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Abstract
Diabetic wounds (DWs) are a common complication of diabetes mellitus; DWs 
have a low cure rate and likely recurrence, thus affecting the quality of patients’ 
lives. As traditional therapy cannot effectively improve DW closure, DW has 
become a severe clinical medical problem worldwide. Unlike routine wound 
healing, DW is difficult to heal because of its chronically arrested inflammatory 
phase. Although mesenchymal stem cells and their secreted cytokines can 
alleviate oxidative stress and stimulate angiogenesis in wounds, thereby 
promoting wound healing, the biological activity of mesenchymal stem cells is 
compromised by direct injection, which hinders their therapeutic effect. Hydro-
gels form a three-dimensional network that mimics the extracellular matrix, which 
can provide shelter for stem cells in the inflammatory microenvironment with 
reactive oxygen species in DW, and maintains the survival and viability of stem 
cells. This review summarizes the mechanisms and applications of stem cells and 
hydrogels in treating DW; additionally, it focuses on the different applications of 
therapy combining hydrogel and stem cells for DW treatment.
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Core Tip: Diabetic wounds are a common diabetes mellitus complication with a low cure rate and likely 
recurrence. Although stem cell therapy is suitable for diabetic wound healing, simple transplantation 
methods, such as intravenous, subcutaneous, intramuscular, and local injection, are not conducive to cell 
survival, thus resulting in compromised efficacy. To improve the outcome of stem cell therapy, 
researchers have designed different types of hydrogels for stem cell delivery to ensure cell viability and 
paracrine functions. Herein, we discuss the current roles and applications of hydrogel and stem cell 
combination therapy for diabetic wound treatment.
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INTRODUCTION
Diabetes mellitus (DM) is a significant global public health burden because of its high incidence and 
mortality rates[1]. In 2019, 1.5 million people died of DM[2]. Diabetic wounds (DWs) are one of the most 
concerning complications of DM and affect up to 25% of diabetic patients[3]. In addition to causing 
patient suffering, DW has a low cure rate and high amputation rate, and thus it places a long-term 
burden on society[4].

DW is difficult to heal because its healing process is unlike that of normal wounds. Normal wound 
healing typically includes three phases: Inflammation, proliferation, and remodeling. Various cells, 
growth factors, and cytokines play important roles in each phase to ensure a smooth wound healing 
progress[5]. Owing to the elevated levels of reactive oxygen species (ROS), impaired immune function, 
and cellular dysfunction in the DW microenvironment, the healing stage stagnates in the inflammatory 
phase[6]. In addition, the peripheral arterial disease leads to a lack of blood perfusion and hypoxia 
within wounds, thereby increasing ROS release[5]. ROS also induces the expression of extracellular 
matrix (ECM) degradation enzymes that degrade ECM, thus precluding the normal matrix-cell 
interaction required for wound healing and prolonging the inflammation phase of DW healing[5].

DW healing remains a clinical challenge because of several complications in the DW microenvir-
onment, including oxidative stress, chronic inflammation, and angiogenic dysfunction[7]. Current 
clinical treatments (standard care) involve glycemic control, offloading, debridement, and infection 
management, which are painful and insufficient for curing DWs[8]. Therefore, new approaches for 
improving DW healing must be developed. The application of functional hydrogel dressings or 
scaffolds is a promising advanced therapy[9].

Hydrogels are three-dimensional (3D) networks with a high water content and have been intensively 
studied because they can be functionalized and have good biocompatibility. Several studies have shown 
that hydrogels provide a moist environment, contribute to cell migration and tissue regeneration, and 
promote wound healing[10]. Therefore, hydrogels are considered ideal dressings for DWs[11]. 
Furthermore, hydrogels provide antioxidant, antibacterial, proangiogenic, and proliferative functions 
owing to the sustained release of bioactive agents encapsulated in hydrogels. Stem cells are bioactive 
agents that promote wound healing and are effective in skin regeneration[12].

Stem cells possess self-renewal and differentiation abilities and are essential for post-injury skin 
repair[13]. Thus, stem cell therapy has become a promising new approach for treating DWs. Local 
injection of the cell suspension or stent implantation stimulates neovascularization, accelerates wound 
closure, prevents wound contracture and scar formation, and ultimately improves wound healing[14]. 
However, the outcome of stem cell therapy is hindered by the poor bioactivity of stem cells and thus the 
low amounts of secreted cytokines in the hyperglycemic inflammatory microenvironment of DWs. 
Effective stem cell delivery remains a challenge[15].

To achieve better healing outcomes combining hydrogel and stem cell treatment is one of the most 
promising therapies for DWs[16]. Although various reviews on stem cell therapy or hydrogel therapy 
for DWs have been reported, reviews on combined therapy are limited. Herein, we review the 
mechanisms of DW therapy combining hydrogel and stem cells and focus on preclinical studies of 
therapy combining hydrogel and stem cells for DWs.

FUNCTIONAL HYDROGELS FOR DW TREATMENT
Wound dressings play an essential role in DWs[2]. Hydrogels have become appealing and promising 
among various wound dressings owing to their high moisture retention, biocompatibility, and 
similarities to living tissues[17]. Hydrogels accelerate wound healing by maintaining gas exchange in 

https://www.wjgnet.com/1948-9358/full/v13/i11/949.htm
https://dx.doi.org/10.4239/wjd.v13.i11.949


Huang JN et al. Combination therapy for diabetic wound healing

WJD https://www.wjgnet.com 951 November 15, 2022 Volume 13 Issue 11

the wound, reducing pain by absorbing exudates, preventing infection, and maintaining a moist 
environment for cell migration. In addition, hydrogels have been used as delivery systems to minimize 
drug toxicity and improve drug delivery efficiency[2]. Functional hydrogels, such as antioxidant, 
immune regulation, and vascularization hydrogels, have been designed according to the wound 
microenvironment of DWs.

DWs are often accompanied by oxidative and antioxidant imbalance in vivo. Hydrogels are designed 
to alleviate excessive oxidative reactions. Self-antioxidant materials, such as 2-hydroxyethyl methac-
rylate[18] and polyvinyl alcohol, can directly act on wounds; additionally, gel-loaded antioxidant drugs, 
such as curcumin[19], or bioactive substances can be used to achieve antioxidant effects. These materials 
act as reducing agents.

Because the inflammatory phase has an active defense response to external stimuli, the inflammatory 
response aids in cleaning the wound during the healing process[20]. However, in chronic wounds, such 
as DWs, owing to repeated tissue damage, cytokines continue to recruit immune cells to the wound, 
thereby resulting in an excessive inflammatory response and blocked healing[21]. Therefore, the 
inhibition of excessive immune responses is also considered. Hydrogels, such as sodium alginate and 
zwitterionic hydrogels, can provide a protective microenvironment for wounds and regulate the 
transformation of macrophages between proinflammatory and anti-inflammatory[20]. Meanwhile, anti-
inflammatory drug-loaded hydrogel dressings have a local sustained-release effect[22]. Responsive 
hydrogels that can change their properties according to environmental clues to achieve sustained release 
of entrapped drugs are also desirable.

Angiogenesis is essential for tissue regeneration, whereas the formation of healthy blood vessels is 
hindered by various microenvironment conditions in DWs[23]. Therefore, promoting blood vessel 
formation is conducive to DW healing. Studies have shown that some hydrogel materials, such as 
chitosan and hyaluronic acid, regulate the activity and distribution of cytokines or growth factors[24]. 
These materials simulate the microenvironment of the ECM, thereby promoting tissue formation. 
Bioactive components, including epidermal growth factor and vascular endothelial growth factor, can 
also be encapsulated by hydrogels, which can promote the regeneration of blood vessels[25].

In general, the mechanism of hydrogels in DWs is relatively clear and positively affects DW healing.

CURRENT STUDIES OF MESENCHYMAL STEM CELLS FOR DW HEALING
In addition to selecting different hydrogel materials, drugs, and biological factors, using stem cells to 
treat DWs is desirable. Stem cells can asymmetrically replicate and differentiate into different cell types
[26]. With the unlimited replication capacity, they can provide numerous “sister” stem cells[15]. 
Furthermore, because stem cells secrete pro-regenerative cytokines, stem cell therapy, which treats 
diseases or injuries by administering stem cells into damaged tissues, has been used as an intervention 
for DWs[27]. Stem cells used for wound healing and tissue regeneration include embryonic stem cells, 
induced pluripotent stem cells, and mesenchymal stem cells (MSCs)[15].

Allogeneic, xenogeneic, and autologous MSCs have been widely used in skin regeneration and 
wound healing owing to their significant proliferation, migration ability, and long-term self-renewal 
potential[28]. Considering the impaired function of MSCs derived from patients with diabetes and the 
risk of tissue rejection, allogeneic MSCs are more widely used[29].

MSCs that are locally injected into wounds are involved in various stages of wound healing. They 
reduce inflammatory responses through immunomodulation and growth factor production[15], 
accelerate neovascularization and epithelialization, and stimulate collagen synthesis[30], thereby 
accelerating wound healing[30]. Additionally, clinical studies have demonstrated the efficacy of MSCs 
in treating diabetic ulcers[30]. For example, injecting allogeneic MSCs into the dermis-epidermal 
junction[31] or subcutaneous and intramuscular tissue around wounds[32] facilitated DW healing in 
patients.

The potential benefits of MSC therapy have been demonstrated in several studies. Although simple 
transplantation methods, such as intravenous, subcutaneous, intramuscular, and local injection of 
MSCs, have achieved some preclinical and clinical success[5], MSC performance still has numerous 
limitations. Premature senescence and apoptosis of MSCs transplanted in DWs are some of the biggest 
limitations[33,34]. Owing to hyperglycemia caused by DM, DWs generate a chronic inflammatory 
microenvironment and accumulate advanced glycation end products, which is not conducive to the 
survival of stem cells[35] and increases the degradation of growth factors secreted by the effector cells, 
thus compromising efficacy[36]. Hence, the delivery strategy must be optimized to ensure cell viability, 
paracrine function, and differentiation function, which in turn ensures MSC therapy outcomes.

Abundant evidence has shown that using hydrogels to deliver MSCs improves DW healing. 
Hydrogels are ideal carrier systems for stem cells because they produce a relatively uniform distribution 
of transplanted cells and retain high water content, close to that of the native tissue, thus improving the 
retention and survival of stem cells at transplantation sites. Transplanted stem cells can exert their 
functions through paracrine signals and differentiate into the various cell types required in healthy 
tissues (Figure 1).
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Figure 1 Therapy combining hydrogels and mesenchymal stem cells promotes diabetic wound healing. Mesenchymal stem cells (MSCs) in 
hydrogels are long-lasting in the wound and regulate wound healing. These cells release exosomes, growth factors, and cytokines, reduce the levels of interleukin-1, 
tumor necrosis factor-α, and other pro-inflammatory cytokines to modulate the inflammatory response, enhance angiogenesis via increasing vascular endothelial 
growth factor and hepatocyte growth factor, and promote fibroblast and keratinocyte migration. MSCs can also be transdifferentiated into other cell types to increase 
wound closure. MSCs: Mesenchymal stem cells; IL-1: Interleukin-1; TNF-α: Tumor necrosis factor-α; VEGF: Vascular endothelial growth factor; HGF: Hepatocyte 
growth factor.

APPLICATIONS OF COMBINATION THERAPY OF HYDROGEL AND STEM CELLS FOR 
DW HEALING
As previously discussed, although stem cell therapy has promising potentials for DW healing, the lack 
of an optimal delivery strategy is one of the biggest obstacles to its therapeutic efficacy. Traditional 
injection of MSCs always results in low cell viability and transient engraftment, whereas using 
advanced biomaterial scaffolds (such as films, nanofibers, and hydrogels)[13] to maintain cellular 
viability, proliferation, and differentiation has received considerable attention[37]. Hydrogels have 
physical and biological characteristics similar to those of natural tissues[36]; this renders them as ideal 
candidates for stem cell delivery. Inspired by the encouraging outcomes of hydrogels on DW healing 
and their function as a carrier system for drugs, the efficacy of MSCs has been improved with hydrogels
[37]. For a successful clinical application of the therapy, the optimal hydrogel composition for cell 
delivery must be considered, and appropriate application methods to ensure stem cell viability and 
promote DW healing must be designed. Currently, the most common application methods of hydrogels 
and stem cell combination therapy for DW healing are divided into hydrogel sheets, in situ forming 
hydrogels, and hydrogel microspheres (MS) (Figure 2).

HYDROGEL SHEETS
Applying hydrogel sheets on wounds is a convenient stem cell delivery method, wherein hydrogels are 
typically preformed in molds, with stem cells seeded onto or inside hydrogels. Rustad et al[38] seeded 
MSCs onto collagen-pullulan hydrogels and significantly accelerated wound healing and skin 
appendage recovery in mice within 11 d. The amount of microangiogenesis was approximately doubled 
in wounds treated with MSC-seeded hydrogel sheets compared with those treated with MSC injection. 
Given that the biomimetic hydrogel provides a functional niche to augment the regenerative potential of 
MSCs, the implanted MSCs differentiated into dermal fibroblasts, pericytes, and endothelial cells, which 
contribute to wound healing[38]. In another study, Guo et al[39] demonstrated the improved retention 
and survival rate of MSCs in hydrogel sheets when transplanted into mouse hearts compared to cell 
suspension alone. Cells were observed inside the hydrogel sheets for over 9 d in ICR mice.

In vitro culturing of stem cells within hydrogels was found to promote cell adhesion and enhance 
stem cell functions by supporting normal phenotype maintenance and empowering the transdifferen-
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Figure 2 Three application methods of hydrogels and mesenchymal stem cells combination therapy for diabetic wound healing. A: 
Hydrogel sheets preformed before application; B: In situ forming hydrogels injected at the wound for sol-gel transition; C: Hydrogel microspheres applied onto the 
diabetic wound. MSCs: Mesenchymal stem cells.

tiation capacity into specific skin lineages compared with the immediate transplantation of stem cell-
seeded hydrogels[40]. Da Silva et al[41] pre-cultured adipose-derived stem cells (ADSCs) in hyaluronic 
acid-based sponge hydrogel in neurogenic/standard media for 14 d before transplantation onto the 
DWs of mice. Wounds treated with pre-cultured ADSCs-loaded spongy hydrogels improved wound 
closure rates compared to the untreated control and acellular spongy hydrogel groups after healing for 4 
wk. The hydrogel sheet promoted the polarization of M1-type macrophages to the M2 type (anti-inflam-
matory) and improved successful neoinnervation.

Because of the high concentration of inflammatory cytokines in the DW microenvironment, which 
impairs the activity of MSCs and degrades growth factors secreted by stem cells, single functional 
hydrogel sheets may not be sufficient for DW healing[42]. To be more suitable for DW treatment, 
hydrogel sheets that inhibit inflammatory responses or protease activity are more effective[43]. Ahmed 
et al[44] studied the wound healing efficacy of bone marrow-derived mesenchymal stem cells (BMSCs) 
delivered by nitric oxide (NO)-releasing hydrogels on diabetic rabbits. As an endogenous molecule, NO 
increased angiogenesis and improved immune responses during acute infections. NO-releasing 
hydrogels increased the viability and proliferation of BMSCs under oxidative stress. In addition to 
improving collagen deposition and promoting re-epithelialization and angiogenic activity, the NO-
releasing hydrogel with BMSC treatment upregulated the expression of growth and cytoactive factors 
for DW healing within 16 d[44].

In addition to traditional manufacturing technology, 3D bioprinting builds special structures layer-
by-layer according to a predetermined computer model that better fits the skin’s architecture and 
geometry, providing hydrogel sheets with more complex structures[45]. Xia et al[46] developed 
curcumin-incorporated 3D bioprinting gelatin methacryloyl (GelMA) to seed ADSCs and promote DW 
healing within 21 d. Curcumin encapsulation in 10% GelMA hydrogel exhibited inhibitory effects on 
ROS generation and ADSC apoptosis, and living cells were detected after scaffolds embedded with 
ADSCs were implanted into the backs of nude mice for 21 d. Further, the scaffold increased the amount 
of collagen deposition and induced angiogenesis in DWs[46]. In addition to 3D bioprinting, multifunc-
tional hydrogel sheets with complex 3D structures can be produced by folding or weaving microfiber-
shaped hydrogels[47]. Hydrogel sheets can also be easily functionalized, such as the thermally 
responsive release of stem cells or drugs[48] for oxidative stress resistance, antibacterial activity, and 
other functions.
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Because stem cells can be cultured separately and the hydrogel sheet is easy to handle, combination 
therapy with hydrogel sheets and MSCs is easily translated into a clinical setting[49]. According to a 
clinical report, Ravari et al[50] applied BMSCs along with platelets, fibrin glue, and bone marrow-
impregnated collagen matrix onto wounds, which resulted in the complete wound closure in 3 of 8 
patients with aggressive, refractory DWs within 4 wk of treatment. Additionally, topical administration 
of placenta-derived mesenchymal stem cells in a sodium alginate hydrogel completely healed diabetic 
foot ulcers[51]. However, this clinical case report must be evaluated further because of the limited 
sample size of the report. Although functionalizing or changing shapes is very convenient, hydrogel 
sheets must be pre-formed before application. Because hydrogel sheets are not conducive to long-term 
storage and the bonding between the sheets and wound surface is limited, in situ forming hydrogels 
have attracted attention.

IN SITU FORMING HYDROGELS
In situ forming hydrogels are another mainstream application of combination therapy, with stem cells 
suspended in the precursor solution before application[52]. After the mixed precursor solution is 
injected into the wound site, the hydrogel containing stem cells is formed in situ on wound beds via 
chemical bonds[53]. Compared with hydrogel sheets, injectable hydrogels are more flexible in their 
application; this flexibility allows them to adapt to complex-shaped wounds and fit closely[54]. Eke et al
[55] designed a precursor solution composed of GelMA and methacrylated hyaluronic acid containing 
ADSCs, which can be crosslinked within 40 s of ultraviolet irradiation to form hydrogels in situ. 
Reportedly, the hydrogel promoted cell proliferation, and in vivo studies revealed a three-fold increase 
in vascularization for the ADSC-loaded hydrogel group compared to the hydrogels without cells.

However, because ultraviolet irradiation may induce chromosomal and genetic instability[56], 
ultraviolet-crosslinked hydrogels on exposed wounds negatively affect cell viability and differentiation
[57], which is detrimental to wound healing. Owing to its high biocompatibility and specificity[58], 
enzymatic crosslinking has received considerable attention[59]. Yao et al[52] developed a gelatin-
hydroxyphenyl hydrogel with the dual enzyme crosslinking of horseradish peroxidase and galactose 
oxidase, and the hydrogel encapsulated with BMSCs achieved gelation within 5 min at the wound site. 
The gelatin-hydroxyphenyl hydrogel provides a friendly 3D microenvironment for BMSCs, thereby 
improving the transplanted cells’ survival and accelerating wound closure[52].

Given that frequently studied natural hydrogels, such as gelatin, collagen, or hyaluronic acid, contain 
a single component of ECM, their potential to provide the optimum microenvironment for stem cell 
proliferation and differentiation is limited[60]. ECM maintains the original components of the native 
tissue and is considered an ideal scaffold for tissue regeneration[61]. Chen et al[62] developed an ECM-
derived hydrogel from human decellularized adipose tissue matrix to deliver ADSCs to DWs. The 
hydrogel was prepared via pepsin digestion and pH neutralization. The paracrine activity of ADSCs 
encapsulated in the hydrogel was enhanced, whereas the secretion of hepatocyte growth factor 
increased, thus promoting neovascularization during wound healing[62]. Compared with the untreated 
control, local ADSC injection, and acellular hydrogel groups, treatment with ADSC-hydrogel 
composites accelerated wound closure in diabetic mice and restored cutaneous appendages within 14 d
[62].

For better DW healing outcomes, specific materials are co-entrapped inside the hydrogel for 
hemostasis and anti-inflammatory properties, and the stem cell viability in the hydrogel can reach an 
ideal state by optimizing its mechanical strength. Xu et al[63] encapsulated MSCs in an injectable 
hydrogel system of GelMA and chitosan-catechol cross-linked with dithiothreitol to repair full-thickness 
DWs. Chitosan-catechol has a good hemostatic effect, and zinc ions were introduced into the hydrogel 
to enhance angiogenesis. The cell adhesion, proliferation, and differentiation potency of umbilical cord-
derived mesenchymal stem cells in vitro were well maintained in GelMA with optimal stiffness. At the 
same time, the hydrogel-umbilical cord-derived mesenchymal stem cells combined treatment promoted 
DW healing by inhibiting the inflammatory factors TNF-α and IL-1β in vivo, with a wound closure rate 
of 92.2% within 14 d. Compared with the untreated control, local umbilical cord-derived mesenchymal 
stem cell injection, and acellular hydrogel groups, collagen deposition was significantly abundant on 
day 7, whereas the most vascular regeneration with the earliest hair follicle formation was found on day 
14[63].

Dispersive MSCs are usually loaded inside hydrogels. Recently, 3D MSC spheroids were found to 
possess better differentiation potential than dispersive MSCs[64], which exhibited enhanced vascular-
ization and anti-inflammatory effects[65], thereby promoting wound closure[66]. Yang et al[67] 
combined injectable thermosensitive chitosan/collagen/β-glycerophosphate hydrogels with 3D MSC 
spheroids, rapidly converted to a gel by physical cross-linking at body temperature, and then 
completely covered the wound surface and fitted to any shape of the wound bed. Compared with the 
local 2D monolayer MSC injection and 2D monolayer MSC-encapsulated hydrogel groups, angiogenic 
factors were much higher for wounds treated with 3D MSC spheroid-encapsulated hydrogel (almost 3-
fold), and neovascularization was enhanced, thereby achieving complete re-epithelialization within 3 
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wk of implantation[67].
Although in situ forming hydrogels adapt to complex-shaped wounds and fit tightly, thus enabling 

flexible use at the wound bed, the bulk hydrogel formed at the wound site produces poor tissue infilt-
ration and thus low stem cell survival. Compared with in situ forming hydrogels, hydrogel MSs have a 
larger specific surface area and more specific functions, thus playing an essential role in the medical 
field.

HYDROGEL MS
Hydrogel MSs exhibit good dispersion and stability in physiological environments with a high drug-
loading capacity[68]. Their drug-carrying[69] and bioactive factors[70] are highly effective in wound 
healing. We previously demonstrated that antibiotic and growth factor separately loaded algi-
nate/CaCO3 MSs prepared using microfluidic technology sustainably released drugs and exhibited pH 
sensitivity. These MSs were embedded in the regenerated tissue and functioned as scaffold materials. 
They improved wound healing with thicker granulation tissue and stimulated angiogenesis, ideally 
meeting the requirements of different stages of wound healing[71]. Lei et al[70] developed biohybrid 
agarose MSs conjugated with basic fibroblast growth factor, which achieved local growth factor 
delivery, stimulated angiogenesis, and enhanced wound healing in diabetic mice.

The special geometry of hydrogel MSs is conducive to the diffusion of nutrients and wastes[72]. MSs 
that deliver stem cells can release stem cells, thereby promoting proliferation and differentiation of 
surrounding cells and enhancing the formation of integrated functional tissues[73]. Stem cell-loaded 
MSs have been applied in various tissue systems, including cartilage[74], bone[75], bone marrow[72], 
and brain[76]. Intracerebral implantation of stem cells using MSs in the rat brain improved stroke 
treatment[76]. Mao et al[72] demonstrated that microgel encapsulation sustained MSC survival after 
intravenous injection in mice and enhanced the immunoregulatory capacity of MSCs in a bone marrow 
transplantation model.

Considering that our previous study demonstrated that hydrogel MSs act as scaffolds and gradually 
integrate into regenerated skin tissue, we designed gelatin MSs encapsulated with ADSCs from rats 
(rADSC/MS) with an ideal mechanical strength and degradation rate that matched tissue regeneration 
to improve DW healing[77]. Gelatin MSs promoted the adhesion and proliferation of fibroblast cells and 
maintained the viability of encapsulated rADSCs. Slowly released exosomes from rADSCs were 
eventually internalized by HUVECs, which suggested a potential exosome mechanism for improving 
wound healing. The implanted rADSC/MS gradually integrated into the regenerated skin tissue, thus 
facilitating the arrangement of neat collagen fibers. Compared with the untreated group and the MS 
group, rADSCs embedded in rADSC/MS promoted M2 macrophage polarization and recovery of 
peripheral nerves, formed larger blood vessels, and eventually generated a dermis close to normal tissue 
within 14 d[77].

Previous studies have demonstrated that hydrogels provide a functional niche for MSCs, which 
enhances MSC regeneration potential and promotes wound healing. Preclinical studies on the combined 
treatment of DWs with hydrogels and stem cells are summarized in Table 1.

CONCLUSION
This review discussed the benefits associated with therapy combining hydrogels and MSCs for DW 
healing. Researchers have explored different application methods for stem cell delivery with hydrogels, 
including hydrogel sheets, in situ forming hydrogels, and hydrogel MSs. In addition to providing a 
friendly microenvironment for stem cells, this strategy enhances the adhesion between the dressing and 
wound and facilitates the function of stem cells, ultimately benefiting vascular and neural regeneration 
in DWs. Among these application methods, hydrogel MSs have the advantages of a larger specific 
surface area, more uniform dispersibility, and more specific functions; additionally, they can effectively 
deliver various types and functions of cells into the wound. Therefore, hydrogel MSs loaded with stem 
cells are expected to play an important role in clinical practice.

Therapy combining hydrogels and MSCs has shown great potential for DW healing. However, the 
plasticity of MSCs has led to their double-sidedness for clinical applications. Although the multi-differ-
entiation ability provides them with good application prospects, it increases the risk of tumorigenicity
[78]. As a solution, cell-free treatments, such as exosomes and artificial cell products derived from the 
MSCs secretome have attracted recent interest. Exosomes and secretomes retain the paracrine factors of 
stem cells[7]. Although extensive studies have explored the combination therapies of hydrogels and 
MSCs for DW healing, additional work is required to optimize parameters, such as the storage and 
transport stability of cells, and avoid their tumorigenic and immunogenic risks. Further improvement 
and testing of this technology in vivo will also contribute to the clinical transformation of combination 
therapy.
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Table 1 Summary of studies regarding therapy combining hydrogels and stem cells for diabetic wound healing

Stem cell 
information, 
types, 
dosage in 
cells/wound

Hydrogel 
composition Hydrogel types Application 

methods Animal

Wound 
size 
diameter, 
location

Full re-
epithelialization 
efficiency

Outcome Ref.

UMSCs from 
human, 
xenogeneic, 1 
× 106

Self-assembled 
nanopeptide 
hydrogels based on 
RADA16-I, RGD, 
and KLT peptide 
solutions

Self-assembled 
nanopeptide 
hydrogels with 
easy biomimetic 
functionalization

Cells were 
encapsulated 
into the in situ 
forming 
hydrogels

NOD/SCID 
mice

8 mm, 
dorsal

10 d Accelerated skin 
wound healing by 
inhibiting inflam-
mation and 
promoting 
angiogenesis

[14]

BMSCs from 
rats, 
allogenic, 2 × 
105

N-chitosan/ HA-
ALD hydrogel

Hemostasis and 
antimicrobial 
hydrogels

Cells were 
encapsulated 
into the in situ 
forming 
hydrogels

STZ-induced 
diabetic rats

5 mm, foot 12 d Promoted wound 
healing; stimulated 
the secretion of 
growth factors from 
rBMSCs, and 
modulated the inflam-
matory environment 
by inhibiting the 
expression of M1 
macrophages and 
promoting the 
expression of M2 
macrophages, 
resulting in 
granulation tissue 
formation, collagen 
deposition, nucleated 
cell proliferation, 
neovascularization

[37]

ADSCs from 
human, 
xenogeneic, 3 
× 105

GG-HA spongy 
hydrogel

Vascularization 
hydrogels

Cells were 
seeded onto 
the top of 
spongy-like 
hydrogel 
sheets

STZ-induced 
diabetic mice

9 mm, 
dorsal

4 wk Accelerated excisional 
skin wound healing; 
induced the healing 
phase switch from the 
inflammatory to the 
proliferative phase; 
presented a thicker 
epidermis with a high 
number of prolif-
erative keratinocytes 
in the basal layer; 
increased the number 
of intraepidermal 
nerve fibers in the 
regenerated 
epidermis

[41]

BMSCs from 
rabbits, 
allogenic, 1 × 
106

SNAP-loaded 
chitosan-PVA 
hydrogel

Vascularization 
hydrogels

Cells were 
intradermally 
injected and 
topically 
covered with 
hydrogel 
sheets

Alloxan 
monohydrate 
induced 
diabetic 
rabbits

20 mm, 
dorsal

14 d Augmented the 
wound closure, 
decreased inflam-
mation, and 
upregulated 
expression of CD31, 
VEGF and TGFβ-1; 
promoted 
angiogenesis by 
forming new 
capillaries and 
improving the 
microvascular and 
vessel maturation; 
showed an abundant 
expression of collagen 
type I on day 14

[44]

ADSCs from 
human, 
xenogeneic, 5 
× 105

Curcumin-
incorporated 3D 
bioprinting GelMA 
hydrogel

Antioxidant 
hydrogels

Cells were 
encapsulated 
into hydrogel 
sheets

STZ-induced 
diabetic nude 
mice

15 mm, 
dorsal

21 d Promoted wound 
healing; improved 
hADSCs apoptosis 
and increased the 
amount of collagen

[46]

Cells were 
suspended in 
the in situ 
forming 

Accelerated wound 
closure and improved 
skin architecture 
regeneration, 

ADSCs from 
human, 
xenogeneic, 
2.5 × 105

hDAM hydrogel Intact ECM-
derived 
hydrogels from 
living tissues

KK/Upj-Ay/J 
mice (diabetic 
mice)

8 mm, 
dorsal

14 d [62]
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hydrogels including better 
restoration of 
cutaneous 
appendages, increase 
of dermis thickness, 
and augmenting 
neovascularization

UMSCs from 
human, 
xenogeneic, 5 
× 106

GelMA/Chi-C 
hydrogel

Vascularization 
hydrogels

Cells were 
mixed with 
the in situ 
forming 
hydrogels

Diabetic mice 
(db/db)

8 mm, 
dorsal

14 d Promoted the wound 
healing process by 
inhibiting protein 
expression of TNF-α 
and IL-1β to decrease 
inflammation. 
Accelerated 
angiogenesis and re-
epithelialization, 
promoted collagen 
deposition, and 
induced regeneration 
of skin appendages 
such as hair follicles

[63]

PDSCs from 
human, 
xenogeneic, 1 
× 106

Chitosan/collagen/
β-GP hydrogel

Thermosensitive 
and pH-
responsive 
hydrogels

3D spheroids 
were 
encapsulated 
in the in situ 
forming 
hydrogels

Diabetic mice 
(db/db)

7 mm, 
dorsal

3 wk Accelerated wound 
closure by enhancing 
angiogenesis and 
paracrine effects. The 
hydrogel provided an 
environment 
favorable for the 
attachment and prolif-
eration of 
encapsulated hPDSCs, 
accelerating cell 
proliferation and 
paracrine factor 
secretion

[67]

ADSCs from 
rats, 
allogenic, 5 × 
105

Gelatin hydrogel Adaptive 
hydrogel 
microspheres 
with degradation 
rates well-
matched to tissue 
regeneration

Hydrogel 
microspheres

STZ-induced 
diabetic rats

8 mm, 
dorsal

14 d Significantly 
accelerated wound 
healing by promoting 
M2 macrophage 
polarization, collagen 
deposition, 
angiogenesis 
associated with 
peripheral nerve 
recovery, and hair 
follicle formation. The 
microspheres well 
embedded in the 
tissue, exhibited good 
biocompatibility and 
adaptive 
biodegradation rates

[77]

BMSCs from 
human, 
xenogeneic, 5 
× 105

PEGDA hydrogel Bioinert synthetic 
hydrogels

Cells were 
encapsulated 
into hydrogel 
sheets

Genetically 
diabetic mice 
(BKS.Cg-m 
+/+Leprdb/J)

1 cm × 1 
cm1, 
dorsal

14 d Accelerated wound 
healing; the co-
encapsulation of 
hBMSCs and insulin 
secreting cells 
resulted in healing 
wounds without scab 
or scar

[79]

ADSCs from 
human, 
xenogeneic, 3 
× 105

PEG-gelatin 
hydrogel

Vascularization 
hydrogels

Cells were 
mixed with 
the in situ 
forming 
hydrogels

Diabetic mice 
(db/db)

6 mm, 
dorsal

15 d Significantly 
accelerated wound 
closure; the 
encapsulated cells 
attached and diffused 
well inside the 
hydrogel, improving 
cell retention in vivo; 
reduced inflammatory 
cell infiltration and 
enhanced neovascu-
larization

[80]

1Wound size (side length × side length).
3D: Three dimensional; ADSCs: Adipose-derived stem cells; β-GP: β-glycerophosphate; BMSCs: Bone marrow-derived mesenchymal stem cells; Chi-C: 
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Chitosan-catechol; ECM: Extracellular matrix; GelMA: Gelatin methacryloyl; GG-HA: Gellan gum-hyaluronic acid; HA-ALD: Hyaluronic acid-aldehyde; 
hADSCs: Human adipose-derived stem cells; hBMSCs: Human bone marrow-derived mesenchymal stem cells; hDAM: Human decellularized adipose 
tissue matrix; hPDSCs: Human placenta-derived mesenchymal stem cells; N-chitosan: N-carboxyethyl chitosan; PDSCs: Placenta-derived mesenchymal 
stem cells; PEG: Poly(ethylene glycol); PEGDA: Polyethylene glycol diacrylate; PVA: Polyvinyl alcohol; rBMSCs: Rat bone marrow-derived mesenchymal 
stem cells; SNAP: S-nitroso-N-acetyl-penicillamine; STZ: Streptozotocin; UMSCs: Umbilical cord-derived mesenchymal stem cells; VEGF: Vascular 
endothelial growth factor.
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