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Abstract: Background: This study aims to compare an automated cephalometric analysis based on
the latest deep learning method of automatically identifying cephalometric landmarks with a manual
tracing method using broadly accepted cephalometric software. Methods: A total of 100 cephalo-
metric X-rays taken using a CS8100SC cephalostat were collected from a private practice. The X-rays
were taken in maximum image size (18 × 24 cm lateral image). All cephalometric X-rays were first
manually traced using the Dolphin 3D Imaging program version 11.0 and then automatically, using
the Artificial Intelligence CS imaging V8 software. The American Board of Orthodontics analysis and
the European Board of Orthodontics analysis were used for the cephalometric measurements. This
resulted in the identification of 16 cephalometric landmarks, used for 16 angular and 2 linear mea-
surements. Results: All measurements showed great reproducibility with high intra-class reliability
(>0.97). The two methods showed great agreement, with an ICC range of 0.70–0.92. Mean values of
SNA, SNB, ANB, SN-MP, U1-SN, L1-NB, SNPg, ANPg, SN/ANS-PNS, SN/GoGn, U1/ANS-PNS,
L1-APg, U1-NA, and L1-GoGn landmarks had no significant differences between the two methods
(p > 0.0027), while the mean values of FMA, L1-MP, ANS-PNS/GoGn, and U1-L1 were statistically
significantly different (p < 0.0027). Conclusions: The automatic cephalometric tracing method using
CS imaging V8 software is reliable and accurate for all cephalometric measurements.

Keywords: cephalometrics; tracing; digital; automatic; manual; artificial intelligence

1. Introduction

Since Broadbent developed the imaging technique in 1931, cephalometry has been
used to investigate growth, identify malocclusions, and create treatment plans as well as to
assess the outcomes of those treatments. After tracing anatomical features and identifying
landmarks on acetate paper for the lateral cephalogram analysis, measurements were taken
with rulers and protractors. The entire process was laborious, time-consuming, prone to
mistakes, and largely dependent on operator skill. Developments in computer software
have mostly served to automate the cephalometric measurements, but the doctor must
still manually pinpoint the appropriate landmarks [1,2]. Nowadays, the advancement of
different computer-based technologies such as artificial intelligence and 3D printing is
giving a new perspective to the everyday orthodontic practice [3–5].

Artificial intelligence (AI) is the ability of a technology to mimic human intelligence
or make decisions that are effective and ethical by predetermined criteria. AI may now
encompass many facets of contemporary culture thanks to advances in analytics techniques,
computer power, and data availability. We can already see its effects in our everyday lives
on a global scale. It filters content for social media, web searches, and consumer goods
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such as cameras, cellphones, tablets, and even autos. Machine learning is a prominent
branch of artificial intelligence. Machine learning uses the statistical patterns of previously
learned data to predict new data and circumstances. Machine learning needs to incorporate
training data in order to work, therefore, training data are necessary for machine learning
to function. With this method, the computer model can learn from experience rather
than through traditional explicit programming, improving over time. In order to learn
the features of the data using abstractions from several processing levels, a model must
be given a lot of data. Deep learning has the advantage that it does not require a lot of
engineering work to preprocess the data and deep learning techniques have been employed
most prominently in object identification and visual object recognition. Machine learning
has become increasingly important in the detection and classification of specific diseases
found in medical imaging as a result of recent technological advancements. There have been
initiatives in orthodontics to use machine learning in various methods, one of which is the
automated AI recognition of cephalometric landmarks. The two-dimensional cephalometric
image is still the crucial and most often used tool in orthodontics for diagnosis, treatment
planning, and result prediction even though research using three-dimensional imaging has
garnered attention [6,7].

There have been numerous attempts to include AI in the cephalometric study. The
International Symposium on Biomedical Imaging conferences, supported by the Institute
of Electrical and Electronics Engineers, launched global AI challenges in 2014 for precise AI
measurements. The challenge has changed since 2015, becoming more clinically focused
and providing success categorization rates. The Institute of Electrical and Electronics
Engineers (IEEE) and the International Symposium on Biomedical Imaging (ISBI) hosted
challenges on the automatic recognition of cephalometric landmarks and presented 400 dif-
ferent lateral cephalograms. In addition, new algorithms have been created on the same
open dataset. Some of these methods, including decision trees, random forests, and deep
learning, have been used to increase the precision of landmark detection [8–11]. Addition-
ally, the resultant point must be located on the average of the coordinates for the left and
right landmarks when the bilateral anatomic features do not overlap. There has not been
any research that has successfully described this ailment in the past. This situation may
compromise the precision of landmark placement and compromise the reliability of the
cephalometric study. The convolutional neural network (CNN), a deep learning network
structure, is the algorithm that exhibits significant advantages in graphics processing. It has
been applied to problems involving images such as target identification, character recogni-
tion, face recognition, posture assessment, and others. In medicine, and more specifically
in medical imaging, CNN has been successfully used to detect and classify lesions, image
segmentation, auxiliary diagnosis, etc. [12–24]. In 2019, Park et al., a year after Hwang
et al., used two different kinds of CNN. The first one was “You-Only-Look-Once version
3” and the second one was the “Single Shot Multibox Detector”. They used both CNN
types to find 80 landmarks with good results. Some of these landmarks were applied to
perform measurement analysis, whereas others detected contours or outlines or were used
to predict treatment outcomes [8,25].

Carestream dental is one of the companies that has shown high interest in automatic
cephalometric tracing since the very beginning of this method. Nowadays, they offer a
cephalometric imaging software capable of fully tracing any cephalometric X-ray taken
by a Carestream cephalostat as long as the X-ray is taken in the maximum image size
(18 × 24 cm lateral image). Cephalometric tracing is based on artificial intelligence, using a
deep convolutional neural network (CNN) for landmark detection, followed by an active
shape model (ASM) for adjusting the position of the whole structure. Some classical image
processing (mathematical morphology) is also involved in tracing the soft-tissue profile.
The software does not acquire information from the machine; the network is pre-trained.
The training set was collected from a collaborator orthodontist, then manually annotated.
There are many studies that looked over the accuracy of different software programs but, to
the best of our knowledge, none of them looked over CS imaging V8 software (Carestream
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Dental LLC, Atlanta, GA, USA), which is a broadly used software. This study aims to
compare the accuracy of automatic cephalometric analysis using CS imaging V8 software
to manual cephalometric analysis.

2. Materials and Methods

Subjects were recruited from a private practice that owns a CS8100SC Evo Edition
X-ray machine (Producer: Carestream Dental LLC, Atlanta, GA, USA, Year: 2020). Inclusion
criteria consisted of subjects seeking orthodontic treatment whose records included cephalo-
metric X-rays. Subjects with existing intraoral appliances were excluded. Poor quality
cephalograms with artifacts that could interfere with the anatomical point identification
were excluded as well. There was no restriction on patients’ gender, age, and ethnicity at the
time that cephalometric X-rays were taken. A sample size calculation test was performed
based on previous research. A minimum sample size of 79 patients was calculated as
appropriate to detect a significant deviation in the intraclass correlation coefficient equal to
or greater than 0.70 (moderate agreement and upwards) from 0.50 (poor agreement), with
a power of 80%. A sample of 100 subjects was recruited and used in this project [23].

Pre-treatment lateral cephalometric radiographs of 100 patients (43 males, 57 females,
mean age: 15.9 ± 4.8 years) were randomly selected. The cephalometric images were taken
with the patient in the upright standing position with the Frankfort plane parallel to the
floor, keeping the teeth in centric relation and the lips relaxed. All the lateral cephalometric
radiographs were taken using the same lateral cephalometric machine (CS 8100 SC) by the
same technician in the maximum image size (18 × 24 cm lateral image) (Figure 1).

J. Clin. Med. 2022, 11, 6854 3 of 8 
 

 

to the best of our knowledge, none of them looked over CS imaging V8 software 

(Carestream Dental LLC, Atlanta, GA), which is a broadly used software. This study aims 

to compare the accuracy of automatic cephalometric analysis using CS imaging V8 soft-

ware to manual cephalometric analysis. 

2. Materials and Methods 

Subjects were recruited from a private practice that owns a CS8100SC Evo Edition X-

ray machine (Producer: Carestream Dental LLC, Atlanta, GA, Year: 2020). Inclusion crite-

ria consisted of subjects seeking orthodontic treatment whose records included cephalo-

metric X-rays. Subjects with existing intraoral appliances were excluded. Poor quality 

cephalograms with artifacts that could interfere with the anatomical point identification 

were excluded as well. There was no restriction on patients’ gender, age, and ethnicity at 

the time that cephalometric X-rays were taken. A sample size calculation test was per-

formed based on previous research. A minimum sample size of 79 patients was calculated 

as appropriate to detect a significant deviation in the intraclass correlation coefficient 

equal to or greater than 0.70 (moderate agreement and upwards) from 0.50 (poor agree-

ment), with a power of 80%. A sample of 100 subjects was recruited and used in this pro-

ject [23]. 

Pre-treatment lateral cephalometric radiographs of 100 patients (43 males, 57 females, 

mean age: 15.9 ± 4.8 years) were randomly selected. The cephalometric images were taken 

with the patient in the upright standing position with the Frankfort plane parallel to the 

floor, keeping the teeth in centric relation and the lips relaxed. All the lateral cephalo-

metric radiographs were taken using the same lateral cephalometric machine (CS 8100 SC) 

by the same technician in the maximum image size (18 × 24 cm lateral image). (Figure 1) 

All 100 lateral cephalometric radiographs were imported first to Dolphin 3D Imaging 

program version 11.0 (Dolphin Imaging and Management Solutions, Chatsworth, CA) for 

the digital manual cephalometric tracing, and afterward, the same lateral cephalometric 

radiographs were imported to CS imaging V8 (Carestream Dental LLC, Atlanta, GA) for 

the digital automatic tracing. (Figure 2) All manual tracings were made by a blinded ex-

perienced operator who is a diplomate of the American Boards of orthodontics (I.A.T.). 

The image’s name was randomly renamed, and the list was kept in an Excel spreadsheet. 

Cephalometric analysis was based on the American Board of Orthodontics analysis and 

the European Board of Orthodontics analysis. The ABO cephalometric measurements are 

SNA, SNB, ANB, SN-MP, FMA, U1-SN, U1-NA, L1-MP, and L1-NB. The EBO cephalo-

metric measurements are SNA, SNPg, ANPg, SN/ANS-PNS, SN/Go-Gn, ANS-PNS/GoGn, 

U1/ANS-PNS, L1/GoGn, L1/APg, and U1-L1. This resulted in the identification of 16 ceph-

alometric landmarks, which responded to 17 angular and 2 linear measurements.  

 

Figure 1. CS 8100 SC. Figure 1. CS 8100 SC.

All 100 lateral cephalometric radiographs were imported first to Dolphin 3D Imaging
program version 11.0 (Dolphin Imaging and Management Solutions, Chatsworth, CA, USA)
for the digital manual cephalometric tracing, and afterward, the same lateral cephalomet-
ric radiographs were imported to CS imaging V8 (Carestream Dental LLC, Atlanta, GA,
USA) for the digital automatic tracing (Figure 2). All manual tracings were made by a
blinded experienced operator who is a diplomate of the American Boards of orthodontics
(I.A.T.). The image’s name was randomly renamed, and the list was kept in an Excel
spreadsheet. Cephalometric analysis was based on the American Board of Orthodon-
tics analysis and the European Board of Orthodontics analysis. The ABO cephalometric
measurements are SNA, SNB, ANB, SN-MP, FMA, U1-SN, U1-NA, L1-MP, and L1-NB.
The EBO cephalometric measurements are SNA, SNPg, ANPg, SN/ANS-PNS, SN/Go-
Gn, ANS-PNS/GoGn, U1/ANS-PNS, L1/GoGn, L1/APg, and U1-L1. This resulted in
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the identification of 16 cephalometric landmarks, which responded to 17 angular and
2 linear measurements.
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Statistical Analysis

All cephalometric measurement data were imported into an Excel spreadsheet (Mi-
crosoft, Redmond, WA, USA), and statistical analysis was performed using SPSS software
(version 27; IBM, Armonk, NY, USA). Normal distribution of the data was tested using the
Kolmogorov–Smirnov test. Descriptive statistics (mean, standard deviation, and minimum
and maximum values) were calculated for every parameter measured by each method.
Differences between methods were assessed using paired the t-test or Wilcoxon test, when
appropriate. Furthermore, the Bonferroni method for multiple comparisons was applied for
hypothesis testing of the equality of several parameters’ means between the automatic and
manual methods. We applied the Bonferroni correction since we compared 18 parameters,
so the level of statistical significance (a = 0.05) was divided by the number of parameters and
was set to 0.0027 to avoid inflation of the type I error because of the multiple comparisons.
The intra-method agreement was evaluated using the intraclass correlation coefficient
(ICC) [26]. All comparisons were two-sided at a = 0.05 level of statistical significance.

3. Results

The sample included 100 subjects, 43 males and 57 females with a mean age of
15.9 ± 4.8 years. The operator’s reliability was calculated using intraclass correlation on
20 randomly selected subjects, whose data were re-measured 3 weeks apart. All measure-
ments showed excellent intraclass correlation (Table 1).

Table 1. Intraclass correlation coefficient (ICC) and 95% confidence interval (CI) for
intra-method agreement.

Parameter ICC (95% CI)

Automatic Manual

ANB 1.00 (1.00, 1.00) 0.99 (0.97, 0.99)

ANPg 1.00 (1.00, 1.00) 0.99 (0.97, 0.99)

ANS-PNS/GoGn 1.00 (1.00, 1.00) 0.97 (0.93, 0.99)

FMA (MP-FH) 1.00 (1.00, 1.00) 1.00 (0.99, 1.00)

IMPA (L1-MP) 1.00 (1.00, 1.00) 0.98 (0.94, 0.99)
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Table 1. Cont.

Parameter ICC (95% CI)

L1-NB 1.00 (1.00, 1.00) 0.97 (0.92, 0.99)

L1/APg 1.00 (1.00, 1.00) 1.00 (1.00, 1.00)

L1/GoGn 1.00 (1.00, 1.00) 0.98 (0.95, 0.99)

SN-GoGn 1.00 (1.00, 1.00) 0.98 (0.95, 0.99)

SN/ANS-PNS 1.00 (1.00, 1.00) 0.96 (0.89, 0.98)

SNA 1.00 (1.00, 1.00) 0.95 (0.88, 0.98)

SNB 1.00 (1.00, 1.00) 0.97 (0.92, 0.99)

SNMP 1.00 (1.00, 1.00) 0.98 (0.94, 0.99)

SNPg 1.00 (1.00, 1.00) 0.98 (0.96, 0.99)

U1-NA 1.00 (1.00, 1.00) 0.99 (0.99, 1.00)

U1-L1 1.00 (1.00, 1.00) 0.99 (0.99, 1.00)

U1-SN 1.00 (1.00, 1.00) 0.99 (0.99, 1.00)

U1/ANS-PNS 1.00 (1.00, 1.00) 1.00 (0.99, 1.00)

3.1. American Board of Orthodontics Cephalometric Analysis

There was no significant difference between the two methods for the measurements
of SNA, SNB, ANB, SN-MP, U1-SN, U1-NA, L1-MP, and L1-NB (p > 0.05) while there
was a significant difference between the two methods for the measurements of FMA and
L1-MP (p < 0.05). All measurements showed a high correlation between the two methods
(ICC > 0.70) (Tables 2 and 3).

Table 2. Intraclass correlation coefficient (ICC) and 95% confidence interval (CI) for inter-method
agreement (auto, manual).

Parameter ICC (95% CI)

ANB 0.85 (0.70, 0.97)

ANPg 0.77 (0.61, 0.91)

ANS-PNS/GoGn 0.72 (0.45, 0.91)

FMA (MP-FH) 0.73 (0.47, 0.85)

IMPA (L1-MP) 0.70 (0.49, 0.87)

L1-NB 0.74 (0.76, 0.93)

L1/APg 0.75 (0.57, 0.89)

L1/GoGn 0.78 (0.60, 0.93)

SN-GoGn 0.89 (0.72, 0.92)

SN/ANS-PNS 0.77 (0.59, 0.93)

SNA 0.74 (0.55, 0.90)

SNB 0.78 (0.60, 0.94)

SNMP 0.89 (0.73, 0.93)

SNPg 0.92 (0.88, 0.94)

U1-NA 0.79 (0.70, 0.86)

U1-L1 0.70 (0.54, 0.81)

U1-SN 0.76 (0.61, 0.88)

U1/ANS-PNS 0.72 (0.53, 0.89)
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Table 3. Descriptive statistics for each parameter depending on the method of measurement. Statisti-
cal significance set at p < 0.0027.

Automatic Manual Analysis

Parameter Mean (SD) min max Mean (SD) min max Auto-Manual p-Value *

ANB 3.8 (2.7) 0.0 14.0 3.6 (2.4) 0.1 9.5 0.2 0.517

ANPg 5.8 (5.0) 0.0 29.0 5.4 (3.8) 0.1 16.5 0.4 0.467

ANS-PNS/GoGn 27.1 (4.3) 17.7 45.0 24.1 (5.2) 9.4 33.8 3 <0.001 *

FMA (MP-FH) 30.2 (5.6) 15.9 49.0 28.1 (5.3) 14.9 39.4 2.1 <0.001 *

IMPA (L1-MP) 87.1 (7.6) 61.4 104.8 91.1 (7.8) 71.3 110.1 −4 <0.001 *

L1-NB 156.8 (16.1) 13.7 174.8 156.3 (6.6) 139.4 176.4 0.5 0.150

L1/APg 155.3 (27.0) 4.1 173.9 156.6 (15.4) 13.2 173.2 −1.3 0.945

L1/GoGn 90.6 (7.5) 64.1 107.0 93.2 (8.0) 74.2 112.1 −2.6 0.003

SN-GoGn 33.1 (6.6) 19.0 55.4 31.7 (5.4) 16.3 42.4 1.4 0.021

SN/ANS-PNS 7.0 (4.8) 0.0 18.8 7.7 (3.4) 1.1 17.0 −0.7 0.125

SNA 82.4 (6.5) 67.1 106.2 81.7 (3.4) 73.4 91.5 0.7 0.246

SNB 78.9 (6.5) 63.2 98.8 78.2 (3.8) 71.4 90.0 0.7 0.256

SNMP 35.6 (6.6) 21.7 58.5 34.4 (5.5) 19.5 45.4 1.2 0.061

SNPg 98.5 (7.8) 82.4 120.1 98.2 (7.9) 80.5 119.5 0.3 0.252

U1-NA 35.9 (5.5) 30.4 41.4 35.4 (3.4) 32 38.8 0.5 0.014

U1-L1 131.9 (11.1) 107.0 167.6 128.6 (10.5) 101.2 157.0 3.3 <0.001 *

U1-SN 105.6 (7.7) 88.2 122.6 105.9 (8.0) 90.2 124.6 −0.3 0.629

U1/ANS-PNS 111.6 (5.5) 96.4 125.8 112.8 (9.2) 54.2 130.9 −1.2 0.195

* it is used broadly for statistical significance results.

3.2. European Board of Orthodontics Cephalometric Analysis

There was no significant difference between the two methods for the measurements of
SNPg, ANPg, SN/ANS-PNS, SN/Go-Gn, U1/ANS-PNS, L1/GoGn, and L1/APg (p > 0.05)
while there was a significant difference between the two methods for the measurements
of ANS-PNS/GoGn and U1-L1 (p < 0.05). All measurements showed a high correlation
between the two methods (ICC > 0.70) (Tables 2 and 3).

4. Discussion

This study compared a digital automatic method and a digital manual method of the
cephalometric analysis of the skull.

There have been studies that compared the accuracy of digital tracing to manually
tracing X-rays on acetate paper at the very beginning of digital cephalometric analysis.
Their findings revealed no statistically significant differences between the two strategies
for identifying landmarks. There is a strong correlation between the reproducibility of
landmarks within examiners when using manual and computerized procedures. However,
whereas the measurement errors were generally equal, the inter-examiner repeatability of
landmarks was unsatisfactory. Computerized measures offer a sizable time benefit over the
manual approach. When the time benefits are considered, computer-assisted cephalometric
studies can benefit physicians more because they do not result in an increase in intra- and
inter-examiner error. The results of the digital cephalometric tracing between the various
programs were identical [27–29].

Later, studies looked over the accuracy of automatic landmark identification for digital
cephalometric analysis using different software. In 2020, Meric and Naoumova discovered
that fully automated solutions can perform cephalometric analyses more quickly and
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accurately. According to the study’s findings, the manual correction of CephX landmarks
produces results that are comparable to those of digital tracings made with CephNinja and
Dolphin but take much less time to analyze. A year later, Bulatova et al. discovered that
only the U apex, L apex, Basion, Orbitale, and Gonion landmarks identification from the
automatic digital cephalometric approach revealed a statistically significant difference, but
none of the other landmarks did [30,31].

Our study revealed significant differences in FMA, L1MP, ANS-PNS/GoGn, and
U1-L1 landmarks while the rest showed no significant differences. These results showed
an agreement with the research of Bulatova et al. It is important to mention that all
measurements that resulted in a statistically significant difference between the two methods
do not appear to have a clinically significant difference. In cephalometrics, for every
measurement, there is a norm value with a standard deviation. The means and the standard
deviation of the values between the manual and the automatic tracing that were statistically
significant only differ in decimal points or by a couple of degrees. As a result, our final
diagnosis will not be affected by these cephalometric measurements since those differences
in the values are very small and will maintain a final diagnostic outcome in relation to
the norms. Therefore, we can conclude that the automatic tracing method is reliable and
accurate when used as a diagnostic method.

5. Conclusions

The automatic cephalometric tracing method using CS imaging V8 software is a
reliable and accurate method for all cephalometric measurements. There was a high
intraclass correlation coefficient between the two methods for all measurements. There
were differences in FMA, L1-MP, ANS-PNS/GoGn, and U1-L1 measurements but they are
not considered clinically significant.
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