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Abstract: Tumor diseases are unfortunately quick spreading, even though numerous studies are
under way to improve early diagnosis and targeted treatments that take into account both the
different characteristics associated with the various tumor types and the conditions of individual
patients. In recent years, studies have focused on the role of ion channels in tumor development, as
these proteins are involved in several cellular processes relevant to neoplastic transformation. Among
all ion channels, many studies have focused on the superfamily of Transient Receptor Potential (TRP)
channels, which are non-selective cation channels mediating extracellular Ca2+ influx. In this review,
we examined the role of different endothelial TRP channel isoforms in tumor vessel formation, a
process that is essential in tumor growth and metastasis.

Keywords: transient receptor potential; tumor vascularization; endothelial cells; endothelial colony-
forming cells; Ca2+ signaling

1. Introduction

Like all tissues, tumors depend on blood vessels for the supply of oxygen (O2) and
nutrients, as well as for the removal of metabolic catabolites; blood vessels also make it
unavoidable for metastatic cancer cells to spread and invade different districts [1].

Physiologically, endothelial cells (ECs) play a crucial role in the development and
maintenance of the vascular network, a process that requires the interaction of three distinct
mechanisms: vasculogenesis, angiogenesis, and arteriogenesis [2].

Vasculogenesis is the de novo formation of a vascular network during embryonic
development, angiogenesis is a regulated process in which the blood vessel network is
formed from pre-existing capillaries, and arteriogenesis refers to the enlargement of pre-
existing arterial connections into completely developed and functional arteries. Every day,
approximately 100 quiescent ECs undergo turnover in response to pro-angiogenic factors
such as vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF),
and platelet-derived growth factor (PDGF).

Several processes contribute to neovessel formation in growing tumors and distant
metastases: sprouting angiogenesis (SA) which often results in non-productive angiogenesis
with blood vessels that are abnormal in structure and function [3,4]; intussusception
angiogenesis (IA), which is often activated because it is less energy-intensive [5]; non-
angiogenic processes, such as vascular co-option, where the tumor surrounds an already
existing vascular network [6]; vasculogenesis, which is mediated by the recruitment of
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multiple subtypes of endothelial progenitor cells (EPCs), including endothelial colony-
forming cells (ECFCs) [7].

The recruitment of many Ca2+-sensitive decoders in response to pro-angiogenic cues
including VEGF, bFGF, stromal derived factor-1 (SDF-1), and angiopoietins has long been
known to take place during angiogenesis. In addition, it has recently been demonstrated
that intracellular Ca2+ signaling also promotes the proliferation, tube development, and
neovessel formation in circulating ECFCs [8–11]. A crucial role in this process has been
attributed to endothelial TRP channels, which are sensitive to pro-angiogenic factors and
can regulate both angiogenesis and vasculogenesis [7].

Endogenous Ca2+ release through inositol-1,4,5-trisphosphate receptors (InsP3R) and
store-operated Ca2+ entry (SOCE) through Orai1 channels are the main drivers of the
endothelial Ca2+ response to pro-angiogenic cues, which can take on a variety of wave-
forms, including Ca2+ transients, biphasic Ca2+ signals, and repetitive Ca2+ oscillations.
Lysosomal Ca2+ release via nicotinic acid adenine dinucleotide phosphate (NAADP)-gated
two-pore channels is a critical pro-angiogenic route that supports intracellular Ca2+ mo-
bilization [12]. Therefore, understanding how TRP-mediated endothelial Ca2+ signaling
regulates neovessel formation could shed light on alternative strategies to interfere with
the aberrant vascularization in cancer.

2. Vasculogenesis, Angiogenesis, and Arteriogenesis in Neovessel Formation

Vasculogenesis is the process through which mesoderm-derived progenitors (an-
gioblasts) differentiate into ECs, which then assemble and unite to produce blood islands
and the major capillary plexus. Angiogenesis, which can occur by SA or by IA, is primarily
responsible for the subsequent extension and remodeling of this primitive network (2).
SA is triggered by a tipping of the balance between pro- and anti-angiogenic factors in
favor of pro-angiogenic cues. EC activation is induced in response to a gradient of VEGF,
which stimulates endothelial tip cells to elongate actin-rich filopodia that migrate toward
the source of VEGF, thereby conferring directionality to the sprout [13]. Digestion of the
extracellular matrix and basement membrane by specific proteases also occurs during
this migration. Behind the tip cells, stalk cells proliferate, allowing the nascent vessel to
elongate [13]; this immature vessels is then stabilized by the recruitment of mural cells
(i.e., smooth muscle cells and pericytes). IA is a microvascular growth process that tears
an existing vessel in two. A cellular pillar is inserted into the arterial lumen, and the
whole process seems to depend less on cell migration and more on cell proliferation and
reorganization [14]. Finally, arteriogenesis involves pre-existing arterioles that undergo
growth and remodeling under the induction of PDGF, and subsequent stabilization through
the recruitment of smooth muscle cells (SMCs) or pericytes [13]; the result is the formation
of larger vessels [15], as more widely illustrated in the following section.

3. Neovessel Formation in the Tumor

Tumor vessels turn out to be highly immature [3], surrounded by only a few pericytes
and lacking the adhesion molecule VE-cadherin (vascular endothelial cadherin) with a
weakening of the intercellular endothelial junctions. This results in the formation of an
endothelium that leads to an increase in interstitial fluid, accumulation of solutes, and
transmigration of tumor cells [1,16]. The tumor vasculature is extremely scattered and
chaotically distributed, and blood frequently travels via the same channel in multiple
directions [17]. Pro-angiogenic factors, such as VEGF, FGF, placental growth factor (PlGF),
and angiopoietins, are stimulated even more when there are arteries that are not fully
functional, and this results in a continuous cycle of unproductive angiogenesis [4].

In addition to SA, IA is a mechanism that is frequently activated in tumor formation [5]
because, from a metabolic standpoint, IA may be less difficult than SA given the low prolif-
eration and migration of ECs along with the quicker rate at which ECM and perivascular
cells promote the rapid generation of new vessels. It is known that blocking Notch sig-
naling in the existing vascular bed encourages pericyte detachment and mononuclear cell
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overflow, which causes rapid vascular expansion via IA, while blocking Notch signaling in
the anterior margins of the developing vessel causes SA. The exact molecular mechanisms
of IA are still largely unknown [18]. There may be additional non-angiogenic processes for
tumor vascularization. One of them is vascular co-option, in which cancer cells take over
already-existing, dormant vessels from the surrounding parenchymal tissue and incorpo-
rate them into the mass of the tumor. The proliferation of ECs in co-opted vasculature is
smaller than that of angiogenic ones, and they exhibit the normal angiogenic markers at
low levels. Vessel co-option has been seen in primary and metastatic cancers, particularly
in lung, brain, and liver tumors, and is a resistance mechanism to anti-angiogenic therapy.
It is associated with a poor prognosis in patients [6].

A crucial contribution to the angiogenic switch that turns a dormant lesion into a grow-
ing tumor is provided by the recruitment of myeloid angiogenic cells and ECFCs, which
are released from the bone marrow and vascular stem cell niches, respectively. Indeed,
several studies have shown that circulating ECFCs contribute to the tumor vasculature
in several malignancies, including breast carcinoma [19,20], renal cell carcinoma [19], and
melanoma [21], and thus represent a cellular target for dismantling the tumor vascula-
ture [16,22].

4. ECFCs in Tumor Vascularization

Tumor vascularization is a far more complicated process than was initially thought.
During the development of tumors and the spread of metastatic disease, angiogenic alter-
ation is fueled by the coordinated interaction of local ECs and circulating EPCs [23–25].
The cross-talk with the surrounding microenvironment, which is characterized by hypoxia,
low pH, disorganized basement membrane, high interstitial fluid pressure, enrichment
of growth factors and cytokines, and the different vascular beds of origin, determines the
heterogeneity of tumor-endothelial cells (T-ECs) [26].

Tumor-cell-derived VEGF and SDF-1 mobilize EPCs from bone marrow and vascular
wall stem cell habitats. Once these mediators are released into circulation, they create a
concentration gradient that facilitates EPC recruitment to both the primary tumor lesion
and the more remote pre-metastatic niches. Here, EPCs may both physically engraft within
tumor vasculature and emit angiogenic factors to drive local angiogenesis, causing the
transformation from a latent undetected lesion to a fatal metastatic cancer [25,27,28]. The
higher frequency of circulating EPCs corresponds with enhanced angiogenesis and tumor
volume and is related with a lower rate of patient survival, which is consistent with the
role they play in cancer neovascularization. However, it should be noted that the level of
EPC integration within tumor vasculature varies greatly, from 0% to more than 90%. A
variety of overlapping factors may be used to account for this heterogeneity [3,23,24]. The
kind, stage, and location of the tumor all affect the neovascularization caused by EPC. Mice
heterozygous for the tumor suppressor Pten (phosphatase and tensin homolog deleted on
chromosome 10) (Pten+/), which can display a variety of malignant neoplasms including
uterine carcinomas and lymph hyperplasia, have been used to reveal this trait. In the
former, EPC-induced angiogenesis was observed, but not in the latter [29]. EPCs are found
in developing pulmonary metastases before vascular formation, implanted LLC (Lewis
lung carcinoma), B6RV2 (human lymphoma cells), and melanoma, as well as spontaneous
breast cancer occurring in MMTV-PyMT mice (mouse mammary tumor virus-polyoma
middle tumor-antigen) [3,23]. They are thereby diminished by both local endothelial cells
and hematopoietic cells coming from bone marrow, a characteristic that may understate
their contribution at a later stage of tumor growth [24,27]. Last but not least, and maybe the
most significant source of variation in the assessment of their role in the angiogenic switch,
the EPC phenotype is seldom known [30,31]. The term “EPC” refers to at least two distinct
subsets that can be categorized as “hematopoietic” and “non-hematopoietic”, respectively,
rather than a single cell population with distinctive surface markers that make it simple to
detect and quantify in vivo [31].
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The ability of hematopoietic progenitor and stem cells to support vessel growth
through the paracrine secretion of growth factors and cytokines, as well as the absence
of a combination of markers and receptors selective for truly endothelial EPCs, have
both contributed to the confusion surrounding the definition of EPC [28,30]. Colony-
forming unit-endothelial cells (CFU-ECs) and circulating angiogenic cells (CACs) make
up the hematopoietic EPCs, whereas so-called ECFCs make up the non-hematopoietic
EPCs. Despite being drawn to the expanding tumor, CFU-ECs and CACs do not imme-
diately integrate into neovessels because they are located perivascularly and promote
malignant growth in a paracrine way. In contrast, ECFCs are devoted to differentiating
into mature endothelial cells, form capillary-like structures in vitro, and patent vascula-
ture in vivo [28,30,31]. They also have a remarkable capacity for cloning. They are now
recognized as genuine EPCs that have the potential to physically engraft within cancer
vasculature. Recent research has proven that human ECFCs, which really come from the
endothelium lineage, may be directly injected into the bloodstream of multiple mouse
models of human malignancies and then recruited to areas of tumor angiogenesis. More
specifically, subcutaneously implanted glioma [32] and breast cancer [33] xenografts, as
well as LLC metastases [34], actively reside in DiI-labeled ECFCs. It turns out that ECFC is
the best subset to use when examining the molecular pathways causing EPC integration
into tumor vasculature and, as a result, when figuring out which targets are most useful in
slowing down unfavorable metastatic growth.

5. Pro-Angiogenic Ca2+ Signals in Vascular Endothelial Cells and ECFCs

Three Ca2+ transport systems work together to set the [Ca2+]i in vascular endothelial
cells between 100 and 200 nM. These systems either extrude Ca2+ across the plasma mem-
brane, such as the plasma membrane Ca2+-ATPase and the Na+/Ca2+ exchanger (NCX), or
sequester cytosolic Ca2+ in the endoplasmic reticulum (ER), the largest intracellular Ca2+

reservoir (Sarco-Endoplasmic Reticulum Ca2+-ATPase (SERCA)) [35,36]. Neovessel forma-
tion depends on an increase in intracellular Ca2+ concentration ([Ca2+]i) in both vascular
endothelial cells [11,12,37] and circulating ECFCs. In accord, pro-angiogenic Ca2+ signals
can be elicited in vascular ECs by a plethora of growth factors, such as VEGF [12], epider-
mal growth factor [38], and basic fibroblast growth factor, as well as by vasoactive and
inflammatory mediators, such as thrombin [39], ATP [40,41], ADP [42], acetylcholine [43],
and pleiotropic hormones, including erythropoietin [44]. Pro-angiogenic Ca2+ signals can
also be delivered to vascular endothelial cells by mechanical stimuli, such as laminar shear
stress, which increases during collateral blood vessel growth and stimulates arteriogen-
esis [38], and endothelial denudation, which stimulates wound repair and endothelial
regrowth [45,46]. Furthermore, an increase in [Ca2+]i also stimulates proliferation, mi-
gration, tube formation and neovessel formation in circulating ECFCs [15,37,47], which
represent the only EPC subtype truly belonging to the endothelial lineage [48,49]. For
instance, pro-angiogenic Ca2+ signals can be induced in circulating ECFCs by VEGF [50],
SDF-1α [51], and the human amniotic fluid stem cell secretome [52].

An increase in endothelial [Ca2+]i can recruit a number of downstream Ca2+-dependent
pro-angiogenic decoders, such as the transcription factors nuclear factor of activated T-
cells (NFAT), nuclear factor-kappaB (NF-kB), cAMP responsive element binding protein
(CREB), myosin light chain kinase (MLCK), myosin 2, endothelial nitric oxide synthase
(eNOS), extracellular signal-regulated kinases 1/2 (ERK 1/2), and serine/threonine kinase
(Akt) [12].

The endothelial Ca2+ response to pro-angiogenic signals can occur as recurrent Ca2+

spikes or a transitory or biphasic increase in [Ca2+]i. Phospholipase Cγ (PLCγ), which
cleaves phosphatidylinositol-4,5-bisphosphate (PIP2) to generate the second messengers
inositol-1,4,5-trisphosphate (InsP3) and diacylglycerol (DAG), is brought about by the
binding of VEGF to its specific receptor, VEGFR-2, on the plasma membrane. The latter
triggers the proto-oncogene, serine/threonine kinase (RAF1)-MEK-ERK1/2 cascade by
activating the DAG-sensitive protein-kinase C (PKC). InsP3 then activates the InsP3R
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on the ER membrane, thereby causing Ca2+ to be released from the ER. The following
decrease in ER Ca2+ levels induces stromal interaction molecule 1 (Stim1), an ER Ca2+

sensor, to oligomerize and translocate from perinuclear to peripheral ER cisternae, where
it interacts with the Ca2+-permeable channel, Orai1, at ER-plasma membrane junctions
known as puncta (10–25 nm). The influx of Ca2+ through Orai1 channels has been termed
store-operated Ca2+ entry (SOCE) and maintains the Ca2+ response to VEGF in both
vascular endothelial cells [8,12,53] and circulating ECFCs [54]. Concurrent changes in
the endothelial membrane potential (Vm), brought about by the recruitment of Ca2+-
dependent conductances, have the capacity to modify the pro-angiogenic Ca2+ signal [55].
Ca2+ entry is regulated by the Ca2+ driving force, i.e., the difference between the Vm and the
equilibrium potential for Ca2+ (ECa). The influence of the membrane potential is determined
by the expression pattern of various ion channels. K+ channels, including Ca2+-activated
K+ channels, inwardly rectifying K+ channels, and probably also voltage-dependent K+

channels, are the main class of ion channels in the regulation of membrane potential.
Furthermore, Ca2+ entry into EC requires the presence of extracellular Cl− to maintain a
polarized membrane [56]. An important role is attributed to the TRPV4 channel, which is
responsible for almost half of the ability to increase [Ca2+]i in response to Vm ≥ −60 mV.
The remaining [Ca2+]i response depends on TRPC1,3,4,5,6/TRPV1,3/TRPA1 [57], which
assemble homomeric or heteromeric [58,59].

Several studies have shown that endothelial Ca2+ signals may be potentially responsi-
ble for aberrant angiogenesis and tumor proliferation [60,61]. The modification of the Ca2+

machinery in malignant cells, which contributes to the distinctive hallmarks of cancer [62],
is a well-established tenet of neoplastic transformation [63,64]. T-ECs and tumor-derived
ECFCs (T-ECFCs) exhibit a significant dysregulation of their Ca2+ signaling toolkit [19,65].

6. TRP Channels

TRP channels are a large family of cation channels, with sequence homology with the
Drosophila TRP channel protein. They are divided into non-selective channels and highly
selective cation channels. In mammals, using sequence homology, the 28 members of the
TRP channel superfamily of non-selective cation channels can be classified into six sub-
families: TRP Canonical (TRPC1–7), TRP Vanilloid (TRPV1-6), TRP Melastatin (TRPM1–8),
TRP Ankyrin1 (TRPA1), TRP Mucolipin (TRPM1-3), and TRP Polycystin (TRPP) [66–69].
There are eight members of the TRPP subfamily, although only TRPP2, TRPP3, and TRPP5
exhibit the structure and functionality of an ion channel [67]. In addition, TRPC2, which
is essential for the mouse acrosomal reaction and pheromone detection, only exists as a
pseudo-gene in people [67]. TRP channels can assemble into homomeric or heteromeric
channels, combining with subunits belonging to the same or different subfamilies [70,71].
Heteromeric TRP channels, which differ from their homomeric counterparts in terms of
biophysical fingerprints and regulation processes, have been extensively documented in
naive cells, such as vascular endothelial cells, and heterologous expression systems. The
TRPC subfamily has been the subject of in-depth research on subunit heteromerization. For
instance, TRPC1 and TRPC3, TRPC4, or TRPC5 [69] may come together to form functional
heteromeric channels, but TRPC3, TRPC6, and TRPC7 may also come together to form
functional heteromeric channels in both naive tissues [72] and heterologous expression
systems [73]. Heterotetramers made up of TRPV subunits are another possibility. Multiple
studies have shown that TRPV5/TRPV6 subunits assemble into heteromeric channel com-
plexes [74], as TRPV1-4 subunits. These heteromeric channel complexes are only found
on the plasma membrane [58]. Additionally, functional heterotetramers made up of TRP
channel subunits from several subfamilies have been widely documented. Examples of
these heterotetramers include TRPC1/TRPP2 [70], TRPC1/TRPV4 [59], TRPC1/TRPV6 [75],
TRPV4/TRPC6 [76], and TRPML3/TRPV5 [77].

TRP channels are multimodal cellular sensors that can be triggered by a wide range
of chemical and physical stimuli, such as intracellular second messengers including di-
acylglycerol (DAG), arachidonic acid (AA), adenosine diphosphate ribose (ADPr), and
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hydrogen peroxide (H2O2), and intracellular ions, such as an increase in cytosolic HC and
Ca2+, and a decrease in cytosolic Mg2+. Other possible triggers include dietary agonists,
such as capsaicin, menthol, and allyl isothiocyanate (AITC), synthetic ligands, such as 4α-
phorbol-12,13-didecanoate (4αPDD), gasotransmitters, such as nitric oxide (NO), proteins,
such as G proteins, mechanical perturbation, such as membrane stretch, osmotic swelling,
and laminar shear stress, and temperature fluctuations [67,68,78,79].

Although the relative permeability to Ca2+ and Na+ (PCa/PNa) might vary significantly
between the various subunits, TRP channels are permeable to monovalent (Na+ and K+) and
divalent (Ca2+ and Mg2+) cations. TRP channels transmit inward Na+ (and Ca2+ or Mg2+)
currents in response to external stimulation, which have a significant effect on intracellular
Ca2+ dynamics. In light of this, Ca2+ entry via Ca2+-permeable TRP channels may directly
increase [Ca2+]i, whereas Na+ influx causes membrane depolarization, activating voltage-
gated Ca2+ channels in excitable cells and altering the driving-force for Ca2+ entry in
non-excitable cells [67]. Therefore, the “fractional Ca2+ current” of Ca2+-permeable TRP
channels, which has not been measured for all TRP channels, determines the functional
effect they have on intracellular Ca2+ homeostasis. For instance, TRPA1 and TRPM3 display
fractional Ca2+ currents of 20%, whereas TRPV1 exhibits a fractional Ca2+ current of 5%,
in contrast to TRPV5 and TRPV6, which mediate actual Ca2+ currents [67,68]. Some TRP
channels can cause a significant rise in local Ca2+ concentration, which may be spatially
restricted to the submembrane space or spread to the bulk cytosol through the Ca2+-
dependent recruitment of InsP3Rs and ryanodine receptors (RyRs) [66,68].

6.1. The Role of TRP Channels in Endothelial Cells

ECs line the inner lumen of blood arteries and are consequently exposed to a variety
of chemical and physical stimuli (growth factors and chemokines) that must be properly
interpreted in order to maintain tissue homeostasis [12,80]. Due to the adaptability of their
gating mechanisms, TRP channels provide the most ideal signal transduction system by
which vascular ECs integrate such a wide variety of external inputs. Due to their sensitivity
to many signaling pathways, endothelial TRP channels, with the exception of TRPC3,
TRPC6, and TRPM4, serve as polymodal cellular sensors [66,68].

Vascular ECs have been found to contain the majority of mammalian TRP isoforms
(TRPC1-7, TRPV1-4, TRPA1, TRPP1-2 and TRPM1-8) with the exception of TRPM5 [66,68,69],
however TRP channel distribution patterns may change across the vascular tree and in
various animal species. TRPC1 is present in mouse but not rat aortic ECs [81], whereas
TRPC3 is broadly expressed in human but not bovine pulmonary artery ECs. Mouse brain
microvascular ECs specifically express TRPC1-6 channels, but not human ones [82,83]; this
may be affected by cell culture conditions and expression detection techniques. Naive
TRP channels may include heteromeric subunits in vascular endothelial cells, as has been
observed in other cell types. The following endothelial TRP channel complexes were
reported: TRPC1-TRPC4 [84], TRPC1-TRPV4 [59], TRPC3-TRPC4 [85], TRPV1-TRPV4 [86],
TRPP2-TRPC1 [70], and TRPC1-TRPP2-TRPV4 [87].

The majority of ECs functions are regulated by TRP channels, which either create
a spatially constrained Ca2+ domain around the cytosolic mouth of the channel pore or
an increase in [Ca2+]i globally [66]; they mediate Ca2+ entry in vascular ECs subjected
to a variety of acetates, hormones, and mechanical stimuli, such as pulsatile stretch and
laminar shear stress [66,68,69]. Additionally, TRP channels influence endothelial VM by
conducting a depolarizing inward current carried by Na+ and Ca2+, resulting in a positive
shift in VM that may be amplified by the Ca2+-dependent recruitment of TRPM4 (yet to be
shown] [66,68,69]. Endothelial TRP channels may either support long-lasting processes,
such as gene expression, proliferation, and migration, or short-term responses, such as
vasodilation or an increase in vascular permeability. They could also serve as sensors
of oxidative stress and local temperature changes; H2O2 induces an aberrant increase in
[Ca2+]i by activating TRPM2 in pulmonary artery ECs after ischemic and reperfusion injury
in mouse cerebral microcirculation [88]. In mouse aortic ECs, TRPV4 can detect a small
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increase in temperature (from 19 to 38 ◦C] but TRPV1 causes Ca2+ entry when heating
from room temperature to over 40 ◦C [89]. This sensitivity has been linked to changes in
vascular tone and endothelial permeability caused by temperature-dependent changes in
NO release [89,90].

6.2. The Role of Endothelial TRP Channels in Physiological Angiogenesis

Endothelial TRP channels may facilitate vascular growth by promoting proliferation,
migration, and tube formation in response to external growth factors, such as VEGF and
bFGF, that are released in peripheral circulation after an ischemic shock or vascular in-
jury [7,12,91]. Alternately, they can stimulate angiogenesis or arteriogenesis, respectively,
as a consequence of cellular stress, such as a rise in intracellular ROS or a fall in cytosolic
Mg2+ levels, or of an increase in laminar shear stress [7,91]. It is also known that angio-
genesis is initiated in the hypoxic environment; oxygen concentration is a key regulator of
angiogenesis, along with the heterodimeric hypoxia-inducible factor (HIF] protein, which
includes HIF1α, degraded under normal conditions, and HIF1β [92].

6.2.1. Role of TRPCs

When DAG is produced in human microvascular endothelial cells (HUVECs) down-
stream of VEGFR, TRPC3 is activated. This causes Na+ to inflow by activating the Na+/Ca2+

exchanger in a reversal mode, which aids in angiogenesis [93]. In contrast, when there
is inhibition of TRPC3 or its silencing with siRNA, VEGF activation of ERK1/2 phospho-
rylation and stimulation of [Ca2+]i transients is attenuated; endothelial tube formation is
also suppressed [93]. In EPCs, molecular and pharmacological inhibition of TRPC3 abro-
gated the Ca2+ response induced by VEGF and thus blocked proliferation [94]. Silencing
the expression of TRPC3, TRPC4 or TRPC5 also blocked spontaneous [Ca2+]i oscillations
and inhibited tube formation in HUVEC-derived EA.hy926 cells and in HUVECs [95].
Specifically, TRPC4 silencing attenuated oxLDL-induced proliferation and migration of
human coronary ECs and angiogenesis tube formation in vitro on matrigel [96]. TRPC6
also appears to be crucial in human microvascular ECs and HUVECs. Studies using a
dominant-negative mutant of TRPC6, with three pore-region alterations, showed decreased
EC migration, proliferation, and sprouting in the matrigel experiment [97]. Similarly, in HU-
VECs, a dominant-negative version of TRPC6 reduced VEGF-evoked capillary formation
and cation current, as well as cell growth and proliferation [98]. In EPCs, TRPC1 regulates
cell proliferation and tubulogenesis; indeed, an in vivo matrigel experiment showed that
EPCs derived from TRPC1 mutant mice had significantly reduced functional activity, in-
cluding migration and tube formation [99]. The Figure 1A shows the main factors involved
in the activation of TRPCs (Figure 1A). Table 1 shows the angiogenic processes regulated
by the different subunits [7].

6.2.2. Role of TRPVs

According to a recent study, TRPV4 has long been recognized to control angiogenesis
and neovascularization by promoting EC migration and proliferation [60]. TRPV4 is crucial
for cytoskeletal remodeling and alterations in cell adhesion, which regulate EC motility and
proliferation through mechanotransduction [100,101]. In mutant mice, the lack of TRPV4
was linked to an increase in baseline Rho/Rho kinase activity, a significant increase in
EC migration and proliferation, and aberrant tube formation in vitro [101]. Intriguingly, a
subsequent investigation from the same team verified that over-expressing or pharmaco-
logically activating TRPV4 with GSK1016790 corrected the aberrant ECs’ abnormal tube
formation in the matrigel experiment and restored their mechanosensitivity [100]. TRPV1
has been discovered to promote angiogenesis. Intraperitoneal injection of the TRPV1 lig-
and evodiamine, promoted vascularization in matrigel plugs used in vivo in wild type
mice [102]; in contrast, TRPV1 knockout animals showed a significant reduction in induced
angiogenesis. Furthermore, in human microvascular ECs [103], TRPV1 activation is depen-
dent on simvastatin-activated Ca2+ influx, which induces activation of CaMKII signaling
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and enhances TRPV1-eNOS complex formation, leading to NO production and angiogenic
tube formation in vitro [104].

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 8 of 20 
 

.  

Figure 1. (A) TRPC channels in angiogenesis. Representation of the main TRPC channels involved 

in angiogenesis. The factors that stimulate the expression of the different components are shown. 

VEGF, IGF, bFGF, and thrombin induce expression of TRPC1; EGF, oxLDL, and hypoxic condition 

induce expression of TRPC4; erythropoietin (EPO) and VEGF induce expression of TRPC3; oxLDL, 

thrombin, and 14,15-EETs induce expression of TRPC6; hypoxic condition, riluzole, and oxLDL in-

duce expression of TRPC5. (B) TRPV channels in angiogenesis. TRPV1, TRPV2, and TRPV4 are the 

main TRPV isoforms that mediate angiogenesis. VEGF, capsicin, evodiamine, simvastatin, EPO, ep-

igallo-catechin-3-gallate, and 14,15-EETs induce TRPV1 activation; Shear stress, cyclic strain, 4⍺-

PDD, ROS, AA, and GSK activate TRPV4; lysophosphatidylcholine can induce TRPV2 stimulation. 

(C) TRPM and TRPA1 channels in angiogenesis. It has been shown that certain TRPM isoforms are 

involved in angiogenesis. VEGF stimulates TRPM2; H2O2, pathological conditions such as stroke, 

oxygen, and glucose deprivation induce TRPM4; conditions of reduced intracellular Mg2+ concen-

tration, oxygen, and glucose deprivation induce TRPM7 activation; AITC and simvastatin-depend-

ent TRPV1 activation induces TRPA1. 

Table 1. Angiogenic processes regulated by TRPC subunits. 

TRPC Subunit Angiogenic Processes Regulated 

TRPC1/TRPC4/TRPC3/TRPC5/TRPC6 Proliferation, migration, in vitro tubulogenesis. 

TRPC1 
Filipodia extension, motility in vivo (sprouting angiogenesis); ECFC 

and MAC proliferation and tube formation. 

TRPC4 Retinal neovascularization. 

TRPC6 Wound closure in vitro and carotid artery regeneration in vivo. 

TRPC5 

Neovascularization in hypoxic retina and in mouse hindlimb ische-

mia. 

Negative modulation of migration and wound closure in vitro and 

arterial regeneration in vivo. 

  

Figure 1. (A) TRPC channels in angiogenesis. Representation of the main TRPC channels involved
in angiogenesis. The factors that stimulate the expression of the different components are shown.
VEGF, IGF, bFGF, and thrombin induce expression of TRPC1; EGF, oxLDL, and hypoxic condition
induce expression of TRPC4; erythropoietin (EPO) and VEGF induce expression of TRPC3; oxLDL,
thrombin, and 14,15-EETs induce expression of TRPC6; hypoxic condition, riluzole, and oxLDL induce
expression of TRPC5. (B) TRPV channels in angiogenesis. TRPV1, TRPV2, and TRPV4 are the main
TRPV isoforms that mediate angiogenesis. VEGF, capsicin, evodiamine, simvastatin, EPO, epigallo-
catechin-3-gallate, and 14,15-EETs induce TRPV1 activation; Shear stress, cyclic strain, 4α-PDD, ROS,
AA, and GSK activate TRPV4; lysophosphatidylcholine can induce TRPV2 stimulation. (C) TRPM
and TRPA1 channels in angiogenesis. It has been shown that certain TRPM isoforms are involved
in angiogenesis. VEGF stimulates TRPM2; H2O2, pathological conditions such as stroke, oxygen,
and glucose deprivation induce TRPM4; conditions of reduced intracellular Mg2+ concentration,
oxygen, and glucose deprivation induce TRPM7 activation; AITC and simvastatin-dependent TRPV1
activation induces TRPA1.

Table 1. Angiogenic processes regulated by TRPC subunits.

TRPC Subunit Angiogenic Processes Regulated

TRPC1/TRPC4/TRPC3/TRPC5/TRPC6 Proliferation, migration, in vitro tubulogenesis.

TRPC1 Filipodia extension, motility in vivo (sprouting angiogenesis); ECFC and MAC
proliferation and tube formation.

TRPC4 Retinal neovascularization.
TRPC6 Wound closure in vitro and carotid artery regeneration in vivo.

TRPC5
Neovascularization in hypoxic retina and in mouse hindlimb ischemia.
Negative modulation of migration and wound closure in vitro and arterial
regeneration in vivo.

The Figure 1B shows the main factors involved in the activation of TRPVs (Figure 1B).
Table 2 shows the angiogenic processes regulated of the different subunits [7].
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Table 2. Angiogenic processes regulated by TRPV subunits.

TRP Subunit Angiogenic Processes Regulated

TRPV1 Proliferation, migration and tube formation in vitro, angiogenesis in vivo.
TRPV4 Proliferation, migration, tube formation in vitro, angiogenesis and arteriogenesis in vivo, ECFC proliferation.

6.2.3. Role of TRPMs

It has also been discovered that TRPM2, TRPM4, and TRPM7 are involved in angio-
genesis [105]. VEGF has been shown to stimulate EC migration and induce ROS-dependent
Ca2+ entry through TRPM2 activation. Furthermore, matrigel plugs supplemented with
VEGF injected subcutaneously into TRPM2 knockout mice show significantly reduced
blood vessel formation compared to wild type mice [106]. In response to hypoxia/ischemia,
TRPM4 is increased in vascular endothelium both in vitro and in vivo, as well as in HU-
VECs after oxygen-glucose deprivation. Enhancing tube formation on matrigel and improv-
ing capillary integrity in vivo were the results of pharmacologically inhibiting TRPM4 or
silencing it using siRNA [107]. An earlier study showed that silencing TRPM7 replicates the
effect of Mg2+ deficit on the development and migration of microvascular ECs, suggesting
that magnesium and TRPM7 are regulators of angiogenesis [108]. Figure 1C shows the
main factors involved in the activation of TRPMs and TRPA1 (Figure 1C). Table 3 shows
the angiogenic processes regulated of the different subunits [7].

Table 3. Angiogenic processes regulated by TRPM subunits and TRPA1.

TRP Subunit Angiogenic Processes Regulated

TRPM2 Migration in vitro, neovascularization in vivo.
TRPM4 Negative regulation of in vitro tubulogenesis and in vivo angiogenesis; supports H2O2-induced migration.

TRPM7 Negative regulation of HUVEC proliferation, adhesion, and migration in vitro and tubulogenesis in vivo;
positive regulation of HMEC proliferation and migration.

TRPA1 Tube formation in vitro and neovascularization upon corneal cauterization in vivo.

A preliminary report showed that only TRPC1 and TRPC4 were expressed by human
ECFCs generated from peripheral blood (PB-ECFCs), although TRPC3 was also present
in ECFCs produced from umbilical cord blood [109]. Following genetic silencing using
specific siRNAs, it was discovered that TRPC1 interacts with STIM1 and Orai1 to produce
SOCE in ECFCs [110,111]. It is unclear if Orai1 and TRPC1, which are both gated by STIM1,
produce independent Ca2+-permeable channels or whether they come together to form a
supermolecular complex that may also include TRPC4. SOCE can be recruited by SDF-1α,
to increase ECFC migration in vitro and neovessel development in vivo [10], as well as by
VEGF to promote ECFC proliferation and tube formation [54,112]. Specifically, whereas the
pro-angiogenic response to VEGF requires the Ca2+-sensitive transcription factor NF-kB,
SOCE activates the ERK1/2 and PI3K/Akt signaling pathways to promote SDF-1α-induced
ECFC motility [10,52]. STIM1, TRPC1, and Orai1 interact to drive SOCE and facilitate
in vitro angiogenesis (proliferation, motility, and formation) in rodent MACs [113], just as
they do in human ECFCs. Furthermore, CaM-dependent e NOS activation was impaired
by genetic TRPC1 knockdown, which hindered neovessel formation in Matrigel plugs
in vivo [99]. TRPC3 is only produced in umbilical cord blood (UCB)-derived ECFCs, where
it is physiologically gated by DAG and causes intracellular Ca2+ oscillations generated by
VEGF [94]. Genetic (using certain siRNAs) and pharmacological (using Pyr3) treatments
demonstrated that TRPC3-mediated extracellular Ca2+ entry causes the dynamic interaction
between InsP3Rs and SOCE to alter the spiking Ca2+ response to VEGF, increasing the
proliferation of UCB-ECFC [94]. The increased frequency of VEGF-induced intracellular
Ca2+ oscillations in UCB-ECFCs, which is related to their higher proliferative capability,
has been postulated to be caused by TRPC3 participation [114]. This finding gave rise to
the theory that exogenous TRPC3 insertion could rejuvenate the reparative phenotype
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of senescent/aging UCB-ECFCs and increase the effectiveness of autologous cell-based
therapy in ischemic patients [114].

The two most significant endothelial TRPV isoforms involved in angiogenesis and
arteriogenesis are TRPV1 and TRPV4. Multiple independent studies revealed that human
ECFCs also express TRPM7 [108], TRPV1 [115], and TRPV4 [116]. Pharmacological stim-
ulation of TRPV4 with the endogenous agonist, arachidonic acid, stimulated PB-ECFC
proliferation in a NO-dependent manner [117], while genetic silencing of TRPM7 with a spe-
cific siRNA had no impact on the rate of ECFC proliferation [108]. The activation of TRPV1
could also be sufficient to cause ECFC proliferation [91,118]. Previous work has shown
that TRPV1 promoted proliferation of UCB-ECFC cells, as well as of the HUVEC-derived
EA.hy926 cells, by mediating anandamide uptake independently of Ca2+ entry [119]. Sub-
sequently, Lodola et al. (2019) [120] found that optical excitation of PB-ECFCs plated on
the photosensitive polymer Poly(3-hexyl-thiophene) (P3HT) stimulated proliferation and
tube formation by stimulating the nuclear translocation of p65 NF-kB [120]. A recent
investigation showed that TRPV1 activation depends on the local increase in ROS levels at
the interface between P3HT thin layers and the cell surface [115].

7. The Role of Endothelial TRP Channels in Tumor Vascularization

In a growing number of cancers, recent data have suggested that deregulation of
the endothelial Ca2+ mechanism is essential for neovascularization and resistance to anti-
angiogenic and chemotherapeutic treatments [41,60,61]. A relevant role has been attributed
to abnormal expression and activity of TRP channels in T-ECs and T-ECFCs, which can
boost tumor neovascularization.

7.1. Breast Cancer

TRPV4 has been the first endothelial TRP channel directly linked to malignant an-
giogenesis. In line with this, TRPV4 expression was noticeably increased in breast-tumor-
derived endothelial cells (B-TECs), and TRPV4 activation with AA or 4αPDD stimulated
migration in B-TECs, but not in the control human microvascular endothelial cells. On
the other hand, when cells were transfected with a short hairpin RNA that selectively
targets TRPV4 (shTRPV4), AA-induced B-TEC migration was stopped [121]. Notably, a
brief (10 min) pre-incubation with AA alone dramatically raised the cell surface expression
of TRPV4, thereby increasing AA-induced extracellular Ca2+ entry in migrating B-TECs
compared to non-migrating cells. Furthermore, AA has been shown to stimulate extracellu-
lar Ca2+ entry in B-TECs during the first stages of the tubulogenic process, but not when a
capillary-like network was already developed. These findings clearly suggest that the early
stages of breast cancer angiogenesis are characterized by the over-expression of endothelial
TRPV4 channels [122] (Figure 2).

TRPM8 was also found to control breast cancer angiogenesis, but in a Ca2+-independent
manner. In contrast to HMECs and HUVECs, in which it was mostly found in the ER,
TRPM8 was substantially down-regulated in B-TECs [123]. Intriguingly, in normal endothe-
lial cells, TRPM8 prevented migration and tube formation by trapping Rap1 intracellularly
and blocking its movement towards the plasma membrane, which is essential to trigger
β1-integrin signaling. As a consequence, TRPM8 down-regulation in B-TECs is likely to
accelerate vascular growth; this feature suggests that TRPM8 activation by icilin or menthol
could represent an efficient strategy to treat breast cancer [123] (Figure 2).

TRPM8 is down-regulated in B-TEC, Rap1 isn’t trapped, β1-integrin isn’t inhibited,
migration and tube formation are blocked.

7.2. Prostate Cancer

Prostate cancer (PCa) involves a complex remodeling of endothelial TRP channels.
TRPA1, TRPV2, and TRPC3 were shown to be up-regulated in three different endothelial
cell lines established from PCa patients as well as in endothelial cells lining tumor capillaries
in vivo [124]. In PCa-derived endothelial cells, it has been reported that: (1) TRPA1 supports
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migration; (2) TRPC3 supports chemoattraction towards tumor microenvironment; and
(3) TRPV2 induces capillary-like formation in vitro. Furthermore, TRPV2 activation stim-
ulates vascular development in a mouse model of postnatal retina in vivo [124]. When
compared to non-tumor endothelium, the pro-angiogenic effect of TRP channels on PCa-
derived endothelial cells was accompanied by a significant increase in intracellular Ca2+

activity. As a result, PCa patients could benefit from the pharmacological blockage of these
specific endothelial TRP channel isoforms [124].
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Figure 2. Role of TRPV4 and TRPM8 in B-TECs. AA or 4αPDD induce increased expression of TRPV4
in B-TECs, resulting in increased migration of these and increased intracellular Ca2+ entry. This
shows that over-expression of TRPV4 induces the early stages of tumor angiogenesis.

A parallel investigation showed that TRPV4 was down-regulated in prostate
adenocarcinoma-derived endothelial cells (A-TECs), thereby reducing their mechanosen-
sitivity to extracellular matrix (ECM) rigidity. This, in turn, favored A-TEC motility. The
tumor vasculature in TRPV4 KO mice was characterized by an increased proportion of
hyperpermeable, pericyte-free and dilated microvessels, which are known to moderate the
therapeutic effect of anticancer treatments [100]. A subsequent report found that TRPV4
down-regulation significantly reduced the VE-cadherin expression at cell–cell contacts,
thereby further increasing vascular leakage [125]. To rescue the phenotype of aberrant
capillary tubules in vitro, overexpression or pharmacological stimulation of TRPV4 with
GSK was sufficient to restore their mechanosensitivity to ECM rigidity by blocking basal
Rho activity [126]. Furthermore, TRPV4-mediated extracellular Ca2+ influx blocked the
ERK1/2 pathway, reducing the rate of A-TEC proliferation (Figure 3). These results imply
that TRPV4 inhibits the development of malignant vasculature in the adenocarcinoma of
the prostate [100,126].

7.3. Renal Cellular Carcinoma

The most common form of kidney cancer in adults is renal cellular carcinoma (RCC)
and there is substantial evidence that ECFCs may play a primary role in RCC neovascu-
larization [25,127–131]. All research carried out on the subject has supported each other
in demonstrating that ECFCs need functional VEGFR-2 to maintain malignant transfor-
mation, although they reached this conclusion by using normal cells rather than tumor
cells [16,65]. RCC has recently been linked to a significant deregulation of the Ca2+ signal-
ing machinery; in accord, primary tumor samples express more Orai1 and TRPC6 channel
proteins than normal renal tissues [132,133]. In contrast, two separate human kidney cancer
cell lines exhibited TRPC4 down-regulation [134]. These changes might be crucial to the
neoplastic transformation of a healthy kidney. While Orai1 controls RCC cell proliferation
and migration [133] and TRPC6 up-regulation favors the transition through the G2/M
phase [132], the loss of TRPC4 results in a decreased release of the endogenous inhibitor
thrombospondin-1, which favors the angiogenic switch [134]. In addition, ECFCs derived
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from naive RCC patients (RCC-ECFCs) exhibit a striking decrease in ER Ca2+ concentration
and InsP3R expression, while they displayed a remarkable up-regulation of Stim1, Orai1,
and TRPC1. These changes result in a remarkable rewiring of their Ca2+ toolkit, which
render RCC-ECFCs less responsive to VEGF [111]. However, the pharmacological blockade
of SOCE has been shown to interfere with RCC-ECFC proliferation and tube formation [25]
(Figure 4).
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Figure 4. Stim1, Orai1, and TRPC1 (SOCE) in RCC-ECFCs. RCC-ECFCs show a significant decrease
in ER Ca2+ concentration and InsP3R expression, while they present higher expression levels of
Stim1, Orai1, and TRPC1 compared to control ECFCs. This results in a dramatic rewiring of their
Ca2+ signaling toolkit. The higher amplitude of SOCE in RCC-ECFCs could underlie the increase in
frequency reported in peripheral blood of RCC patients in response to hypoxic cues released by the
tumor microenvironment [19,65].
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8. Conclusions

Endothelial TRP channels play a crucial role in vascular remodeling, regulating an-
giogenesis, arteriogenesis and vasculogenesis. These channels are highly heterogeneous
in their gating mechanisms, with the propensity of some isoforms to form heteromeric
complexes, making them the most versatile Ca2+ entry pathway in ECs, EPCs, and ECFCs.
However, they can also block angiogenesis, as reported for TRPM4 in HUVECs and TRPM7
in cerebral microvascular endothelial cells. An important aspect of endothelial TRP sig-
naling that deserves much attention is its involvement in the abnormal vascularization
that characterizes cancer. A crucial contribution to the angiogenic switch that transforms a
dormant lesion into a growing tumor is provided by the recruitment of myeloid angiogenic
cells and ECFCs, which are released from vascular stem cell niches, respectively. The
abnormal expression and activity of TRP channels in T-ECs and T-ECFCs, may promote
tumor neovascularization, however, several aspects are still not entirely clear, e.g., which
endothelial TRP isoforms are dysregulated, and therefore further studies are needed.
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