Skip to main content
. 2022 Nov 10;24(11):e40124. doi: 10.2196/40124

Table 3.

Ordinary least squares (OLS) estimates for linear-in-parameter regressions capturing the impact of health information technology (HIT) and electronic health record (EHR) on emergency care clinical outcomes.

Dependent variable lna (O/E ratio emergency care)b

Model I (HIT) Model II (EHR adoption) Model III (EHR user value)

β (SE) P value β (SE) P value β (SE) P value
Intercept .557 (0.506) .27 .479 (0.65) .46 −.563 (1.007) .58
HIT adoptionc −.001 (0.001) .54 N/Ad N/A N/A N/A
HIT user-valuee −.032 (0.016) .04 N/A N/A N/A N/A
EHR adoptionf N/A N/A .053 (0.034) .11 N/A N/A
EHR user-valuee N/A N/A N/A N/A −.018 (0.022) .42
#beds

<150 .037 (0.087) .67 −.082 (0.108) .45 −.087 (0.147) .55

150-300 .027 (0.046) .56 −.002 (0.061) .97 .033 (0.077) .66

301-600 −.035 (0.049) .47 −.002 (0.064) .97 .065 (0.082) .43

>600 −.028 (0.086) .74 .087 (0.114) .45 −.01 (0.14) .94
ln(#total cases) .102 (0.051) .04 .026 (0.068) .70 .134 (0.086) .12
ln(#emergency cases) −.559 (0.167) <.001 −.288 (0.214) .18 −.203 (0.286) .48
ln(#emergency cases)^2g .058 (0.019) .004 .027 (0.025) .28 .018 (0.033) .58
Teaching(yes) −.036 (0.032) .26 −.015 (0.214) .72 −.022 (0.054) .68
Private(yes) .007 (0.037) .83 .017 (0.046) .72 .059 (0.060) .33
Subsample size 261 174 82
R 2 0.098 0.047 0.117
F value 2.727 .003 0.905 .52 1.061 .40

aln implies natural logarithm.

bO/E (observed-over-expected) ratio implies better performance with lower values.

cOn a 0-to-415 scale from worst to best.

dN/A: not applicable.

eOn a 1-to-10 scale from worst to best.

fAdoption of EHR.

gTests for an inverse U–shaped relationship between case volumes and outcomes for emergency care.