Skip to main content
. 2022 Nov 19;11(22):6844. doi: 10.3390/jcm11226844

Table 2.

Studies show the role of AI in the diagnosis, and prediction of, DM, DFI, and CVD.

SN Citations IC DS REL PRE ClassTy TOC ML/DL ACC % AUC SEN SPE F1 MCC
1 Parthiban et al. [127] (2012) LBBM 341 DM, CVD, and AI CVD SVM NB ML 74.23 0.73 0.79 NR NR NR
2 Jelinek et al. [128] (2016) OBBM, LBBM 88 DM, CVD, and AI CVD SVM RF ML 81.00 0.89 0.91 0.89 NR NR
3 Zarkogianni et al. [129] (2017) OBBM, LBBM 560 DM, CVD, and AI CVD SVM NB ML 76.34 0.87 0.79 0.76 NR NR
4 Basu et al. [130] (2018) OBBM, LBBM 2529 DM, CVD, and AI Death PCA KNN, DT ML 84.34 0.843 0.87 NR 0.76 0.843
5 Dinh et al. [101]
(2019)
OBBM, LBBM 131 DM, CVD, and AI DM, CVD XGBoost RF ML 84.10 0.81 0.78 0.73 NR NR
6 Segar et al. [131] (2019) OBBM, LBBM 319 DM, CVD, and AI Heart Failure LDA RF ML 76.00 0.778 0.76 NR 0.79 0.778
7 Aggarwal et al. [116] (2020) OBBM, LBBM 526 DM, CVD, and AI CVD SVM ANN ML 86.00 0.863 NR 0.81 0.71 NR
8 Derevitskii et al. [115] (2020) OBBM, LBBM 8139 DM, CVD, and AI Stroke, DM XGBoost NB ML 84.53 0.87 0.91 0.86 NR NR
10 Hossain et al.
[132] (2021)
OBBM, LBBM 4819 DM, CVD, and AI CVD SVM RF ML 88.16 0.80 NR NR 0.88 NR
11 Longato et al.
[103] (2021)
OBBM, LBBM 24676 DM, CVD, and AI CVD SVM CNN DL 79.81 0.76 0.84 NR 0.79 NR
SN Citations IC DS REL PRE ClassTy TOC ML/DL ACC % AUC SEN SPE F1 MCC
13 Hyerim et al.
[102] (2022)
OBBM, LBBM 10442 DM, CVD, and AI DM, CVD LR, DT CNN DL 80.88 0.86 0.81 NR NR NR
14 Goyal et al. [30] (2020) OBBM, LBBM 7136 DFI and AI Diabetic foot Infection NR CNN DL 91.21 0.93 0.84 0.89 NR NR
15 Alzubaidi et al. [51] (2020) OBBM, LBBM 754 DFI and AI DFI KNN DNN DL 93.04 0.91 0.87 0.83 0.94 NR
16 Khandekar et al. [100] (2021) LBBM (IR) 202 DFI and AI Diabetic foot 6
Models
CNN DL 92.51 0.92 NR NR 0.81 NR
17 Isaza et al. [29] (2021) OBBM, LBBM 146 DFI, CVD, and AI DFI PCA CNN DL 88.24 0.84 0.86 0.79 NR NR

SN: serial number, IC: input covariates, DS: data size, REL: Relation, PRE: Prediction, ClassTy: Classifier type, OBBM: Office base biomarker, LBBM: Lab base biomarker, FE: feature extraction, TOC: Type of classifier, ACC: Percentage accuracy, SEN: Sensitivity, SPE: Specificity, MCC: Mathew coefficient correlation, AUC: Area under curve, DL: Deep learning, ML: Machine Learning, CNN: Convolution neural network, DFI: Diabetic Foot Infection, DNN: Deep neural network, RF: Random forest, SVM: Support vector machine, DT: Decision tree, LR: Logistic Regression, US: Ultrasound, NR: not reported.