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Abstract: Background: Pathogenic variants in SPG11 cause the most common autosomal recessive
complicated hereditary spastic paraplegia. Besides the prototypical combination of spastic paraplegia
with a thin corpus callosum, obesity has increasingly been reported in this multisystem neurodegen-
erative disease. However, a detailed analysis of the metabolic state is lacking. Methods: In order
to characterize metabolic alterations, a cross-sectional analysis was performed comparing SPG11
patients (n = 16) and matched healthy controls (n = 16). We quantified anthropometric parameters,
body composition as determined by bioimpedance spectroscopy, and serum metabolic biomarkers,
and we measured hypothalamic volume by high-field MRI. Results: Compared to healthy controls,
SPG11 patients exhibited profound changes in body composition, characterized by increased fat
tissue index, decreased lean tissue index, and decreased muscle mass. The presence of lymphedema
correlated with increased extracellular fluid. The serum levels of the adipokines leptin, resistin, and
progranulin were significantly altered in SPG11 while adiponectin and C1q/TNF-related protein 3
(CTRP-3) were unchanged. MRI volumetry revealed a decreased hypothalamic volume in SPG11
patients. Conclusions: Body composition, adipokine levels, and hypothalamic volume are altered in
SPG11. Our data indicate a link between obesity and hypothalamic neurodegeneration in SPG11 and
imply that specific metabolic interventions may prevent obesity despite severely impaired mobility
in SPG11.

Keywords: SPG11; obesity; bioimpedance spectroscopy; leptin; adipokines; hypothalamus

1. Introduction

Autosomal recessive pathogenic variants in SPG11 are the most frequent cause of com-
plex hereditary spastic paraplegia (HSP) [1,2]. In addition to progressive spastic paraparesis,
the phenotype of SPG11 is frequently categorized as complicated due to cognitive dysfunc-
tion, a thin corpus callosum, neuropathy, and other neurological symptoms [3]. Compared
to pure forms of HSP, SPG11 progresses more rapidly and causes earlier wheelchair depen-
dence. Of note, in different cohorts of different sizes, obesity was observed in SPG11 at
varying frequencies. For example, obesity was reported in only 1 out of 38 SPG11 patients
in one study [4] but in 14 out of 18 SPG11 patients in another cohort [5]. A recent Brazilian
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study of 20 SPG11 patients reported obesity in 25% of patients and provided first evidence
of altered hypothalamic volume in SPG11 [6]. Swelling of the lower extremities caused
by lymphedema has been described in SPG11 patients and may further contribute to an
increased body weight [7]. However, an in-depth analysis regarding the metabolic state in
SPG11 is lacking.

Insight into the etiopathogenesis of obesity and lymphedema in SPG11 may not only
extend current knowledge on the mechanism of SPG11-linked neurodegeneration but also
provide novel targets to interfere with the metabolic phenotype. Importantly, overweight
(defined by BMI ranging from 25 to 30 kg/m2) and obesity (BMI > 30 kg/m2) impact
multiple aspects of health, mobility, the efficacy of physiotherapy, and quality of life.

The aim of our study was to characterize the metabolic profile of SPG11 patients in
order to gain novel insights into the underlying mechanisms of metabolic dysfunction.

2. Materials and Methods
2.1. Participants

All patients with biallelic pathogenic variants in SPG11 clinically assessed at the
outpatient clinic of the Division of Molecular Neurology at the University Hospital Er-
langen, Germany were enrolled, along with age- and gender-matched healthy controls.
The study was approved by the local institutional review board (ethics committee of the
Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany, no. 17-347-B),
and informed consent was obtained from all patients and controls according to the Dec-
laration of Helsinki. Written consent for publication of images was obtained from both
individuals shown. Due to long travel distances, patients stayed overnight on-site in order
to avoid physical overstraining and to enable early morning standardized measurements
in a basal fasting state. A subset of patients completed the ZUNG self-rating depression
scale [8].

2.2. Laboratory Workup

Patients were asked to avoid excessive physical activity within the preceding week,
and blood samples were withdrawn in the morning (between 8 am and 11 am) after a
fasting period of at least 8 h, including abstinence from caffeine and sweeteners. Serum
and EDTA samples were cooled immediately after blood drawing. EDTA samples were
submitted to tandem liquid chromatography/mass spectrometry for ACTH levels. Serum
supernatants were prepared within 4 h and subsequently stored at −80 ◦C. The endocrine
parameters thyrotropin (TSH), cortisol (determined by electrochemiluminescence assay),
and leptin (determined using a human leptin ELISA kit, Mediagnost Reutlingen, Germany)
were determined by diagnostically certified laboratories as performed in clinical routine.
Levels of progranulin, resistin, and CTRP-3 were determined by an ELISA in duplicate
using the DuoSet ELISA development systems (R&D Systems, Wiesbaden, Germany), as
described previously [9,10].

2.3. Anthropometry and Bioimpedance Spectroscopy

Anthropometric measurements and bioimpedance spectroscopy were conducted as
described previously [11]. Obesity was classified based upon BMI values into class I
(30–35 kg/m2), class II (35–40 kg/m2), and class III (>40 kg/m2) according to the World
Health Organization. Bioimpedance spectroscopy (BIS) with the Body Composition
Monitor® (Fresenius Medical Care, Bad Homburg, Germany) was conducted according to
the operating instructions. Two SPG11 patients were not able to undergo bioimpedance
spectroscopy due to an implanted intrathecal baclofen pump. Prior to measurement, pa-
tients lay down in a supine position for at least 10 min and recording electrodes were
attached to one hand and one foot. Age- and gender-specific reference data had been
derived from a healthy population of 1000 individuals [12], and values of the 10th and
90th percentiles had been validated as the reference range [11], from which Z-values were
calculated. The three-compartment model of the BCM Body Composition Monitor was
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previously validated against standard reference methods for assessment of fluid status and
body composition in patients with dialysis and in healthy controls [13–16].

2.4. Determination of Hypothalamic Volume

High-resolution magnetic resonance imaging (MRI) of the brain was performed in
12 SPG11 patients using a 3.0 Tesla scanner (Magnetom Tim Trio, Siemens Healthineers,
Erlangen, Germany) with a gradient field strength up to 45 mT/m (72 mT/m effective).
Analyses were performed on volumetric T1w sequences at an isotopic spatial resolution of
1 mm, TE of 2.52 ms, TR of 1900.00 ms, and FOV of 250 mm × 250 mm resulting in a voxel
size of 1.0 mm3. As a control cohort, volumetric analysis was also performed of 12 healthy
persons, matched for gender and sex, who had undergone MRI on the same scanner
previously. The volume of the hypothalamus was determined using the MRICloud image
processing pipeline based upon a multiple-atlas likelihood fusion algorithm providing
parcellation into 265 anatomical regions [17].

2.5. Statistics

All patient-related parameters were compared using the unpaired Mann–Whitney U
test. Correlation analyses were calculated by Spearman’s rho (r). Analyses were conducted
in IBM SPSS 28 and graphs were generated in GraphPad Prism 8. Anonymized raw data
are available from the corresponding author upon reasonable request.

3. Results
3.1. Altered Body Composition in SPG11 Patients

A total of 16 patients with genetically confirmed SPG11-HSP were recruited, including
8 females and 8 males, with an equal distribution of early, intermediate, and late disease
stages (Tables 1 and 2). Disease duration at the time of clinical examination ranged from
4 to 33 years. Nine patients were still ambulatory and six of them were dependent on the
use of canes or a wheeled walker. One patient (SPG11-4) only was mildly depressed but
was not on antidepressive medication. Patient SPG11-1 was on a long-term therapy with
aripiprazole (10 mg OD) due to a single episode of hallucinations. Physiotherapy was
regularly performed by all patients (20 to 80 min per week). Four patients received manual
lymphatic drainage therapy.

Table 1. Patient characteristics.

Parameter
(Mean ± SD)

SPG11 HSP
N = 16

Controls
N = 16 p Value

Age (y) 31.1 ± 10.9 36.1 ± 11.6 >0.05
Gender (male: female) 8:8 7:9 >0.05 *
Body Mass Index (kg/m2) 29.1 ± 4.6 25.0 ± 3.7 0.02
Age of onset (y) 12.7 ± 11.0 —
Disease duration (y) 18.4 ± 8.0 —
SPRS total score 30.2 ± 10.4 —
SPRS functional measures 18.4 ± 6.0 —
(sum of items #1–#6)
SPRS spasticity measures (#7–#10) 8.0 ± 3.3 —
SPRS non-motor measures (#11–#13) 3.8 ± 2.3 —

* Chi-squared test, SPRS: Spastic Paraplegia Rating Scale.

Clinical signs of lymphedema were present in 10 out of 16 patients and were severe in
5 patients (Figure 1A). The body fluids and nutritional state of the SPG11 patients were
analyzed by anthropometry and BIS in patients and healthy controls. Body composition was
determined by BIS in 14 out of 16 patients and compared to the control group (Figure 1B–I)
but also to age- and gender-matched reference values (Figure 2A–D). While the absolute
values of the total body water compartment were unchanged in SPG11 (Figure 1B,C), there
was an increase in the relative amount of intracellular water (Figures 1D and 2A) and in
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the hydration state (Figures 1E and 2B). Thus, bioimpedance spectroscopy confirms that
there is excessive body fluid in SPG11.

Table 2. Demographic and disease-related characteristics of the SPG11 patient cohort.

Disease
Stage Patient Sex AAO AAE SPRS TCC ID ZUNG Dysarthria Trunk Ambul. SPG11 Genotype

early

SPG11-7 f 17 27 17 – – 73.75 – – – c.5623C>T
(homozyg.)

SPG11-9 f 14 18 24 + + 40 – – + c.704_705del;
c.6832_6833del

SPG11-10 m 12 16 20 + + 45 + – + c.1203_1203delA
(homozyg.)

SPG11-12 m 42 45 18 – – 48.75 – – + c.255G>A;
c.531T>C

SPG11-14 m 3 27 18 + + 50 – – + c.1951C>T
(homozyg.)

SPG11-16 f 14 21 14 + + n/a – – + c.2612dupG;
c.4434G>T

middle

SPG11-4 f 15 23 21 + + 45 + – + c.3075dupA;
c.6204A>G

SPG11-5 f 15 23 17 + + 52.5 + – + c.3075dupA;
c.6204A>G

SPG11-6 m 14 22 21 + + 43.75 + + – c.733_734del;
c.4306_4307del

SPG11-8 m 12 35 40 + + 66.25 + + – c.5623C>T
(homozyg.)

SPG11-13 m 9 20 33 + + n/a + + + c.2990T>A;
c.4877_4878delTT

SPG11-15 m 3 25 31 + + n/a + + + c.190dupC;
c.704_705delAT

late

SPG11-1 f 24 46 44 + ++ n/a + + – c.3036C>A;
c.5798delC

SPG11-2 f 20 40 37 + + n/a + + – c.3036C>A;
c.5798delC

SPG11-3 f 31 50 36 + + 35 + + – c.267G>A;
c.1457-2A>G

SPG11-11 m 14 47 46 + + n/a + + – c.3076insA;
del. exon 37-39

Characteristics and disease stages of the SPG11 cohort. SPG11-1 and -2 are sisters, SPG11-4 and -5 are iso-
genic twins, SPG11-7 and -8 are unrelated. Abbreviations: AAO = age at onset, AAE = age at examination,
SPRS = Spastic Paraplegia Rating Scale (ranging from 0 to 52, with higher values indicating a more severe disease
stage), TCC = thin corpus callosum, ID = intellectual disability, ZUNG = Zung Self-Rating Depression Scale
(ranging from 25 to 100, values above 50 considered as depression), trunk = axial instability, ambul. = ambulatory
and independent of wheelchair.

As determined by BMI, four patients had a normal body weight (BMI ≤ 25 kg/m2), four
patients were pre-obese (BMI 25–30), seven patients exhibited obesity class I (BMI 30–35), and
one patient exhibited obesity class II (BMI 35–40). Compared to controls, BMI was signifi-
cantly higher in SPG11 patients (Figure 1F, 25.0 ± 3.7 kg/m2 in controls vs. 29.1 ± 4.6 in
SPG11, p = 0.021). All patients with BMI > 25 kg/m2 showed clinical signs of lymphedema
indicating that both obesity and lymphedema may contribute to an increased BMI in SPG11.

In order to determine which compartment contributes to increased BMI in SPG11, the
lean and fat tissue compartments were analyzed. There was a non-significant trend of re-
duced lean tissue index in SPG11 (Figure 1G) which was highly significant when correcting
for age and sex with previously obtained reference values (Figure 2C). Conversely, fat tissue
index was significantly increased in SPG11 compared to controls, both in absolute and
relative values (Figures 1H and 2D). While the bioimpedance measure of fat tissue index
reflects energy storage lipids, lean tissue index comprises bone, skin, organ, and muscle
mass. Thus, our findings show that the fat tissue and fluid compartments are increased in
SPG11 at the expense of the lean tissue compartment (Figure 1I).
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Representative lower limb lymphedema of late-stage SPG11 patients. Note the blue-livid 
discoloration and swelling of the calf and feet. (B–E) Body fluid distribution derived from 
bioimpedance spectroscopy comprising (B) total body water, (C) extracellular water, (D) the ratio 
of extracellular and intracellular water, and (E) total hydration state. (F) Body mass index (BMI) was 
increased in 12 out of 16 SPG11 patients. (G) Lean tissue index was reduced in SPG11 (not at a 
significant level), whereas (H) fat tissue index showed a significant increase in SPG11. (I) Model of 
body composition and its changes in SPG11, indicated by red arrows. Bars indicate means ± SD. All 
groups were compared by Mann–Whitney U tests. ns: not significant, * p < 0.05, ** p < 0.01, *** p < 
0.001. 
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Figure 1. Body composition of SPG11 patients compared to matched healthy controls. (A) Represen-
tative lower limb lymphedema of late-stage SPG11 patients. Note the blue-livid discoloration and
swelling of the calf and feet. (B–E) Body fluid distribution derived from bioimpedance spectroscopy
comprising (B) total body water, (C) extracellular water, (D) the ratio of extracellular and intracel-
lular water, and (E) total hydration state. (F) Body mass index (BMI) was increased in 12 out of 16
SPG11 patients. (G) Lean tissue index was reduced in SPG11 (not at a significant level), whereas
(H) fat tissue index showed a significant increase in SPG11. (I) Model of body composition and its
changes in SPG11, indicated by red arrows. Bars indicate means ± SD. All groups were compared by
Mann–Whitney U tests. ns: not significant, * p < 0.05, ** p < 0.01, *** p < 0.001.

3.2. Increased Levels of Leptin in SPG11

To identify potential causes of obesity and lymphedema, we next characterized various
serum parameters, obtained in a standardized fasting morning state. The hypothalamus
and pituitary gland are major regulators of adipose tissue homeostasis by controlling satiety,
energy expenditure metabolism, and hormone release [18]. Leptin is an adipocytokine
secreted by adipose tissue and mediates its downstream effects in the central nervous
system. Basal serum leptin levels were more than twofold higher in SPG11 compared
to controls (Figure 3A; p < 0.05). Adiponectin, like leptin, is predominantly secreted
by adipocytes, albeit in an inverse relation to adipose tissue mass. Adiponectin levels,
nevertheless, were not significantly changed in SPG11 (Figure 3B). Progranulin is an
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additional adipocytokine with peripheral anti-inflammatory functions [19]. The levels of
progranulin were significantly reduced in SPG11 (Figure 3D). Resistin, on the other hand,
is a proinflammatory adipokine [20], and its levels were significantly increased in SPG11
(Figure 3D). Finally, the levels of CTRP-3, another anti-inflammatory adipocytokine, were
unchanged in SPG11 (Figure 3E).
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Figure 2. Normalized body composition values in controls and SPG11. Bioimpedance spectroscopy
values in controls and SPG11 shown as Z-scores calculated from previously reported sex- and age-
adjusted reference values from 1000 healthy subjects. Reference cutoff values had been defined by
the 10th and 90th percentiles and are indicated as dotted lines. When comparing normalized values
of SPG11 vs. controls, there was a significant difference in (A) normalized extracellular/intracellular
fluid ratio, (B) hydration, (C) lean tissue index, and (D) fat tissue index. * p < 0.05, *** p < 0.001,
**** p < 0.0001, based on non-parametric Mann–Whitney U tests.

3.3. Unchanged Pituitary Gland Hormones and Lipid Parameters in SPG11

We next addressed the basal levels of the pituitary gland/adrenal gland hormones. The
levels of cortisol, adrenocorticotropic hormone (ACTH), and thyroid-stimulating hormone
(TSH) were unchanged in SPG11 when compared to controls (Figure 3F–H). The serum
levels of triglycerides were unchanged in SPG11 (Figure 3I). In addition, electrolytes
and renal function parameters as well as cholesterol, HDL, and LDL levels were within
normal range.

3.4. Decreased Hypothalamic Volume in SPG11

Adipocytokine receptors are predominantly expressed within the hypothalamus. In
the human brain, SPG11 is expressed within the hypothalamus (Human Protein Atlas
data shown in Figure 4). Consequently, SPG11-mediated neurodegenerative processes
may involve hypothalamic regions. Thus, we analyzed the hypothalamic MRI volume of
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the SPG11 patients. There was a significant 16 % reduction in hypothalamic volume in
SPG11 when compared to 1:1 matched healthy controls (1.283 ± 0.121 mm3 in controls
vs. 1.079 ± 0.135 mm3 in SPG11, p = 0.0006, n = 12, Figure 5A–D). An abdominal MRI was
available in a single SPG11 patient, showing excessive accumulation of both visceral and
subcutaneous adipose tissue (Figure 5E).
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Figure 3. Altered levels of leptin, progranulin, and resistin in SPG11. (A–E) Levels of adipocytokines
in SPG11 patients compared to controls, including (A) leptin, (B) adiponectin, (C) progranulin,
(D) resistin, and (E) CTRP-3. (F–H) Basal levels of cortisol (F), adrenocorticotropic hormone (ACTH,
G), and thyroid-stimulating hormone (TSH, (H)) were within normal range in most patients and
there was no significant difference to controls. Red data points in H indicate subjects with known
thyroid function disorder. (I) Basal triglyceride levels were within normal limits in most patients
and controls. Dotted lines indicate reference ranges. Bars indicate means ± SD. ns: not significant,
* p < 0.05.
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Figure 5. Reduced hypothalamic volume in SPG11. Representative images of hypothalamic volume-
try with the MRIcloud software package in a control (A) and SPG11 patient (B). Arrowheads indicate
the ventral border of the corpus callosum showing significant atrophy in SPG11. Outlines of the
hypothalamus are in white lines, and 3D segmentation extracted from MRIcloud are shown in (C).
(D) Quantification of hypothalamic volume in SPG11 and matched controls (n = 12). Bars indicate
means ± SD. *** p < 0.001. (E) T2-weighted axial image of abdominal adipose tissue obtained in a
single SPG11 patient.

3.5. Association of Leptin with Clinical Parameters

Leptin is mainly secreted by adipocytes, and systemic leptin levels correlate with fat
mass. Thus, we next addressed whether this relation was also present in the cohorts. In
controls, there was a strong association of leptin levels with fat tissue index (Spearman’s rho
rs = 0.762, p = 0.001) but not with BMI (rs = 0.165, p > 0.05). Likewise, within the cohort of
SPG11 patients, leptin levels were also not significantly related to BMI (rs = 0.294; p > 0.05,
Figure 6A), but there was a very strong and significant correlation with fat tissue index
(rs = 0.912; p < 0.0001, Figure 6B). Finally, the absolute levels of leptin were significantly
associated with clinical severity, as measured by the total score on the Spastic Paraplegia
Rating Scale (SPRS, rs = 0.522; p < 0.05, Figure 6C).
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4. Discussion

Here, we delineate a severe metabolic phenotype in SPG11 patients and provide first
evidence of underlying hypothalamic leptin resistance in SPG11. The metabolic parameters
in SPG11 were characterized by profound changes in body composition. While the basal
pituitary hormones of the adrenal and thyroid axis were normal, serum leptin levels were
increased in SPG11 patients associated with a reduced hypothalamic volume, and they
correlated with the severity of HSP symptoms. Moreover, we observed changes in the
systemic levels of the adipocytokines progranulin and resistin in SPG11, and we provide
imaging data on hypothalamic degeneration in SPG11.

4.1. Role of Disability-Related Causes of Obesity

A high prevalence of obesity in SPG11 has been reported by several groups (sum-
marized in Table 3), but a more detailed characterization has been lacking. As SPG11
results in rapidly progressing motor disability, immobility might be the primary cause of
obesity in SPG11. In line with this hypothesis, there were significant correlations of leptin
levels with fat tissue index and SPRS scores. The presence of a disease-specific metabolic
phenotype is supported by the observation that obesity segregated with the disease in two
families (index patients SPG11-1 and SPG11-4). The etiology of obesity in SPG11 may be
different from the well-described metabolic syndrome because none of the SPG11 patients
was affected by diabetes, arterial hypertension, or coronary artery disease. Furthermore,
there were no differences in lipid parameters compared to controls.

Antispastic therapy using baclofen was prescribed for most of our patients, but ba-
clofen has been shown to reduce body weight and is thus less likely to induce the present
severe obesity phenotype in our patient cohort [22]. While obesity and depression are
linked reciprocally [23], only one patient in our cohort was depressed. In this patient,
obesity preceded the onset of depression by years, and obesity with progressive motor
impairments were closely linked to her mood including social withdrawal.

Neuropsychological deficits were present in all patients in varying degrees. Weight
loss was reported as an early feature of cognitive impairment, caused by the general effect
of aging on hormonal balance, slowly emerging apathy, or olfactory dysfunction [24]. On
the other hand, obesity is an established symptom of certain genetic syndromes with
intellectual disability. In 22q11.2 deletion syndrome, obesity has been related to alterations
in mitochondrial pathways [25]. Another example of disease-specific metabolic changes is
in Prader Willi syndrome where the presence of obesity has been directly linked to the loss
or the imprinting of different chromosome regions [26].
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Table 3. Obesity and lymphedema in previous case series of SPG11.

Ref. No. of
Families

No. of SPG11
Patients

No. (%) of Obese
Patients

No. (%) of
Patients with Edema Remarks

[27] 1 2 2 (100%) 2 (100%) Absence of obesity in
4 unaffected siblings.

[28] 2 4 2 (50%) not reported
[4] 20 38 1 (3%) not reported

[29] 1 5 3 (60%) not reported

[30] 4 4 2 (50%) not reported Patients with Kjellin’s
syndrome.

[31] 3 4 not reported 1 (25%) Congenital left leg
lymphedema.

[5] 9 14 18 (78%) not reported Five patients were still
ambulatory.

[7] 2 4 not reported 2 (50%) Two members of same family
affected.

[6] n/a 20 5 (25%) n/a
Includes patients from [32];
increased BMI compared to

FRDA individuals.
this report 14 16 12 (75%) 10 (63%) Includes 2 patients from [27].

Summary of previous case series of patients with SPG11 where “obesity” or “edema” were reported. Number of
families includes sporadic patients.

4.2. Implications of Increased Leptin Levels

Elevated leptin levels provide evidence for a central nervous system-mediated mecha-
nism of obesity in SPG11. Considering the fact that the increase in BMI was probably partly
due to coexisting lymphedema, the relative increase in leptin levels may even be more
pronounced. Leptin is produced by adipocytes and reflects lipid content [33]. Homozygous
mutations of the leptin receptor lead to increased leptin levels and obesity along with
impaired pubertal development and reduced levels of growth hormone and TSH [34]. TSH
levels were within normal limits in our patient cohort and there was no clinical evidence
for growth hormone deficiency.

Although not explicitly described for the hypothalamic region, post-mortem neu-
ropathological reports on a total of five patients with SPG11-HSP described widespread
neuronal loss in the brain and spinal cord [35–38]. Our finding of a decreased hypothalamic
volume in the MRI volumetric analysis is in line with a similar observation in a Brazilian
study [6], further underlining the role of hypothalamic damage in SPG11. Progressive
and widespread cortical and subcortical atrophy is a known feature of SPG11, and our
data thus confirm that the hypothalamus is also involved in this disease. Whereas altered
dopamine metabolism was described in SPG11 patients [31,39], our study focused on
hypothalamic/pituitary/adrenal gland hormones in SPG11. The reduction in cerebral
glucose metabolism was most pronounced in the thalamus of two patients with HSP and
a thin corpus callosum [40]. Although a molecular genetic diagnosis of SPG11 was not
performed, this might indicate that hypothalamic function is also impaired in SPG11. There
is a phenotypic and neuropathological overlap between SPG11 (also termed ALS5) and
amyotrophic lateral sclerosis [35,41]. A population-based study showed decreased leptin
levels in patients with amyotrophic lateral sclerosis which was mainly related to a decrease
in BMI [42]. Alterations in hypothalamic volume have been described in both sporadic and
familial motor neuron disease [43]. Further studies are required to dissect the impact of
SPG11-HSP on the molecular pathway governing the brain–adipose axis in more detail.

In addition to the hypothalamus, leptin receptors are expressed in many regions of the
brain including the neocortex [44,45]. Leptin receptor signalling promotes axonal growth of
cortical neurons via the inactivation of GSK3ß [46], a mechanism which has been implicated
in SPG11 [47–49]. Mutations in SPG13 cause pure autosomal dominant hereditary spastic
paraplegia, and its gene product, HSP60, was reduced in the hypothalamus of leptin
receptor-deficient mice [50]. Subcellular localization of SPATACSIN, on the other hand,
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partly overlapped with HSP60 in mitochondria [51], and, strikingly, altered mitochondrial
function has been implicated in SPG11 [52,53]. Thus, mitochondrial dysfunction may be a
potential mechanism of altered leptin signalling in SPG11.

4.3. Immune–Metabolic Implications of Dysregulated Progranulin and Resistin

While the levels of the additional adipokines adiponectin and CTRP-3 were unchanged
in SPG11, we were able to identify a dysregulation of additional inflammation-related
adipocytokines, i.e., decreased levels of progranulin and increased levels of resistin. Resistin
is a proinflammatory adipocytokine which is secreted by monocytes and upregulated upon
systemic inflammation [20]. Resistin and progranulin cross the blood–brain barrier which
is enhanced under inflammatory conditions [10]. The relevance of immune–metabolic
interplay was highlighted by a recent study suggesting that caloric restriction-related
longevity is mediated by anti-inflammatory responses [54]. The observed proinflammatory
alterations of specific adipocytokines in SPG11 should thus be studied in larger patient
cohorts, including detailed analyses of the peripheral and central nervous system immune
cells [55].

5. Conclusions

Lymphedema and dysregulated adipose homeostasis are frequent symptoms in SPG11-
HSP and may be directly linked to hypothalamic adipocytokine resistance leading to a
dysfunctional brain–adipose axis. Further research is needed to clarify whether a targeted
metabolic intervention may prolong mobility in SPG11.
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