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Abstract: Halogen bonds play an important role in many fields, such as biological systems, drug
design and crystal engineering. In this work, the structural characteristics of the halogen bond
between heteronuclear halogen XD (ClF, BrCl, IBr, ICl, BrF and IF) and benzene were studied using
density functional theory. The structures of the complexes between heteronuclear halogen and
benzene have Cs symmetry. The interaction energies of the complexes between heteronuclear halogen
XD (ClF, BrCl, IBr, ICl, BrF and IF) and benzene range from −27.80 to −37.18 kJ/mol, increasing with
the increases in the polarity between the atoms of X and D, and are proportional to the angles of a
between the Z axis and the covalent bond of heteronuclear halogen. The electron density (ρ) and
corresponding Laplacian (∇2ρ) values indicate that the interaction of the heteronuclear halogen and
benzene is a typical long-range weak interaction similar to a hydrogen bond. Independent gradient
model analysis suggests that the van der Waals is the main interaction between the complexes
of heteronuclear halogen and benzene. Symmetry-adapted perturbation theory analysis suggests
that the electrostatic interaction is the dominant part in the complexes of C6H6· · ·ClF, C6H6· · · ICl,
C6H6· · ·BrF and C6H6· · · IF, and the dispersion interaction is the main part in the complexes of
C6H6· · ·BrCl, C6H6· · · IBr.

Keywords: halogen bond; benzene; heteronuclear halogen; interaction

1. Introduction

A halogen bond is a noncovalent interaction [1,2] similar to the typical hydrogen
bond [3–6]. In the case of a halogen bond, a halogen atom is shared both by a donor D and
an acceptor A [7]. The halogen bond interaction can be depicted by:

D-X—A

where the X can be chlorine, bromine or iodine and the angle of D-X· · ·A is close to 180◦.
Halogen bonding plays an important role in many fields, such as biological sys-

tems [8–12], drug design [13–15], crystal engineering [16–19] and function materials [20–23].
Auffinger et al. explored the function of halogen bonds in ligand binding, recognition,
conformational equilibria and molecular binding [24]. Johnson et al. found that the 4, 5, 6,
7-tetrabromobenzotriazole could displace charged ATP from its binding site on phospho-
CDK2-cyclin by the halogen bond of Br–O interaction [25]. As a result, it is of great practical
significance to study the halogen bond deeply.

Due to the influence of conjugation, right above the center of the benzene ring is an
electron-rich region [26], which can combine with the halogen molecules to form stable
complexes. Similar systems have been studied in recent years. Tsuzuki et al. studied the
size and direction of halogen bonds of molecules containing halogen atoms interacting with
benzene [27]. Schwabedissen et al. studied the action rules of halogen bonds in crystals [28].
Yu et al. studied the effect of halogen bonds on molecular fluorescence [29]. Otte et al.
studied the competing weak interactions in the process of complex formation [30]. In
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addition, Oliveira, Kraka and Cremer et al. have published extensive work on analyzing
halogen bonds based on vibrational spectroscopy, leading to a quantitative measure of
the interaction strength in these systems and providing a rigorous and comprehensive
discussion of halogen bonds on a quantum chemical level [31–40].

Although these studies have given the geometric structures and interaction energies
of the complexes between halogen and benzene [41], to our knowledge, the details of their
interaction have not been reported until now. In this work, we studied the structural char-
acteristics of the halogen bond between heteronuclear halogen XD (ClF, BrCl, IBr, ICl, BrF
and IF) and benzene using density functional theory (DFT). The calculation results indicate
that heteronuclear halogen and benzene can form stable complexes with Cs symmetry.
The interaction energy ranges from −27.80 to −37.18 kJ/mol, which is proportional to the
angle of a. Topological properties of the electron density based on the atoms in molecules
(AIM) theory show that bond critical points (BCPs) between the heteronuclear halogen and
benzene exist in all the six complexes. The electron density (ρ) and corresponding Laplacian
(∇2ρ) values indicate that the interaction of the heteronuclear halogen and benzene is a
non-covalent intermolecular interaction similar to a hydrogen bond. Independent gradient
model (IGM) analysis of the interaction between the heteronuclear halogen and benzene
suggests that van der Waals is the main interaction.

2. Results and Discussion
2.1. Geometry and Interaction Energy

Figure 1 shows the structure of the complexes formed by heteronuclear halogen (ClF,
BrCl, IBr, ICl, BrF and IF) and benzene. As can be seen from the Figure 1, the heteronuclear
halogen in the complexes is located above the benzene ring, but not perpendicular to the
plane of the benzene ring. All the six complexes belong to the Cs symmetry, and the more
electronegative atom of the heteronuclear halogen in the complexes is far away from the
benzene ring.
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Figure 1. The geometric structures of the complexes between heteronuclear halogen and benzene.

Figure 2 shows the schematic diagram of the complexes. To better illustrate the
relationship between the interaction energy and the structure of the complexes, the direction
that passes through the X atom and is perpendicular to the plane of the benzene ring is
defined as the z-axis, and the angle between the X−D bond and the z-axis is defined as a.

The values of the interaction energy and the angle of a are shown in Table 1. As can
be seen from Table 1, the interaction energy is related to the magnitude of a, and increases
with the increase in a. In addition, when the atom of D is fixed, the interaction energy of
the complexes increases with the increase in the polarity between the atoms of X and D,
which is inconsistent with the calculations from Sugibayashi, et al. [41].
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Figure 2. The structure diagram of the complexes between heteronuclear halogens and benzene.

Table 1. The values of the interaction energy and the angle of a.

Complexes a (◦) (E) Interaction Energy (kJ/mol)

C6H6· · ·ClF 2.90 −27.80
C6H6· · ·BrCl 3.60 −29.72
C6H6· · · IBr 3.83 −30.99
C6H6· · · ICl 4.90 −34.50
C6H6· · ·BrF 5.12 −35.70
C6H6· · · IF 5.56 −37.18

As can be seen from Figure 3, the interaction energy and the angle of a have good
linearity. The correlation coefficient reaches 99.5%, indicating that the interaction between
heteronuclear halogen and benzene tends to be perpendicular to the plane. The interaction
energy ranges from−27.80 to−37.18 kJ/mol, which is a typical long-range weak interaction
similar to a hydrogen bond.
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2.2. Electrostatic Potential

Figure 4 shows the electrostatic potential of each monomer in the complexes. Accord-
ing to the electrostatic potential diagram, the central region of the benzene ring shows a
negative electrostatic potential region. However, the heteronuclear halogen (ClF, BrCl, IBr,
ICl, BrF and IF) in the complexes does not lie directly above the benzene ring but has a
silent deviation from the benzene ring center. The reason for the deviation indicates that
the interaction between the two monomers in the complexes is not only electrostatic. In
the process of complex formation, a variety of interactions exert influence and achieve a
reasonable state, resulting in complexes with Cs symmetry.
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2.3. Topological Properties of the Electron Density

In order to further understand the interaction characteristics, we carried out an AIM
theoretical analysis of the six complexes. The results show that there are bond critical points
between the heteronuclear halogen and benzene in the six complexes. The values of electron
density (ρ), Laplacian of electron density (∇2ρ) and ellipticity (ε) of the saddle point of the
bond are listed in Table 2. According to the criteria proposed by Popelier et al. [42,43], the
electron density (ρ) at the saddle point of the bond ranges from 0.0025 to 0.035 a.u. and the
Laplacian amount of electron density (∇2ρ) is between 0.024 and 0.139. We found that the
electron density at the saddle point of the bond and the Laplacian amount of the electron
density in the six complexes are in the above range, indicating that the interaction in the
complex is a weak interaction similar to that of a hydrogen bond. In addition, the ellipticity
value at the saddle point of the key is related to the type of the key. As can be seen from
Table 2, the ellipticity (ε) of the six complexes is all greater than zero, showing obvious
π-bond characteristics.

Table 2. The values of electron density (ρ), Laplacian of electron density (52ρ) ellipticity (ε) and λ2

of the saddle point.

Complex ρ ∇2ρ ε λ2

C6H6· · ·ClF 0.019 0.059 4.39 −0.0026
C6H6· · ·BrCl 0.015 0.049 3.80 −0.0019
C6H6· · · IBr 0.014 0.024 4.00 −0.0017
C6H6· · · ICl 0.015 0.039 4.41 −0.0016
C6H6· · ·BrF 0.019 0.054 4.50 −0.0021
C6H6· · · IF 0.019 0.061 4.76 −0.0023

2.4. IGM Analysis

In order to understand the region, size and species of the weak interaction of the
halogen bond between the heteronuclear halogen and benzene in the six complexes, IGM
analysis of the six complexes was carried out [44,45]. In IGM theory, the second largest
eigenvalue of the electron density Hessian matrix (sign (λ2)) is used to define the type
of interaction [46]. When the value of sign (λ2) × ρ is less than zero, it is an attractive
interaction. When the value of sign (λ2) × ρ is greater than zero, it is a repulsive interaction.
When the value of sign (λ2) × ρ is equal to zero, it is a van der Waals interaction. IGM
is calculated by distinguishing the interaction into intramolecular and intermolecular
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interactions, which are represented by δinter and δintra, respectively. The peak value of δinter

is generally less than 0.1 a.u., the van der Waals interaction is generally less than 0.03 a.u.,
and the hydrogen bond interaction is generally less than 0.1 a.u. The calculated results of
the six complexes are shown in Figure 5. As can be seen from Figure 5, all six complexes
have different degrees of peak values in the region of sign (λ2) × ρ < 0, indicating that the
interactions in the complexes are all in the van der Waals intermolecular interaction region.
The peak values of δinter are from 0.0125 to 0.0476 a.u., where C6H6· · ·BrF and C6H6· · ·ClF
exceed 0.003 a.u., indicating that the complexes exhibit a strong van der Waals interaction,
and the remaining C6H6· · ·BrCl, C6H6· · · ICl, C6H6· · · IBr and C6H6· · · IF shows a general
van der Waals effect. From the isosurface color map in Figure 5, the color map of the
six complexes shows that the majority of the results are green, which further indicates that
the van der Waals is the dominant interaction. At the same time, it can be seen that the
central region of the isosurface is blue, indicating that the strongest interaction position is
between the X atom and the C-C bond center, which is consistent with the above conclusion
of electron density topological analysis.

2.5. SAPT Calculation Analysis

In order to further understand the tendency and characteristics of the van der Waals
interaction between heteronuclear halogen and benzene, the intermolecular interaction en-
ergy was decomposed and calculated using symmetry-adapted perturbation theory (SAPT).
The calculation results are listed in Table 3. In the six complexes, the electrostatic and dis-
persive energies are both larger than the induced energies, indicating that the electrostatic
and dispersive effects are dominant in the six complexes. Further studies reveal that in
C6H6· · ·ClF, C6H6· · · ICl, C6H6· · ·BrF and C6H6· · · IF, electrostatic energy accounts for
the largest proportions, which are 36.7%, 37.3%, 37.9% and 38.9%, respectively, indicating
that the electrostatic interaction of these four complexes is dominant. In C6H6· · ·BrCl and
C6H6· · · IBr, the dispersive energy has the largest proportions of the interaction energy,
which are 37.9% and 38.6%, respectively, indicating that the dispersive interaction in the
two complexes is the main part. The dispersion effect is more obvious in the complexes
with large radius halogen atoms, which might be related to the degree of electron dispersion
in halogen atoms.

Table 3. The calculation analysis using symmetry matching perturbation theory (SAPT).

Energy (kJ/mol) C6H6· · ·ClF C6H6· · ·BrCl C6H6· · ·IBr C6H6· · ·ICl C6H6· · ·BrF C6H6· · ·IF

ESAPT −27.86 −29.70 −31.04 −34.57 −35.79 −37.33
Eexch 35.95 43.35 44.83 46.37 42.84 47.12
Eelst −23.46 −26.29 −27.74 −30.22 −29.85 −34.04

(36.7%) (35.9%) (36.6%) (37.3%) (37.9%) (38.9%)
Eind −18.15 −19.03 −18.84 −21.26 −23.04 −25.39

(28.4%) (26.1%) (24.8%) (26.3%) (29.3%) (29.0%)
Edisp −22.20 −27.73 −29.29 −29.45 −25.74 −28.02

(34.8%) (37.9%) (38.6%) (36.4%) (32.7%) (32.0%)

In order to further study the role of the interaction energies, such as induction, dis-
persion, exchange and electrostatic energy in complex formation, the variation of each
energy with the distance of its monomer centroid was calculated. The calculation results
are shown in Figure 6. It can be seen in Figure 6 that the variation in each interaction energy
with the distance from the centroid of the monomer is not completely the same, but the
variation trend is similar. In the range of R < 0.3 nm, the exchange and induction effects
are significantly affected by the molecular spacing, and the repulsive and attractive effects
are basically equal. At this time, the intermolecular interaction shows electrostatic inter-
action and dispersion interaction, but the dispersion interaction line is always below the
electrostatic interaction line, indicating that the dispersion interaction is obviously affected.
At R = 0.4 nm, the six complexes reach equilibrium. Finally, C6H6· · ·ClF, C6H6· · · ICl,
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C6H6· · ·BrF and C6H6· · · IF are dominated by electrostatic interaction, while the disper-
sion interaction in C6H6· · ·BrCl, C6H6· · · IBr is dominant. Among the six complexes, the
dispersion interaction line is the flattest, indicating that the intermolecular distance is the
least affected. In C6H6· · · ICl and C6H6· · · IBr, the electrostatic action line and the disper-
sion action line are very close, indicating that the electrostatic action and dispersion action
are similar.

Figure 5. The IGM analysis and color plots of complexes between heteronuclear halogen XD (ClF,
BrCl, IBr, ICl, BrF and IF) and benzene.
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3. Materials and Methods

The geometric structures of heteronuclear halogen, benzene and their complexes were
optimized using DFT with the functional of wB97XD and the basis set of aug-cc-pVTZ.
The calculations for iodine were carried out with quasi-relativistic small-core effective
potentials (ECPs) and the corresponding Peterson AVTZ basis set. The frequency calculation
was conducted with the same base set as structure optimization and the results show
that heteronuclear halogen, benzene and their complexes have no imaginary frequency.
The interaction energy was calculated with the same level of theory as the geometry
optimization. The counterpoise procedure of Boys et al. was used for BSSE correction
of the base group overlap errors [47]. The program used for calculation was Gaussian
16 [48]. The AIM theory was used for electron density topological analysis and electrostatic
potential analysis on the basis of wave function from Gaussian in order to further discuss
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the characteristics of the interaction between heteronuclear halogens and benzene [49,50].
SAPT was used to study the composition and interaction of molecular interaction energy
with the same base set as structure optimization [51,52]. The calculation program was
Psi4 [53].

4. Conclusions

Heteronuclear halogen and benzene can form stable complexes with Cs symmetry.
The interaction energy is from −27.80 to −37.18 kJ/mol. All six complexes show obvious
hydrogen bond-like properties with a weak long-range interaction. The van der Waals is
the main interaction between the complexes of heteronuclear halogen and benzene. The
electrostatic interaction is the dominant part in the complexes of C6H6· · ·ClF, C6H6· · · ICl,
C6H6· · ·BrF and C6H6· · · IF, and the dispersion interaction is main part in the complexes
of C6H6· · ·BrCl, C6H6· · · IBr.
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