples required to split an internal node | {1, 2, …, 10} | 2 | |
Minimum number of samples required to be at a leaf node | {{1, 2, …, 10} | 6 | |
Maximum depth of the individual estimators | {1, 2, …, 10} | 9 | |
AB | Maximum number of estimators at which boosting is terminated | {10, 20, …, 100} | 90 |
Learning rates | {0.01, 0.02, …, 1} | 1.58 | |
RF | number of trees | {50, 100, …, 500} | 20 |
Maximum depth of the tree | {1, 2, …, 10} | 3 | |
Minimum number of samples required to split an internal node, | {1, 2, …, 10} | 4 | |
Minimum number of samples required to be at a leaf node | {1, 2, …, 10} | 6 | |
Maximum number of leaf nodes | {1, 2, …, 10} | 3 | |
minimum impurity decrease | {0, 0.001, 0.002, …, 0.010} | 0.004 | |
Cost complexity pruning factor | {0.01, 0.02, …, 0.10} | 0.01 | |
Minimum weighted fraction of the sum total of weights | {0.01, 0.02, …, 0.10} | 0.01 | |
SVC | Class weight | {0, 1, …, 10} | 6 |
Maximum integration | {100, 200, …, 10,000} | 2400 |
Note. AB: AdaBoost; LR: logistic regression; GB: gradient boosting; RF: random forest; SVC: support vector classifier.