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Abstract: Microorganisms have long been known to play key roles in the initiation and development
of tumors. The oral microbiota and tumorigenesis have been linked in epidemiological research relat-
ing to molecular pathology. Notably, some bacteria can impact distal tumors by their gastrointestinal
or blood-borne transmission under pathological circumstances. Certain bacteria drive tumorigenesis
and progression through direct or indirect immune system actions. This review systemically discusses
the recent advances in the field of oral microecology and tumor, including the oncogenic role of oral
microbial abnormalities and various potential carcinogenesis mechanisms (excessive inflammatory
response, host immunosuppression, anti-apoptotic activity, and carcinogen secretion) to introduce
future directions for effective tumor prevention.
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1. Introduction

In recent years, increasing studies have shown a direct link between the gut microbiota
and the development of various human diseases. They may reduce the effectiveness of
drugs [1], affect the development and behavior of the host’s brain [2], and play an important
role in tumor occurrence, progression, and treatment [3]. The oral microbiota is the second
most complex microbiota in the human body, besides the gut microbiota. It can also impact
health and has been associated with oral inflammation, local and systemic diseases, and
cancer. Disturbances in the diversity and ratios of species within the oral microbiota lead to
dysbiosis and an increased risk of associated diseases, including periodontitis [4].

The common oral microbiota, also known as symbiotic bacteria, causes no discomfort
to the body nor is it beneficial. Streptococcus dentisani is a common inhabitant of the oral
microbiota, worldwide, which inhibits the growth of pathogens through the production
of bacteriocins [5]. Members that can cause infection in the host are called oral pathogens
(e.g., Prevotella, Selenomonas, and Atopobium) [6]. Selenomonas may cause serious human
diseases including bacteremia [7], and they are associated with asthma severity [8]. In
addition, certain members, called opportunistic pathogens, are not pathogenic under
normal conditions but can cause disease under specific conditions such as by decreasing
the host’s immune defenses or dysbiosis. Several oral taxa, especially Porphyromonas
gingivalis (P. gingivalis) and Fusobacterium nucleatum (F. nucleatum), have been shown to have
carcinogenic potential through several diverse mechanisms [9]. Accordingly, this review is
focused on elucidating the relationship between oral microbiota and tumors (Figure 1).
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Figure 1. Oral Microbiota; Microbiota—metabolites and inflammatory markers in tumors of various
sites. Locations are denoted by the following color code. IL: interleukin; SCFA: short-chain fatty
acids; ROS: reactive oxygen species; TNF: tumor necrosis factor; CXCL: C-X-C motif chemokine;
↓: decreased level; ↑: increased level. Oral microbiota may be transmitted distally through the
bloodstream and digestive tract. Figure 1 shows the changes in oral microbiota, microbial metabolic
pathways, microbial metabolites, and inflammation and immune factors when the human body
suffers from different kinds of tumors (oral cancer, gastric cancer, colorectal cancer, pancreatic cancer,
and lung cancer).

2. Systemic Involvement of Oral Microecology

An eclectic and diverse assemblage of microbiota inhabits different sites within the
oral cavity, and more than 700 bacterial species or phylotypes have been identified [10,11].
The oral cavity has several distinct microbial habitats, including the subgingival plaque,
supragingival plaque, buccal mucosa, keratinized gingiva, saliva, hard palate, tongue, and
tonsil [12]. The previous study analyzed the tongue dorsum, hard palate, and several
different parts of the oral cavity and saliva with or without rinsing in 20 healthy subjects,
and it demonstrated that no significant differences were seen between the study partic-
ipants [13]. Therefore, the saliva microbiota and oral wash microbiota, including other
bacterial components in the oral cavity, show long-term stability, which can reflect the oral
microbiota to a certain extent [14]. The microorganisms that are detected in saliva may be
diagnostic markers for many diseases, so saliva can provide a ‘window’ to explore personal
health [15]. Likewise, an oral wash can be used to provide a sample to analyze the oral
microbiota characteristics [16].

Oral pathogens spread to distant organs through oral and maxillofacial blood circu-
lation or participate in systemic circulation through the gastrointestinal tract [17]. The
imbalance of the oral microecology is not only associated with oral diseases, but it is also
confirmed to be related to the occurrence and development of several systemic diseases
such as cardiovascular diseases [18], respiratory diseases [19], immune system diseases [20],
metabolic diseases [21], and even nervous system diseases [22]. At the same time, oral
pathogens play an important role in cancer development such as in colorectal cancer [23].
Subsequent studies should provide a deeper and more comprehensive understanding of
the oral microecology based on the changes in the oral microbiota (including changes in
abundance and diversity) in diseased and healthy states.

3. Dysregulated Oral Microbiota Poses a Challenge to the Immune System

Oral microbiota maintains a dynamic symbiotic relationship of dependence and con-
straint with the host’s immunity. It is well established that microbial communities can
form a natural barrier with colonization resistance (including the production of adhesions,
lectins, amylases, mucins, etc.) which can resist the colonization and establishment of



Microorganisms 2022, 10, 2206 3 of 19

exogenous microorganisms [24]. Willems et al. argued that Candida albicans (C. albicans)
might decrease the cariogenic potential of a Gram-positive bacterium such as Streptococcus
pyogenes by increasing the pH within mixed biofilms [25]. The common microbiota mem-
bers, such as Staphylococcus epidermidis, can also inhibit the formation of Staphylococcus
aureus biofilm [26].

An interspecific interaction may affect their ability to adhere to and invade epithelial
cells. For example, Streptococcus sanguinis can affect the biofilm formation and the expres-
sion of the pathogenic genes spaP, gtfB, and gbpB in Streptococcus mutans [27]. Treponema
denticola can form pores within the biofilms and facilitate the flow of nutrients to pathogenic
bacteria such as P. gingivalis [28]. Overall, the invading pathogens can affect the mechanism
of the epithelial barrier function by manipulating the barrier-associated genes or proteins
to adhere and subsequently, internalize or by directly disrupting the connections to provide
access to the underlying tissue [29,30]. Representative pathogens include F. nucleatum,
Bacteroides forsythus, and Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans).
These members possess potent virulence factors, including lipopolysaccharide (LPS) and
metalloproteinases (MMPs), which facilitate their entry into the underlying tissues and
stimulate the release of proinflammatory cytokines [31].

The variability in the relative abundance, structural composition and space of different
bacterial species may, to some extent, transform highly organized biofilm communities
from a fragile symbiotic state to an imbalanced one. In the case of a disbalance (dysbiosis),
the leakage of these microbial products negatively affects the immune system, including by
activating the extracellular matrix degradation pathway and destroying the immune-related
signal pathways, thereby contributing to a chronic proinflammatory state or cancer [32–34].
The selection and enrichment of pathogenic bacteria, such as K. aerogenesa, potentially
enhance the local or distal destructive inflammatory responses by activating inflammasome-
mediated IL-1 signaling in macrophages [35]. Infection by opportunistic pathogens such
as P. gingivalis and A. actinomycetemcomitans can induce a differentiated production of
cytokines and bacterial products, including IL-1, IL-6, IL-8, and TNF-α [36].

Restoring the oral microecology from an imbalanced state to a normal state for oral
diseases and even oral mucositis that is induced by chemoradiotherapy has not yet been
reported. There is a distinctive predominant bacterial flora of the healthy oral cavity that is
highly diverse and is different from that of oral diseases. Aas J A et al. detected 141 different
representative bacterial taxa in the oral cavity of healthy people [10]. However, when these
bacteria lose their colonization advantage, the oral microbiome transforms into a dysbiotic
state, including a PH imbalance and symbiotic biofilms dysbiosis, which may accelerate the
pathological processes of numerous diseases by serving as a storeroom for opportunistic
pathogens [37]. More importantly, studies have shown that invasive pathogens can use
specific pathways such as the T6SS gene cluster to protect their ecological niche and
maintain colonization [38]. However, there is still a lack of research on how to recover
dysfunctional oral microbiota.

4. Is the Oral Microbiota a Cause or a Consequence of Tumorigenesis?

The imbalance, colonization, and translocation of the oral microbiota are likely to
be important influences on the progression of tumors in situ or distantly [39,40]. Oral
anaerobes are potentially pathogenic, particularly F. nucleatum and P. gingivalis, which are
closely associated with various types of tumors [41,42]. Some aerobic bacteria, such as
Parvimonas, are also associated with tumorigenesis [43]. An imbalance in the overall bac-
terial community (change of diversity metrics) is involved in the development of tumors,
which is mainly based on chronic inflammation and immunosuppressive. The changes in
the abundance of individual bacterial species, particularly Peptostreptococcus, Prevotella, and
Parvimonas, can also induce chronic inflammation. These bacteria cause the up-regulation
of numerous cytokines (IL-1β, IL-6, IL-17, IL-23, TNF-α, etc.) and inflammatory media-
tors (matrix metalloproteinases MMP-8 and MMP-9) [44,45]. Identifying the relationship
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between the tumors and the oral microecology in a complex biological environment is
essential and urgently needs to be achieved.

In addition, tumor progression may be driven by interactions between the host’s
immune system and the microbial metabolites (in the case of lactate and dietary tryptophan
metabolites, for example). Lactate can recruit and induce immunosuppressive cell types,
such as regulatory T cells, tumor-associated macrophages, and myeloid-derived suppressor
cells, thereby suppressing the anti-tumor immune responses [46]. Metabolites of dietary
tryptophan activate the aryl hydrocarbon receptor in myeloid cells, promoting an immune-
suppressive tumor microenvironment and facilitating pancreatic ductal adenocarcinoma
growth [47].

Furthermore, there are multiple ways for cancer cells to evade detection and de-
struction by the immune system during tumor development, namely immune evasion.
Carcinogens produced by microbiota contribute to the immune escape of tumors by inter-
fering with the recognition ability of the immune cells and depleting T cells [48]. Certain
oral microbiota and their metabolites have tumor-promoting properties, while the tumor
microenvironment contributes to the colonization of the microbiota. In conclusion, oral
microbiota has attracted reasonable attention for its involvement in tumor progression.
More studies are needed to provide evidence to support that oral microbial therapy could
offer a striking clinical benefit for cancer patients.

4.1. Oral Cancer and Oral Microbiota

Oral cancer is one of the most common malignancies of the head and neck, of which
more than 90% are oral squamous cell carcinomas (OSCC) [49]. Poor oral hygiene and
chronic inflammation alter specific microbiota, which together with their metabolites, are
risk factors for the development and progression of oral cancer [50]. In particular, biological
dysbiosis in the oral cavity of patients with periodontitis may lead to potentially malignant
mucosal lesions in the oral cavity, thereby promoting the development and progression of
cancer [51,52].

Researchers have used a bioinformatics analysis to note significant differences in the
abundance and diversity of oral microbiota in the cancer patient group compared to those
in the healthy group [53]. In terms of oral microbiota distribution, the ratios of dominant
bacteria Staphylococcus and Rothia were significantly higher in the cancer group than they
were in the control group [54]. Furthermore, the saliva having direct contact with the oral
cancer lesions makes it a more specific and potentially sensitive screening tool, whereas
more than 100 salivary biomarkers (DNA, RNA, mRNA, and protein markers) have already
been identified, including cytokines (IL-8, IL-1b, TNF-α), defensin-1, P53, Cyfra 21-1,
tissue polypeptide-specific antigen, dual-specificity phosphatase, spermidine/spermineN1-
acetyltransferase, profilin, cofilin-1, transferrin, and many more [49]. These studies suggest
that colonization by specific microbiota might be important for the development and
prognosis of oral cancer (Table 1).

Table 1. Oral organisms associated with oral cancer.

Subject Organisms (Oral Bacteria) Sample Type Reference

47 OSCC patients and
48 healthy individuals as

controls.

The proportions of Actinobacteria, Fusobacterium,
Moraxella, Bacillus, and Veillonella species were higher in
the disease group than they were in the control group.

saliva, subgingival
plaque, the tumor

surface, tumor tissue
samples

[55]

60 OSCC patients and
120 gender and age-matched

controls.

The proportions of Prevotella oris, Neisseria flava, Neisseria
flavescens/subflava, F. nucleatum, Aggregatibacter segnis,

Streptococcus mitis, and Fusobacterium periodontium were
higher in the disease group than they were in the

control group.

fresh OSCC
biopsies samples [56]
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Table 1. Cont.

Subject Organisms (Oral Bacteria) Sample Type Reference

48 OSCC patients and
46 controls.

The proportions of Prevotella, Campylobacter,
Capnocytophaga,

Solobacteria, Peptostreptococcus, and Catonella were higher
in the disease group than they were in the control group.

whole mouth fluid
(WMF) and swab

samples
[53]

Oral cancer patients (n = 50)
and healthy subjects (n = 50).

The proportions of Staphylococcus and Rothia were higher
in the disease group than they were in the control group. swab samples [54]

25 patients with OSCC and
24 healthy controls were

recruited from Dr. B.
Borooah Cancer Institute
(BBCI), Guwahati, Assam,

India.

The proportions of P. melaninogenica, Streptococcus
anginosus,

Veillonella parvula, Prevotella pallens, Porphyromonas
endodontalis, Prevotella nanceiensis, Dialister sp.,

Campylobacter ureolyticus,
Fusobacterium sp., P. nigrescens, Neisseria bacilliformis, and
Peptostreptococcus anaerobius were higher in the disease

group than they were in the control group.

samples of the whole
saliva [57]

Patients presenting with OLK
(n = 36, average age: 60.6).

The proportions of Fusobacterium, Leptotrichia,
Campylobacter, and Rothia were higher in the disease

group than they were in the control group.
swabs [51]

43 oral lichen planus
patients and 21 mucosal

healthy volunteers.

The proportions of Fusobacterium, Leptotrichia, and
Lautropia were

higher in the disease group than they were in the
control group.

buccal scraping
samples [52]

The relationship between some single species-specific microorganisms such as
pathogens and cancer has been investigated. For instance, Staphylococcus aureus, a
pathogen which is prevalent in oral cancer, can also activate the COX-2/PGE 2 pathway in
human oral keratinocytes (HOK) cells and play a role in tumor progression [58]. Polymi-
crobial interactions of C. albicans with other members of the oral microbiome have been
reported to enhance the malignant phenotype of oral cancer cells, such as the attachment to
extracellular matrix molecules (ECM) and epithelial–mesenchymal transition (EMT) [59].
One possible mechanism is that C. albicans could create ideal conditions for pathogens to
survive and colonize, and this co-infection might lead to more severe pathogenicity and
drug resistance [60]. On the other hand, The presence of C. albicans increased the production
of extracellular polysaccharides (EPS) and the coexistence of EPS with Candida albicans
induced the expression of Streptococcus pyogenes virulence genes (e.g., gtfB, fabM) [61,62].

The metabolic propensity of the oral microbiota further reveals the mechanisms of oral
carcinogenesis. The most abundant microbial metabolic pathways in the tumor tissues of
oral cancer patients were those related to fatty-acid biosynthesis, carbon metabolism, and
amino acid metabolism [53]. For instance, a Pseudomonas gingivalis infection significantly
increases the level of free fatty acids in the tongue and serum of mice, thereby altering
the fatty acid profile, exacerbating the disruption of fatty acid metabolism, and ultimately
promoting the development of oral cancer [63].

4.2. Gastric Cancer and Oral Microbiota

Gastric cancer (GC) is a major health problem in many countries with high incidence
and mortality rates [64]. Other than the host factors (genetics and age), the environmental
factors including microbial infections have been shown to contribute to gastric carcinogen-
esis [65]. In recent years, studies on the relevance of oral microecology to GC have been
increasing, and these have revealed that the oral microbiota may play an important role in
GC and precancerous stages (Table 2).
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Table 2. Oral organisms associated with gastric cancer (GC).

Subject Organisms (Oral Bacteria) Sample Type Reference

293 patients included superficial
gastritis (SG; n = 101), atrophic

gastritis (AG; n = 93), and gastric
cancer (GC; n = 99).

The proportions of presumed proinflammatory taxa,
including Corynebacterium and Streptococcus were
higher in the disease group than they were in the

control group.

saliva sample [66]

81 cases including SG, AG,
intestinal metaplasia (IM) and GC

from Xi’an, China.

Oral bacteria such as Peptostreptococcus stomatis,
Streptococcus anginosus, Parvimonas micra, Slackia exigua

and Dialister
pneumosintes were enriched in cancerous tissues.

gastric mucosal
samples [67]

62 GC patients who underwent
subtotal gastrectomy at The First

Hospital of China Medical
University.

Oral bacteria such as Fusobacterium, Streptococcus,
Peptostreptococcus, and Prevotella were enriched in

cancerous tissues.

gastric tissue
samples [68]

37 individuals with GC and
13 controls.

The proportions of Veillonella, Prevotella,
Aggregatibacter, and Megasphaera increased were higher

in the disease group than they were in the control
group, while the proportions of Leptotrichia, Rothia,

Capnocytophaga, Campylobacter, Tannerella and
Granulicatella were lower.

saliva and plaque
samples [69]

57 newly diagnosed gastric
adenocarcinomas and 80 healthy

controls.

The proportion of Firmicutes was higher in the disease
group than it was in the control group, while the

proportion of Bacteroidetes was lower.

tongue coating
sample [70]

78 gastritis patients and
50 healthy individuals.

The proportion of Campylobacter concisus was higher in
the disease group than it was in the control group.

tongue-coating
samples [71]

165 GC cases and 323 matched
controls from Asian, African

American, and European
American populations.

The proportions of Neisseria mucosa and Prevotella
pleuritidis were higher in the disease group than they
were in the control group, while the proportions of
Mycoplasma orale and Eubacterium yurii were lower.

pre-diagnostic
buccal samples [72]

12 GC cases and 20 matched
controls (functional dyspepsia) in

Singapore and Malaysia.

Oral bacteria such as Lactococcus, Veilonella, and
Fusobacteriaceae (Fusobacterium and Leptotrichia) were

enriched in cancerous tissues.

antral gastric
biopsies [73]

47 patients including SG, AG,
gastric intraepithelial neoplasia

(GIN), and GC.

Oral bacteria such as Slackia, Selenomonas, Bergeyella
and Capnocytophaga were enriched in cancerous

tissues.

gastric mucosal
specimens [65]

As a note of interest, the similarities between the gastric and oral microecology can
be observed in cohort studies [66,67,69]. Oral symbionts including Parvimonas, Eikenella,
Prevotella-2, Slackia, Selenomonas, Bergeyella, and Capnocytophaga have been identified with
high relative abundances in the gastric mucosa of GC patients [65]. The translocation and
diffusion of the oral microbiota may induce the occurrence and progression of GC through
distal effects. As an early warning and a preventive indicator of precancerous lesions and
GC, Helicobacter pylori (H. pylori) is not only present in the stomach of patients with GC,
but it can also be detected in the oral cavity [68,74]. H. pylori could affect the retention and
colonization of the oral microbiota by inducing the production of salivary mucin MUC5 B
and MUC7 [75].

One possible mechanism for the involvement of the oral microbiota in carcinogenesis
is the enrichment of pro-inflammatory oral bacterial species. GC patients’ saliva and
gastric mucosa are enriched with Corynebacterium, which is increasingly reported as an
emerging opportunistic pathogen in cancer, hematological malignancy, and in critically
ill patients [66]. Fusobacterium species have also received a lot of attention due to their
pro-inflammatory nature, with TLR4 and autophagy playing very important roles in the
inflammation that they induce [73]. Furthermore, Campylobacter concisus which is enriched
in the tongues of patients with gastritis could induce the expression of cytokines and
chemokines such as TNF, IL-1β, and IL-10 [71].

Another possible mechanism for the involvement of the oral microbiota in carcinogene-
sis is the abnormal enrichment of bacterial metabolites, which are direct-acting carcinogens,



Microorganisms 2022, 10, 2206 7 of 19

and these could persist stably in the gastrointestinal tract. Studies have shown that acid-
producing bacteria and carbohydrate metabolic pathways were more abundant in patients
with GC, which results in the significant formation of short-chain fatty acids (SCFA) and
lactate [73]. Lactate, as a source of energy for tumor cells, was able to induce the cellular
glycolytic pathways, increase the ATP supply, enhance inflammation, and activate tumor
angiogenesis [76,77]. However, it is not clear why in some cases these bacterial metabo-
lites present inhibitory effects in inflammatory responses and cancer development [78–80],
whereas in others, they have the opposite effect [81,82]. The fact that different concentra-
tions of them are enriched in the host and different molecular mechanisms are activated on
various types of cells might partly explain these contradictions. Meanwhile, the salivary
microbiota of GC patients is involved in the upregulation of the isoleucine and valine
biosynthetic pathways [66]. Purines could regulate the immune cell responses and cy-
tokine release, contributing to the tumor microenvironment [68]. In addition, a decreased
abundance of hexitol metabolism-related microbial gene families and metabolic pathways
and an increased abundance of microbial TCA cycles II and VII were associated with an
increased GC risk [72]. The oral microbiota including Streptococcus salivarius, Streptococcus
retardans, and Streptococcus mucosus may produce alcohol dehydrogenase (ADH), which
metabolizes ethanol into carcinogenic acetaldehyde [83].

Of great attention is the nitrosamine hypothesis of gastric carcinogenesis [84,85]. Stud-
ies have shown that when they are compared with those of the non-cancer group, the
metabolic enzymes related to denitrification, including nitrate reductase and nitrous oxide
reductase, were enriched in the gastric microbiota of the cancer group. Most microorgan-
isms in the stomach are considered to come from the external environment, particularly the
oral cavity. The oral microbiota can enter the stomach through saliva and cause pathological
changes in the corresponding areas [86]. The accumulation of nitrogenous compounds
such as nitrates and nitrites in the stomach increases the risk of GC and promotes the
malignant transformation of cells in the stomach [68]. Studies have also revealed a low
relative abundance of Haemophilus parainfluenzae and Nitrospirae in GC patients. These are
both nitrate-reducing bacteria that convert nitrate to nitrite or nitric oxide (NO) for their
absorption through the oral vasculature or to be swallowed into the gastrointestinal system.
The accumulation of N-nitroso compounds in the gastrointestinal tract may increase the
cancer risk [66]. These findings support that there are complex causal relationships between
the salivary microbiota and the gastric tumor formation.

4.3. Colorectal Cancer and Oral Microbiota

Colorectal cancer (CRC) is a common malignant tumor of the gastrointestinal tract
with an increasing incidence in the last decade [87–89]. The causes of CRC are complex and
include a variety of factors such as high-fat and low-fiber dietary habits and obesity [90].
In recent years, mounting evidence supports the link between the oral microbiota and
CRC (Table 3), with persistent periodontal inflammation exacerbating the development of
CRC [91].

Table 3. Oral organisms associated with colorectal cancer (CRC).

Subject Organisms (Oral Bacteria) Sample Type Reference

1165 cases with CRC and
739 cases for the periodontal bone

loss.

Oral bacteria such as Fusobacteria were enriched in
stool samples of CRC patients. tissue sample [92]

Matching samples of
unstimulated saliva, cancer

tissues or biopsies and stools were
collected from 30 CRC and 30 HC

patients.

The proportion of Salivary Firmicutes-to-Bacteroides
ratio was higher in the disease group than it was in the

control group.

unstimulated saliva,
cancer tissues, or
biopsies and stool

samples

[93]
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Table 3. Cont.

Subject Organisms (Oral Bacteria) Sample Type Reference

Individuals with either CRC
(n = 99), colorectal polyps (n = 32)
or healthy individuals as controls

(n = 103).

Oral bacteria such as Fusobacterium, Peptostreptococcus,
Porphyromonas, and Micromonas were enriched in the

stool of patients with CRC or adenomas.

oral swabs, colonic
mucosa, and stool

samples
[94]

252 healthy and advanced CRC
subjects.

Oral bacteria such as F. nucleatum, Peptostreptococcus
stomatis, Gemella morbillorum, and Parvimonas micra

were enriched in fecal samples of CRC patients.
fecal sample [95]

Saliva samples from 14 CRC
patients were collected.

The proportion of F. nucleatum was higher in the
disease group than it was in the control group. saliva samples [96]

Individuals including 231 incident
CRC cases and 462 controls.

The proportion of Bifidobacteriaceae was higher in the
disease group than it was in the control group.

mouth rinse
samples [97]

Populations including CRC
(99 subjects), colorectal

polyps (32), or
controls (103).

The proportions of Haemophilus, Micromonas, Prevotella,
Heterobacterium, Anaerobic, Neisseria, and Streptococcus
were lower in the disease group than they were in the

control group.

oral swabs, colonic
mucosal and stool

samples
[98]

Mucosal samples from 59 patients
undergoing surgery for CRC,

21 individuals with polyps and
56 healthy controls.

Bacteroidetes Cluster 1 and Firmicutes Cluster 1 were
reduced in fecal samples of CRC patients, whereas
Bacteroidetes Cluster 2, Firmicutes Cluster 2, Pathogen

Cluster and
Prevotella Cluster were enriched in them.

fecal and mucosal
samples [99]

Fecal microbiota in patients with
adenomas (n = 233) and those

without adenomas (n = 547) were
analyzed.

Pro-inflammatory bacteria of the genera Biliophilus,
Desulfovibrio, Mogibacterium and various Bacteroidetes

were enriched in fecal samples of CRC patients.
fecal sample [100]

F. nucleatum is a well-known pro-inflammatory, aggressive anaerobic oral pathogen
that is capable of participating in the progression of CRC [44,101]. The outer membrane
protein Fap2 is known to mediate bacterial enrichment in CRC by binding to tumor-
expressed Gal-GalNAc. The adhesin FadA promotes E-cadherin/β-catenin signaling and
prevents immune attacks by binding its bacterial protein Fap2 to the inhibitory immune
receptor TIGIT on NK and T cells [98,102,103]. F. nucleatum host-cell binding and invasion
induces the IL-8 and CXCL1 secretion that drives CRC cell migration [9]. Furthermore,
F. nucleatum can also bind to CEACAM1 to evade an immune attack and generate a pro-
inflammatory microenvironment by recruiting tumor-infiltrating immune cells [104,105].
Hong et al. showed that F. nucleatum targets lncRNA ENO1-IT1 to promote glycolysis and
oncogenesis in colorectal cancer [106]. Therefore, targeted therapies such as targeting the
ENO1 pathway may have implications for the treatment of CRC patients with elevated F.
nucleatum levels. These results raise the possibility that the oral microbiome may play an
important role in CRC etiology.

Notably, Carolina et al. found a high similarity between the F. nucleatum strains that
were found in tumor tissues and saliva from CRC patients, highlighting the oral origin of
them and strengthening the hypothesis of an oral-driven dysbiosis of intestinal ecology in
CRC [107]. Subsequently, by analysis of the stool samples from 252 healthy and advanced
CRC subjects, a significant increase in the relative abundance of the species of oral-derived
microbiota, including but not limited to Peptostreptococcus stomatis, Parvimonas micra, Gemella
morbillorum, and F. nucleatum, was found in the gut of CRC patients [95]. To determine the
mechanism by which oral bacteria diffuse into the gut, Bolei Li et al. observed the bacterial
colonization of the gastrointestinal tract by transplanting human saliva into germ-free
(GF) mice [108]. On these bases, the mechanisms of transfer of the oral microbiota in the
pathogenesis of CRC have been proposed: (i) The transmission of the oral bacteria to the
intestinal environment through continuous swallowing. The oral bacteria that are capable
of resisting the harsh acidic gastric environment can maintain their viability through this
pathway [107]. The most representative one is P. gingivalis, a characteristic contributing to
its migration to the distal tissues, thereby altering the composition and functional capacity
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of the residual microbiota in the pathological gut [44]. (ii) The spread of the oral bacteria into
the intestinal environment via the bloodstream (bacteremia) or a lymphatic route. During
oral cleaning, a tooth extraction and bacteremia, the gingival epithelium breaks down or
becomes more permeable, whereby the oral microbiota may spread directly to the distal
area through the bloodstream [109]. During chronic periodontitis, the circulatory system
appears to be the most efficient way for F. nucleatum to reach the colorectum [110,111].
(iii) The altered intestinal environment encourages the invasion and colonization of the oral
bacteria in the gut [112]. The invasion of oral microbiota inevitably results in the instability
of the commensal microbiota and facilitates the colonization of it by oral opportunistic
pathogens [44]. Of these, Prevotella intermedia was thought to cooperate with other oral
pathogens to colonize the colon and persist as a population, forming an inflammatory
microenvironment that may promote the development of CRC [97].

The oral microbiota reaches the intestinal mucosal sites and negatively affects CRC
through immunosuppressive and toxic effects. On the one hand, the intestinal translocation
of the oral bacteria may cause intestinal mucosal damage. The metabolic profile of the oral
bacteria in the colon is characterized by the glycolytic and proteolytic metabolism, which is
capable of degrading mucin and extracellular matrix in the colon, leading to the infiltration
of the mucus layer and the invasion of the mucosa through disruption of the epithelial junc-
tions [107]. In addition, the oral members of the gut microbiota were also able to metabolize
tryptophan into various derivatives (tryptamine, indole, and fecal odorant) that modulate
the immune response of the colonic epithelium by binding to the aryl hydrocarbon receptor
(AhR) [44]. Among them, specific bacterial species with tumor-promoting properties may
activate the inflammasome and NF-κB cascade pathway and induce DNA damage in the in-
testinal epithelium, thereby promoting CRC [111]. On the other hand, various carcinogenic
metabolites, reactive oxygen species, and polyamines which are synthesized by members
of the oral microbiota may also be causative factors [107]. For example, oral-derived bac-
teria such as A. actinomycetemcomitans, F. nucleatum, P. intermedia, and P. gingivalis could
produce volatile sulfur compounds (VSCs), including hydrogen sulfide (H2S), which have
a toxic and inflammatory potential even at low concentrations [113]. Peptostreptococcus
anaerobius can also increase the cholesterol production and the cell proliferation in a reactive
oxygen-dependent manner, thereby promoting colon cancer formation [114].

The oral microbiota of CRC patients is unique and predictive, so testing the oral
microbiota may provide new directions for the prevention and screening of CRC [115].
Burkhardt et al. used a combination of oral and fecal microbiota to test for CRC with higher
specificity (95%) and sensitivity (88%) than the commonly used Fecal Immuno-Test (FIT)
can, suggesting that the information from the oral microbiota could potentially improve the
performance of current diagnostic tests [98]. Particularly promising is its high sensitivity
(88%) for detecting colorectal adenomas because of the importance of the early detection of
colonic disease for cancer prognosis and treatment [98].

4.4. Pancreatic Cancer and Oral Microbiota

The incidence and mortality of pancreatic cancer (PC) (including non-ductal tumors,
pancreatic ductal adenocarcinoma (PDAC) and its classical precursor lesions) have been on
the rise, worldwide [116,117]. It has been found in many epidemiological surveys that poor
oral health can lead to an increased risk of PC [17]. A meta-analysis showed an overall
positive association between periodontitis and pancreatic cancer, even after adjusting for
the common risk factors [118].

The mechanism of the link between oral disease and PC is unclear, but it may be related
to alterations in the oral microbiome. Several cohort studies have reported associations
among oral health, periodontitis (PD), and PC risk, and increased levels of antibodies
associated with oral microbiota are associated with a higher risk of PC (Table 4). Both
cohort studies by Céline Tiffon et al. and Ai-Lin Wei et al. showed that the saliva microbiota
can distinguish between normal and cancer patients as well as being a promising non-
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invasive diagnostic tool for PDAC [119,120]. Similarly, Lu et al. demonstrated a significant
increase in the microbiome diversity in the tongue coat of PHC patients [121].

Table 4. Oral organisms associated with pancreatic cancer.

Scheme Organisms (Oral Bacteria) Sample Type Reference

30 PHC patients and 25 healthy
controls.

The proportions of Firmicutes, Fusobacteria, and
Actinobacteria were higher in the disease group than

they were in the control group.
tongue coat samples [121]

361 incident adenocarcinoma of
pancreas and 371 matched

controls.

The proportions of P. gingivalis and A.
actinomycetemcomitans were higher in the disease

group than they were in the control group, while the
proportion of Leptotrichia was lower.

oral wash
samples [39]

Forty newly diagnosed PDAC
patients, 39 IPMN patients, and

58 controls.

The proportions of Firmicutes and related taxa (Bacilli,
Lactobacillales, Streptococcaceae, Streptococcus, and

Streptococcus thermophilus) were higher in the disease
group than they were in the control group.

saliva samples [122]

405 pancreatic cancer cases and
416 matched controls.

The proportion of antibodies against P. gingivalis ATTC
53978 was higher in the disease group than it was in

the control group.
blood samples [123]

10 resectable patients with
pancreatic cancer and 10 matched

healthy controls.

The proportions of N. elongata and S. mitis were lower
in the disease group than they were in the control

group, while the proportion of G. adiacens was higher.
saliva samples [124]

patients with pancreatic cancer
(n = 41) and healthy individuals

(n = 69).

The proportions of Lactobacillales, Bacilli, Streptococcus,
Firmicutes,

Actinomyces, Rothia, Leptotrichia, Lactobacillus, E. coli,
and Enterobacteriales were higher in the disease group

than they were in the control group.

saliva samples [120]

patients with suspected PCN
(n = 105).

The proportion of F. nucleatum genome was higher in
the disease group than it was in the control group.

cyst fluid and
peripheral blood
liquid biopsies

[118]

IPMN pancreatic cystic tumor
cases and controls.

The reactivity of salivary IgA to F. nucleatum and the
Fap2 mimotope increased.

paired plasma and
saliva samples [125]

Interestingly, the conventional view is that the pancreas is a sterile organ, yet in the
cancer setting, there is a distinctly specific microbiota in the pancreatic capsule fluid samples
which overlaps with the oral microbiota [126,127]. Gaiser et al. observed the coexistence and
enrichment of the oral bacterial taxa including F. nucleatum and Granulicatella adiacens
in the cyst fluid of IPMN with high-grade dysplasia [118]. In addition, the study of
Alkharaan et al. showed that circulating antibodies against commensal oral bacteria
appeared to be elevated in the PC patients [125]. Therefore, the oral microbiota may
metastasize and colonize the PC through blood circulation, causing alterations to the tumor
microenvironment [17]. The researchers speculate that, on the one hand, the hypoxic
and immunosuppressive nature of the pancreatic tumor microenvironment supports the
preferential growth of oral anaerobic bacteria [118]. On the other hand, the similarity in
function that is shared between the pancreas and the salivary glands may also create a
biological environment that attracts similar microorganisms [119].

The systemic transmission of dysregulated oral microorganisms and their toxins may
modulate the signaling pathways and metabolic pathways, which contributes to the risk
of PC. Gnanasekaran et al. demonstrated that intracellular P. gingivalis promotes the
tumorigenic behavior of pancreatic cancer cells by the activation of the Akt signaling cas-
cade [128]. Bacterial metabolites (short-chain fatty acids, secondary bile acids, polyamines,
indole derivatives, etc.) could also play an important role in microbiome-driven pancreatic
adenocarcinoma [129]. Thus, the oral microbiota may serve as a potential biomarker for
pancreatic cancer detection to identify high-risk individuals for pancreatic cancer initiation,
progression, or poor prognosis and improve our understanding of its pathogenesis [130].
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4.5. Lung Cancer and Oral Microbiota

Lung cancer is one of the malignant tumors with the fastest increase in morbidity
and mortality, posing a great threat to human health and life [131]. It is well known
that smoking is a major risk factor for lung cancer. Studies have shown that the alpha
diversity in smokers in the buccal mucosa is significantly lower than it is in nonsmokers,
and the relative abundance of different taxa was significantly different due to their smoking
status [132].

Recently, it has been found that the oral microbiota has a potential role in lung cancer
(Table 5). Mi Young Lim et al. compared the oral microbiota of patients with lung cancer to a
healthy control group, and they found that there were significant differences in the structure
of the oral microbiota; the Shannon diversity index was significantly lower [133]. The risk
of lung cancer was negatively correlated with the α diversity of the oral microbiota, and the
abundance of some specific taxa can be used as potential biomarkers [134]. Another large
prospective study on the oral microbiome and lung cancer also demonstrated that multiple
oral microbial measures were associated with lung cancer risk, especially in squamous cell
carcinoma and smokers [135].

Table 5. Oral organisms associated with respiratory tumors (lung cancer).

Subject Organisms (Oral Bacteria) Sample Type Reference

Lung adenocarcinoma patients
who did not smoke (cancer,
n = 91) and healthy controls

(control, n = 91).

The proportion of Eillonella was higher in the disease
group than it was in the control group, while the

proportions of Mogibacterium,
Butyrivibrio, Variovorax, Ralstonia, Catonella, Bulleidia,

and Oribacterium were lower.

saliva [133]

Cases were subjects who were
diagnosed with incident lung

cancer (n = 114) and with controls
(n = 114).

The proportions of Bacilli class and Lactobacillales order
were higher in the disease group than they were in the

control group, while the
proportions of Spirochaetia and Bacteroidetes were

lower.

mouth rinse samples [134]

148 subjects with lung nodules
from the NYU Lung Cancer

Biomarker Center.

Oral bacteria such as Veillonella, Streptococcus,
Prevotella, and

Haemophilus were enriched in LC.

lower
airway brushes [136]

Moreover, common oral microbiota members can usually be detected in the lower
respiratory tract of lung cancer patients. By investigating the infection of P. gingivalis in
lung cancer tissues, Liu et al. proposed that long-term smoking and alcohol consumption
would cause a bad oral environment and increase the risk of P. gingivalis infection, and
then, P. gingivalis infection will promote the malignant progression of lung cancer [137].
The enrichment of oral bacteria Veillonella parvula may relate to the up-regulation of the
carcinogenic pathways (such as IL-17, PI3K, MAPK, and ERK pathways) and the activation
of the checkpoint inhibitor markers, thereby affecting tumor progression and progno-
sis [136]. More research should be carried out to explore the possibility of this potential
targeted therapy.

4.6. Breast Cancer and Oral Microbiota

The incidence of breast cancer (BC) is increasing year after year, ranking first in the
incidence of female cancer [138]. A meta-analysis shows that periodontal disease may be
a potential risk factor for women suffering from breast cancer [139]. Many oral microbial
metrics were strongly associated with breast cancer and nonmalignant breast diseases [140].
It is proved that F. nucleatum can bind to Fap2 in breast cancer tissue in a dependent
manner, inhibit the accumulation of tumor-infiltrating T cells, and promote the growth and
metastasis of tumors, which can be offset by an antibiotic treatment. Therefore, targeting
F. nucleatum or Fap2 may be beneficial in the clinical treatment of breast cancer [141]. The
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further exploration of the effect of bacteria on breast cancer will provide new ideas for the
diagnosis and treatment of breast cancer.

5. Conclusions

More and more evidence has indicated that there is a close relationship between the
oral microbiota and tumor occurrence including in oral cancer, gastric cancer, colorectal
cancer, pancreatic cancer, lung cancer, and breast cancer. There are three possible mech-
anisms of action of the oral microbiota in the pathogenesis of tumors [23]. Firstly, oral
microbiota dysbiosis leads to chronic inflammation in which the inflammatory mediators
that are produced induce or promote cell proliferation, mutation, oncogene activation,
and angiogenesis [142]. For example, oral streptococci may be involved in the formation
of certain reactive oxygen species (ROS), which induce apoptosis and tissue damage by
damaging the nucleic acids, proteins, and lipids [143]. Secondly, oral microbiota dysbiosis
may affect the metabolic pathways of host cells and promote tumorigenesis by affecting
cell proliferation, cytoskeletal rearrangement, NF-κB activation, and the inhibition of apop-
tosis [144]. Thirdly, oral microbiota dysbiosis produces some oncogenic substances (e.g.,
the bacteria convert ethanol to acetaldehyde—a recognized carcinogen) and induces the
malignant transformation of cells [145].

Certain oral microbial species can be observed in the saliva, subgingival plaque, mu-
cosal tissue, tumor surface and intratumoral tissue, thus interring that oral microbiota
may reach distal sites through different pathways to promote the tumorigenic process.
Hematogenous spread is a possible acute incision route of oral pathogens during tooth
extraction or trauma, particularly in patients with periodontitis who have high levels of
periodontal pathogens, as transient bacteremia accompanies routine oral hygiene prac-
tices [128]. In addition, the osseo-enamel junction may also be a pathway for microbial
invasion into chronic oral hygiene. Park Do-Young et al. suggested that the gingival sulcus
(GS) and the junctional epithelium (JE) are the weakest point for microbes to invade the
human body, where oral pathogens can settle for life and infiltrate the blood vessels and
circulate throughout the body [146]. Gastrointestinal spread is another important route. The
ecological invasion of the gut by the oral microbiota has a significant impact on digestive
health. Among these, P. gingivalis has been shown to cause the dysbiosis of the intestinal
microbiota, impairing the mucosal barrier function and leading to the spread of intestinal
bacteria to the liver [108]. Overall, since the oral bacteria are actively participating in the
induction of gut microbiota dysbiosis and tumor proliferation, targeting the microbiota to
modulate the immune response reveals new avenues for cancer immunotherapy.

Interestingly, with the maturation of fecal transplantation techniques and their clini-
cal application, a small number of dental researchers have hypothetically proposed oral
microbiota transplantation (OMT). OMT may represent a cost-effective approach and can
better reach the hard-to-reach, high-risk populations. However, based on the current state
of knowledge, clinical recommendations for the use of OMT cannot be provided at this
time. It is essential to better understand the retention of the transplanted oral biofilm
while maintaining the natural balance between the resident oral microbiota and the host’s
immune response [17].

At present, the early diagnosis of tumors, especially the early diagnosis of asymp-
tomatic tumors, is receiving increasing attention. Traditional tumor detection methods
all have various limitations, making it difficult to perform the large-scale screening of
early-stage tumors [147]. Therefore, the early screening of susceptible people through non-
invasive methods has become a hot topic in current tumor diagnosis research. As a valuable,
non-invasive and easy-to-collect diagnostic tool, saliva holds great promise for biomarker
research and development, health and disease monitoring and personalized medicine [148].
Salivary exosomes can transport tumor-specific contents to different parts of the body,
including the salivary glands, resulting in the presence of disease-recognition markers in
the saliva [149]. Zhou et al. reported the results of saliva testing in 47 patients with oral
squamous cell carcinoma and showed that the average diagnostic accuracy based on oral
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microbiota was over 90% [55]. Huang’s cohort study [66] and Sun’s cohort study [69] both
demonstrated the accuracy and sensitivity of using saliva microbiota to screen for GC (AUC
of 91% and 97%, respectively). These studies suggest that the detection of oral microbiota
is conducive to more accurate large-scale, low-cost screening of early-stage tumors and has
promising applications [150,151].

Is it time to pay attention to the oral microbiota with insight into its therapeutic effect
for cancer therapy? Oral microbiomes should continue to be explored in future trials to
establish the scientific and clinical basis for tumor prevention and amelioration. To fully
understand the relationship between pathogenic microorganisms and disease, future exper-
iments could focus on the mechanisms of pathogen involvement in tumorigenesis by testing
the response of human cells to living or heat-killed bacteria, or even to purified bacteriocin
at the molecular level. Advances in the identification of biomarkers to personalize the
treatment based on the patient’s unique microbiota and immunity profile will advance the
treatment of tumors. A new era of oral microbiome research will benefit cancer patients.
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