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Inflammation contributes to the progression of retinal pa-
thology caused by diabetes. Here, we investigated a role for the
stress response protein regulated in development and DNA
damage response 1 (REDD1) in the development of retinal
inflammation. Increased REDD1 expression was observed in
the retina of mice after 16-weeks of streptozotocin (STZ)-
induced diabetes, and REDD1 was essential for diabetes-
induced pro-inflammatory cytokine expression. In human
retinal MIO-M1 Müller cell cultures, REDD1 deletion pre-
vented increased pro-inflammatory cytokine expression in
response to hyperglycemic conditions. REDD1 deletion pro-
moted nuclear factor erythroid-2-related factor 2 (Nrf2)
hyperactivation; however, Nrf2 was not required for reduced
inflammatory cytokine expression in REDD1-deficient cells.
Rather, REDD1 enhanced inflammatory cytokine expression by
promoting activation of nuclear transcription factor κB (NF-
κB). In WT cells exposed to tumor necrosis factor α (TNFα),
inflammatory cytokine expression was increased in coordina-
tion with activating transcription factor 4 (ATF4)-dependent
REDD1 expression and sustained activation of NF-κB. In both
Müller cell cultures exposed to TNFα and in the retina of STZ-
diabetic mice, REDD1 deletion promoted inhibitor of κB (IκB)
expression and reduced NF-κB DNA-binding activity. We
found that REDD1 acted upstream of IκB by enhancing both
K63-ubiquitination and auto-phosphorylation of IκB kinase
complex. In contrast with STZ-diabetic REDD1+/+ mice, IκB
kinase complex autophosphorylation and macrophage infil-
tration were not observed in the retina of STZ-diabetic
REDD1-/- mice. The findings provide new insight into how
diabetes promotes retinal inflammation and support a model
wherein REDD1 sustains activation of canonical NF-κB
signaling.

Diabetic retinopathy (DR) is a significant ocular compli-
cation caused by diabetes that can progress to blindness.
Retinal complications often develop upon loss of glucose
homeostasis, with an estimated 103.12 million individuals
suffering from DR and 18.83 million patients having vision
threatening retinopathy (1). The pathogenesis of DR is
* For correspondence: Michael D. Dennis, mdennis@psu.edu.
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complex and multi-factorial; however, it is well accepted that
inflammation is a crucial factor in the progression of the
retinal complications that are caused by diabetes (2).
Inflammation is a protective immune response designed to
facilitate tissue repair. Nevertheless, the chronic pro-
inflammatory state of diabetes contributes to development
and progression of DR. In diabetic patients without clinically
visible signs of DR, expression of pro-inflammatory adhesion
molecules and chemokines, such as intercellular adhesion
molecule 1 (ICAM-1), C-C motif chemokine ligand (CCL2,
also known as MCP-1), and CCL5 (also known as RANTES)
are increased and contribute to leukostasis (3–5). This sup-
ports that the development of inflammation occurs early in
disease progression. Indeed, clinical studies support the
benefits of inhibiting specific pro-inflammatory molecules to
address the development of neovascularization and macular
edema in DR patients (6).

An abundance of literature has implicated the transcription
factor nuclear factor κ-light-chain enhancer of activated B cells
(NF-κB) as a key regulator of immune function and inflam-
matory responses (7). The NF-κB family of transcription fac-
tors [p65 (RelA), c-Rel, RelB, p50, and p52] form homodimers/
heterodimers that determine the expression of an array of pro-
inflammatory molecules. Canonical NF-κB activation involves
phosphorylation of inhibitor of κB (IκB) by IκB kinase (IKK),
which promotes IκB proteasomal degradation to allow nuclear
translocation of the NF-κB RelA/p50 dimer. Noncanonical
activation of RelB/p52 is mediated by IKK-dependent pro-
cessing of p100 (8). NF-κB activation occurs in preclinical
models of type 1 diabetes, and blocking its activity is beneficial
in preventing DR pathology (9–11). Limited evidence also
supports NF-κB activation in the retina of preclinical models
of type 2 diabetes (12, 13). Although it was demonstrated
nearly 2 decades ago that diabetes promotes NF-κB activation
in the retina (14), the specific signaling events that lead to
canonical or noncanonical NF-κB activation in DR have never
been thoroughly resolved.

Diabetes promotes retinal expression of the stress response
protein regulated in development and DNA damage 1
(REDD1) (11, 15–17). REDD1 expression is dominant in
retinal Müller glia, where the protein contributes to a failed
adaptive response of the retina to diabetes that includes gliosis,
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REDD1 sustains NF-κB signaling
neurodegeneration, and the development of functional deficits
in vision (15, 17). Indeed, therapeutic administration of an
siRNA for REDD1 knockdown has demonstrated promise for
improving best-corrected visual acuity (BCVA) in diabetic
patients (18). REDD1 acts in the retina, at least in part, by
preventing proper activation of the antioxidant transcription
factor nuclear factor erythroid-2-related factor 2 (Nrf2) in
response to diabetes (16). Beyond the retina, a number of
recent studies have also demonstrated a role for REDD1 in the
development of inflammation and NF-κB activation (19–23).
More specifically, a recent study suggested that REDD1
mediated IKK-independent atypical NF-κB activation by
sequestering IκB (22). Herein, we investigated a role for
REDD1 in the development of diabetes-induced retinal
inflammation and macrophage infiltration.

Results

Diabetes-induced REDD1 expression promotes markers of
retinal inflammation

After 16 weeks of diabetes, WT (REDD1+/+) and REDD1
knockout (REDD1−/−) mice exhibited similar increases in
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Figure 1. REDD1 was required for increased inflammatory cytokine expres
REDD1−/− mice by administration of streptozotocin (STZ). All analyses were p
fasting blood glucose concentrations were determined. B, REDD1 mRNA abun
mRNA localization in the retina was examined by RNA-ISH (400× magnification
(D), CCL5 (E), and CCL2 (F) was determined in retinal tissue homogenate by R
mined by Western blotting. Representative blots are shown. Molecular mass in
examined in retinal sections by immunofluorescence. Hoechst 33342 (blue) w
magnification; scale bar represents 75 μm). Values are presented as means ± S
comparisons were made using the Tukey’s test for multiple comparisons. Data
p < 0.05 versus REDD1+/+; nd, not detected; CCL2, C-C motif chemokine liga
adhesion molecule 1; ISH, in situ hybridization; ONL, outer nuclear layer.
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fasted blood glucose concentrations (Fig. 1A). REDD1 mRNA
abundance was increased in retinal lysates from REDD1+/+

mice (Fig. 1B). Increased REDD1 mRNA expression in the
retina of diabetic mice was visualized throughout retinal layers
by in situ hybridization (Fig. 1C). The abundance of mRNA
transcripts encoding ICAM-1 (Fig. 1D), CCL5 (Fig. 1E), and
CCL2 (Fig. 1F) were also increased in the retina of diabetic
mice in a manner that was REDD1-dependent. CCL2 protein
expression was increased in the retina of diabetic REDD1+/+

mice, but not diabetic REDD1−/− (Fig. 1G). Moreover, ICAM-1
protein expression in the inner retina and glial activation, as
characterized by GFAP expression, were upregulated in dia-
betic REDD1+/+ mice (Figs. 1H and S1). Diabetes-induced
expression of ICAM-1 and GFAP in the retina were attenu-
ated in REDD1−/− mice, as compared to REDD1+/+ mice.

REDD1 deletion reduces inflammatory cytokine expression
independently of Nrf2

We recently demonstrated a role for REDD1 expression
specifically in Müller glia in the development of retinal
dysfunction in diabetic mice (17). To investigate a role for
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sion in the retina of diabetic mice. Diabetes was induced in REDD1+/+ and
erformed 16 weeks after mice were administered STZ or a vehicle (Veh). A,
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T-PCR. G, CCL2 protein expression in retinal tissue homogenate was deter-
kDa is indicated at right of each blot. H, ICAM-1 (green) and GFAP (red) were
as used to visualize nuclei. Representative micrographs are shown (400×
D. Data were analyzed in (A, D, and E–G) by two-way ANOVA, and pairwise
in (B) were analyzed by unpaired Student’s t test. *p < 0.05 versus Veh; #,
nd; GCL, ganglion cell layer; INL, inner nuclear layer; ICAM-1, intercellular



CC
L2

 m
RN

A 
ab

un
da

nc
e 

(%
 c

on
tr

ol
) 

LG HG LG HG

WT REDD1
KO

CC
L5

 m
RN

A 
ab

un
da

nc
e 

(%
 c

on
tr

ol
) 

LG HG LG HG

WT REDD1
KO

IC
AM

-1
 m

RN
A 

ab
un

da
nc

e 
(%

 c
on

tr
ol

) 

LG HG LG HG

WT REDD1
KO

REDD1
25 -

LG HG LG HG

WT REDD1
KO

GAPDH37 -

DCBA
*

#

RE
D

D
1 

pr
ot

ei
n 

ex
pr

es
si

on
 (%

 c
on

tr
ol

)

200

400

600

800
*

#

500

1000

1500

*

#
200

400

600

800

1000 *

#

250

500

750

1000

IC
A

M
-1

 m
RN

A 
ab

un
da

nc
e 

(%
 c

on
tr

ol
)

CC
L2

 m
RN

A 
ab

un
da

nc
e 

(%
 c

on
tr

ol
)

CC
L5

 m
RN

A 
ab

un
da

nc
e 

(%
 c

on
tr

ol
)

H
O

-1
 m

RN
A 

ab
un

da
nc

e 
(%

 c
on

tr
ol

)

sh
Scr

sh
Nrf2

REDD1 KOWT

E HGF

$

# #

100

300

500

5000

15000

50

100

150

50

100

150

# # #
50

100

150

# # #

sh
Scr

sh
Nrf2

REDD1 KOWT

sh
Scr

sh
Nrf2

REDD1 KOWT

sh
Scr

sh
Nrf2

REDD1 KOWT

#
#

#

-ns

Figure 2. Inflammatory cytokine expression was reduced in REDD1-deficient Müller glial cultures independently of Nrf2. A–D, WT and REDD1 KO
human MIO-M1 cells were cultured in medium containing 5 mM glucose and exposed to medium containing either 30 mM glucose (HG) or 5 mM glucose
and 25 mM mannitol as an osmotic control (LG) for 4 h. REDD1 protein expression in cell lysates was determined by Western blotting (A). Representative
blots are shown. Molecular mass in kDa is indicated at left of each blot. ns, not specific. E–H, Nrf2 was knocked down in REDD1 KO MIO-M1 cells by stable
expression of an shRNA (shNrf2). Control REDD1 KO cells expressed a scramble shRNA (shScr). All cells were exposed to HG for 4 h. Abundance of mRNAs
encoding HO-1 (E), ICAM-1 (B and F), CCL5 (C and G), and CCL2 (D and H) was determined in cell lysates by RT-PCR. Values are presented as means ± SD.
Data were analyzed by two-way ANOVA, and pairwise comparisons were made using the Tukey’s test for multiple comparisons. *p < 0.05 versus LG; #,
p < 0.05 versus WT; $, p < 0.05 versus shScr. CCL2, C-C motif chemokine ligand; ICAM-1, intercellular adhesion molecule 1; Nrf2, nuclear factor erythroid-2-
related factor 2.

REDD1 sustains NF-κB signaling
REDD1 in inflammatory cytokine production by human cells,
MIO-M1 Müller glia were exposed to hyperglycemic culture
conditions. Hyperglycemic conditions promoted REDD1
protein expression (Fig. 2A) and increased the abundance of
mRNAs encoding ICAM-1 (Fig. 2B), CCL5 (Fig. 2C), and
CCL2 (Fig. 2D). Increased inflammatory cytokine expression
in cells exposed to hyperglycemic conditions required
REDD1. Inflammation has long been associated with oxida-
tive stress and we recently demonstrated protective effects of
REDD1 deletion that were mediated by enhanced Nrf2
signaling (16). In REDD1-deficient cells exposed to hyper-
glycemic conditions, Nrf2 knockdown reduced expression of
the Nrf2 target gene Heme Oxygenase-1 (HO-1) (Fig. 2E).
However, Nrf2 knockdown did not impact the abundance of
mRNAs encoding ICAM-1 (Fig. 2F), CCL5 (Fig. 2G), or CCL2
(Fig. 2H) in REDD1-deficient cells exposed to hyperglycemic
conditions.
REDD1 sustains TNFα-induced NF-κB signaling
To explore the impact of REDD1 on NF-κB signaling, WT

and REDD1 KO MIO-M1 cells were exposed to TNFα. In WT
cells, REDD1 expression was increased after 1 to 4 h of
exposure to TNFα (Fig. 3, A and B). Acute TNFα exposure
(i.e., 0.25 h) promoted rapid phosphorylation of NF-κB at S536
and reduced expression of IκBα in both WT and REDD1 KO
cells (Fig. 3A). However, after 4 h of TNFα exposure, phos-
phorylation of NF-κB (Fig. 3, A and C) and reduced Iκ-Bα
expression (Fig. 3, A and D) were sustained in WT, but not in
REDD1 KO cells. In both WT and REDD1 KO cells, TNFα
caused rapid localization of NF-κB to the nucleus (Fig. 3E).
With more prolonged exposure to TNFα, NF-κB remained
localized to the nucleus in WT cells, whereas the transcription
factor returned to the cytoplasm in REDD1 KO cells. The data
support that REDD1 is required for sustained activation of NF-
κB.
J. Biol. Chem. (2022) 298(12) 102638 3
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Figure 3. REDD1 sustained NF-κB signaling in Müller glial cultures exposed to TNF⍺⍺.WT and REDD1 KO human MIO-M1 cells were exposed to medium
supplemented with TNF⍺ for up to 4 h. A, REDD1 expression, NF-κB phosphorylation at S536, and IκB⍺ expression were determined in cell lysates by
Western blotting. Representative blots are shown. Molecular mass in kDa is indicated at right of each blot. REDD1 expression (B), NF-κB phosphorylation (C),
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REDD1 sustains NF-κB signaling
IKK activity is required for REDD1-dependent NF-κB activation
and inflammatory cytokine expression

To further examine NF-κB activity in Müller glia, a NF-κB
luciferase reporter system was employed. TNFα promoted NF-
κB reporter activity in WT cells, whereas REDD1 deletion
prevented the effect (Fig. 4A). TNFα also enhanced the
abundance of mRNAs encoding ICAM-1 (Fig. 4B), CCL5
(Fig. 4C), and CCL2 (Fig. 4D) in WT cells. Remarkably,
REDD1 deletion prevented an increase in inflammatory cyto-
kine expression in cells exposed to TNFα. Similarly, pharma-
cological IKKβ inhibition suppressed TNFα-induced NF-κB
reporter activity in WT cells (Fig. 4E) and reduced expression
of ICAM-1 (Fig. 4F), CCL5 (Fig. 4G), and CCL2 (Fig. 4H).

REDD1 promotes canonical NF-κB signaling

Canonical NF-κB signaling involves activation of the IKK
complex that consists of two kinases (IKKα and IKKβ) and a
regulatory subunit (NEMO/IKKγ). TNFα exposure enhanced
phosphorylation of both NEMO at S376 (Fig. 5A) and IKKα/β
at S176/S180 (Fig. 5B) in WTMIO-M1 cells, but not in REDD1
KO cells. K63-linked nondegradable polyubiquitin (pUb)
4 J. Biol. Chem. (2022) 298(12) 102638
chains regulate canonical NF-κB signaling (24, 25), with direct
ubiquitination of NEMO positively modulating IKK complex
activation (26–28). To determine the impact of REDD1 on
K63-specific ubiquitination of NEMO, hemagglutinin (HA)-
tagged NEMO was expressed in HEK239 cells. K63-pUb was
detected in the HA-NEMO immunoprecipitate (IP) from cell
lysates (Fig. 5C). As compared to WT cells, K63-pUb was
reduced in the HA-NEMO IP from REDD1 KO cells. Sur-
prisingly, IKKα and IKKβ coimmunoprecipitation with HA-
NEMO was unaffected by REDD1 deletion or TNFα expo-
sure (Fig. 5D). However, enhanced phosphorylation of IKKα/β
was observed in the HA-NEMO IP from WT cells after TNFα
exposure, whereas a similar effect was not observed in REDD1
KO cells. Further, phosphorylation of IKKα/β (S176/S180) and
IκB at S32 were enhanced upon TNFα exposure in a manner
that was dependent on REDD1 expression.
REDD1 deletion suppressed canonical NF-κB signaling in the
retina of diabetic mice

To investigate a role for REDD1 in diabetes-induced NF-κB
activation, nuclear isolates from whole retina were examined
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REDD1 sustains NF-κB signaling
using an ELISA that measures the binding of NF-κB p65 to an
oligonucleotide encoding the κB consensus motif. Diabetes
promoted NF-κB activity (Fig. 6A) and increased nuclear NF-
κB p65 expression (Fig. 6B) in the retina of REDD1+/+ mice,
but not in REDD1−/− mice. IκB expression was also reduced in
the retina of diabetic REDD1+/+ mice, as compared to nondi-
abetic REDD1+/+ mice (Fig. 6C). As compared to diabetic
REDD1+/+ mice, IκB expression was increased in the retina of
diabetic REDD1−/− mice. Diabetes also promoted phosphory-
lation of NF-κB at S536 (Fig. 6D) and NEMO at S376 (Fig. 6E),
which were also dependent on REDD1. To correlate changes
in NF-κB with retinal inflammation, leukostasis was examined
in retinal sections. In the retina of REDD1+/+ mice, diabetes
resulted in macrophage infiltration into the inner retina (Fig. 6,
F and G). However, as compared to nondiabetic REDD1−/−

mice, macrophage infiltration was not altered in the retina of
diabetic REDD1−/− mice.

Activating transcription factor 4 is necessary for TNFα-induced
REDD1 expression

To investigate potential upstream mediators that promote
REDD1 mRNA expression in the retina, a role for the tran-
scription factor activating transcription factor 4 (ATF4) was
examined. ATF4 is a well-documented regulator of
stress-induced REDD1 mRNA transcription (29–31). ATF4
protein expression was increased in retinal lysates from
streptozotocin (STZ)-diabetic mice as compared to their
littermate controls (Fig. 7A). When MIO-M1 cells were
exposed to TNFα, ATF4 and REDD1 protein expression
coordinately increased (Fig. 7B). In cells expressing an shRNA
targeting the ATF4 mRNA, ATF4 expression was suppressed
(Fig. 7C), and the stimulatory effect of TNFα on REDD1
expression was absent (Fig. 7D). In addition to reducing
REDD1 mRNA abundance (Fig. 7E), ATF4 knockdown also
suppressed the abundance of mRNAs encoding ICAM-1
(Fig. 7E), CCL5 (Fig. 7F), and CCL2 (Fig. 7G). Together, the
data support ATF4-dependent REDD1 expression in the
regulation of inflammatory cytokine production.

Discussion

Herein, we investigated a role for REDD1 in the develop-
ment of diabetes-induced retinal inflammation. Increased
REDD1 expression was observed in the retina of mice after
16-weeks of STZ-diabetes, as well as in human Müller glia
cultures exposed to hyperglycemic culture conditions. Dia-
betes promoted NF-κB signaling, enhanced pro-inflammatory
cytokine expression, and lead to the development of retinal
leukostasis. However, REDD1 deletion reduced IKK activation,
J. Biol. Chem. (2022) 298(12) 102638 5
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REDD1 sustains NF-κB signaling
suppressed nuclear localization of NF-κB, and attenuated both
inflammatory cytokine expression and macrophage infiltration
of the inner retina in diabetic mice. Overall, the studies provide
evidence that REDD1 acts to promote retinal inflammation by
sustaining activation of canonical NF-κB signaling (Fig. 8).

DR is diagnosed by clinically visible microvascular abnor-
malities in the retina and thus has principally been investigated
as a microvascular complication. However, evidence supports
that gliosis, neuroinflammation, neurodegeneration, and loss
of neurovascular coupling are critical elements of disease
pathogenesis (32). In fact, neuroglial deficits can precede and
even predict the visible signs of microvascular disease in dia-
betic patients (33, 34). Specificity of REDD1 expression in
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human retina is consistent with markers of Muller glia, and
conditional deletion of REDD1 in Muller glia of mice prevents
the increase in retinal REDD1 expression with STZ-diabetes
(17). Enhanced REDD1 mRNA was observed throughout the
retinal layers after 16 weeks of STZ-diabetes. Muller glia
extend radially across the entire retina, thus the localization of
REDD1 mRNA in retinal sections was not unexpected. Retinal
Müller glia play a central role in the development of inflam-
mation in DR (2). Müller glia provide critical homeostatic and
trophic support to maintain both activity of retinal neurons
and integrity of the blood-retinal barrier. In response to dia-
betes, Müller cells become activated and secrete a range of
pro-inflammatory factors that are NF-κB target genes (35).
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REDD1 sustains NF-κB signaling
Herein, expression of ICAM-1, CCL5, and CCL2 were
increased in both the retina of STZ-diabetic mice and in retinal
Müller glia cultures exposed to TNF⍺ in coordination with
activation of NF-κB.

NF-κB serves as a key mediator of the retinal inflamma-
tory response to diabetes (36–38). It has long been estab-
lished that diabetes promotes retinal NF-κB activation in
both diabetic patients (14) and in preclinical models (39,
40). However, the underlying mechanisms responsible for
enhanced nuclear localization of NF-κB in the context of
DR are not well delineated. Only recently was enhanced NF-
κB phosphorylation reported in the retina of Ins2Akita mice
(41) and STZ-diabetic rats (42) and mice (43). Limited re-
ports of enhanced IκB phosphorylation and reduced IκB
expression in the retina of STZ-diabetic rodents support
activation of canonical NF-κB signaling (43, 44). Canonical
NF-κB signaling depends on activation of the IKK complex,
which includes two kinase subunits (IKKα/β) and the reg-
ulatory subunit NEMO. In particular, IKKβ and NEMO
mediate canonical NF-κB signaling, whereas noncanonical
signaling is dependent on IKKα. Increased IKKβ phosphor-
ylation was recently reported in retinal lysates from STZ-
diabetic rats (45). Herein, increased NF-κB DNA-binding
activity was observed in the retina of STZ-diabetic mice in
coordination with nuclear localization and phosphorylation
of NF-κB p65. Moreover, diabetes attenuated retinal IκB
expression and enhanced autophosphorylation of NEMO
within the IKK complex.
J. Biol. Chem. (2022) 298(12) 102638 7
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REDD1 sustains NF-κB signaling
A growing body of literature supports that the stress
response protein REDD1 plays a critical role in the develop-
ment of diabetes-induced retinal defects. Indeed, REDD1
deletion prevents retinal pathology and functional deficits in
vision in STZ-diabetic mice (11, 15, 16). It is well established
that REDD1 mediates the cellular stress response to a number
of adverse conditions, including hyperglycemia (46, 47). In
both the retina of diabetic mice and in human retinal cell
cultures exposed to hyperglycemic conditions, REDD1
expression was upregulated in association with pro-
inflammatory signaling. Deletion of REDD1 prevented a
pro-inflammatory response to diabetes and hyperglycemic
conditions, supporting a role for REDD1 in development of
inflammation. This is consistent with prior studies on endo-
toxemia pathophysiology that demonstrate an essential role for
REDD1 in lipopolysaccharide (LPS)-induced inflammation
(21, 22).

Oxidative stress resulting from an imbalance between the
production of reactive oxygen species and their elimination by
antioxidants contributes to the development of retinal
inflammation with diabetes (39). Upregulation of REDD1 has
been linked to multiple disease models that involve the
development of oxidative stress, including DR (47). Retinal
cells combat the development of oxidative stress through
activation of the Nrf2 antioxidant response. Nrf2 deletion
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promotes the development of inflammation with ischemia-
reperfusion injury (48). Moreover, knockdown of Nrf2 and
its downstream targets HO-1 and NQO1 increases NF-κB–
mediated inflammation in monocytes exposed LPS (49).
REDD1 acts to negatively regulate Nrf2 activity in the retina of
diabetic mice by promoting nuclear exclusion and degradation
of the transcription factor (16). As compared to WT Müller
cells exposed to hyperglycemic conditions, REDD1 deletion
promoted Nrf2 hyperactivation in coordination with blunted
expression of ICAM-1, CCL5, and CCL2. Nrf2 knockdown in
REDD1-deficient cells restored HO-1 expression to a level that
was similar to that observed in WT cells. However, Nrf2
knockdown did not enhance expression of ICAM-1, CCL5,
and CCL2 in REDD1-deficient cells exposed to hyperglycemic
conditions. This supports that the reduced inflammatory
cytokine expression with REDD1 ablation was independent of
Nrf2 hyperactivation.

A role for REDD1 in NF-κB–mediated inflammation has
been noted in mice exposed to LPS or cigarette smoke (19, 21,
22). Lee et al. (2018) demonstrated that REDD1 promotes
atypical NF-κB activation by IκBα sequestration (22). In
macrophages exposed to LPS for 24 h, REDD1 interferes with
IκBα binding to NF-κB to promote nuclear translocation and
activity of the transcription factor (22). Prior work suggests
that LPS activates NF-κB via both an early IKK-dependent



Figure 8. REDD1 sustains NF-κB signaling to promote retinal inflam-
mation. Working model for the role of REDD1 in diabetes-induced activa-
tion of NF-κB signaling and enhanced inflammatory cytokine production by
Müller glia. Graphic created with BioRender.com. NF-κB, nuclear transcrip-
tion factor κB.
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mechanism, as well as through delayed IKK-independent
mechanism (50). Notably, Lee et al. observed a suppressive
effect of REDD1 on NF-κB p65 phosphorylation in macro-
phages exposed to LPS for only 30 min, despite absence of
IκBα expression at that timepoint (22). The observation sug-
gests the possibility that REDD1 may also act independently of
IκBα sequestration. The studies herein extend on the prior
work by demonstrating that REDD1 sustained canonical NF-
κB signaling by enhancing IKK activation to suppress IκBα
expression. REDD1 deletion reduced both auto-
phosphorylation and K63-ubiquitination of the IKK complex.
Together with the prior report (22), the findings support a
model wherein REDD1 acts by both enhancing IKK-dependent
degradation of IκBα to promote NF-κB nuclear translocation
and through IKK-independent sequestration of newly syn-
thesized IκBα. In addition to promoting the transcription of
pro-inflammatory cytokines, NF-κB also mediates transcrip-
tion of IκBα, which facilitates feedback inhibition of the
signaling pathway (51). In REDD1-deficient Müller glia cul-
tures, TNFα-induced NF-κB phosphorylation and the reduc-
tion in IκBα expression were resolved more quickly than in
WT cells. This suggests that REDD1 uncouples autoregulation
of NF-κB activation and provides an additional molecular
checkpoint for the termination of pro-inflammatory signaling.

We recently provided evidence that increased retinal
REDD1 protein expression results from impaired lysosomal
proteolysis of REDD1 protein as a consequence of redox sta-
bilization (52). After 6 weeks of STZ-diabetes, enhanced
REDD1 protein expression in retinal lysates is observed in the
absence of a change in REDD1 mRNA expression (52). By
contrast, 16 weeks of STZ-diabetes resulted in upregulated
REDD1 mRNA abundance. The observation suggests that with
prolonged diabetes duration, redox stabilization of REDD1 is
potentially exacerbated by a transcriptional effect. Prior re-
ports demonstrate that retinal REDD1 expression is tran-
scriptionally upregulated in response to hypoxic stress in a
murine model of retinopathy of prematurity (53). Moreover,
evidence supports that REDD1 is a transcriptional target of
ATF4 (29), HIF-1α (54), p53 (55), and even RelB (56). Herein,
increased retinal REDD1 mRNA abundance was observed
coincident with enhanced ATF4 protein expression. ATF4
knockdown prevented an increase in REDD1 expression in
Müller cells exposed to TNFα and attenuated inflammatory
cytokine expression. The data support a prior study that
identified an essential role for ATF4 in diabetes-induced in-
flammatory cytokine production by Müller glial (57). More
specifically, ATF4 expression localizes to Müller cells in the
retina of STZ-diabetic mice, and expression of a dominant
negative ATF4 variant reduces inflammatory cytokine
expression in both the retina of diabetic mice and in Müller
cells exposed to hyperglycemic conditions (57). The studies
here extend on the prior work by demonstrating a key role for
REDD1 and NF-κB acting downstream of ATF4 to promote
Müller glial expression of pro-inflammatory cytokines.

Overall, the findings here provide new insight into the
molecular mechanisms whereby diabetes contributes to the
development of retinal inflammation. In the retina of diabetic
mice, REDD1 expression was increased in coordination with
NF-κB activation, pro-inflammatory cytokine expression, and
macrophage infiltration. REDD1 deletion reduced NF-κB
activation in the retina of diabetic mice and prevented the
development of leukostasis. The data support that therapeutic
intervention to suppress REDD1 expression may improve
retinal pathology in diabetic patients. Therapeutically, DR is
principally addressed by blockade of vascular endothelial
growth factor (58). A major limitation of these interventions is
that vascular endothelial growth factor suppression largely
addresses the microvascular dysfunction and neo-
vascularization that characterize later stages of disease pro-
gression. The studies here support that REDD1 suppression
may represent a therapeutic strategy to prevent the develop-
ment of retinal inflammation. Indeed, administration of an
intravitreally administered siRNA targeting the REDD1 mRNA
(PF-04523655) in patients with diabetic macular edema
showed a trend toward improvement in BCVA when
compared to focal/grid laser (+5.8 letters with 3 mg PF-
04523655 versus +2.4 letters with laser, p = 0.08) (18). In a
secondary analysis of patients that completed a 12-months
J. Biol. Chem. (2022) 298(12) 102638 9

http://BioRender.com


REDD1 sustains NF-κB signaling
follow up, mean improvement in BCVA with 3 mg PF-
04523655 was superior to laser intervention. The proof-of-
concept studies here are consistent with a mechanism of
action wherein REDD1 suppression improves visual acuity in
diabetic patient by preventing sustained NF-κB activation and
reducing the retinal inflammatory response to diabetes.

Experimental procedures

Animals

Male WT (REDD1+/+) and REDD1 KO (REDD1−/−) B6;129
mice (53) were maintained on a 12:12-h reverse light dark
cycle. Diabetes was induced at 6 weeks of age by administering
50 mg/kg STZ intraperitoneally for five consecutive days.
Littermate control mice were injected with equivalent volumes
of sodium citrate buffer. Two weeks after injections, diabetic
phenotype was confirmed by fasting blood glucose concen-
trations >250 mg/dL. At 16 weeks of diabetes, mice were
euthanized, and retina and whole eyes were extracted. All
procedures were approved by the Penn State College of
Medicine Institutional Animal Care and Use Committee and
were in accordance with the ARVO statement on the ethical
use of animals in ophthalmological research.

Cell culture

MIO-M1 human Müller cells were obtained from the UCL
Institute of Ophthalmology. MIO-M1 cells deficient for
REDD1 (REDD1 KO) were generated using CRISPR/Cas9
genome editing as previously described (59, 60). MIO-M1
cultures were maintained in Dulbecco’s modified Eagle’s me-
dium (DMEM, Thermo Fisher Scientific) containing 5.6 mM
glucose and supplemented with 10% heat inactivated fetal
bovine serum and 1% penicillin-streptomycin. MIO-M1 cells
stably expressing an shRNA targeting Nrf2 (50-CCGGG-CT
CCTACTGTGATGTGAAATCTCGAGATTTCACATCACAG
TAGGAGCTTTTT-30) or ATF4 (50-CCGGGCCTAGG
TCTCTTAGATGATTCTCGAGAATCATCTAAGAGACCTA
GGCTTTTT-30) were generated as previously described (16).
Cells expressing pLKO.1-TRC [provided by David Root (Addg-
ene Plasmid #10879)] were used as an shRNA control. To model
hyperglycemia, culture medium was supplemented with either
24.4 mM glucose or 24.4 mM mannitol as an osmotic control.
Cells were transfected using Lipofectamine 2000 (Life Tech-
nologies). Plasmids included pCMV5 vector, pCMV-HA-
REDD1, pRL-Renilla luciferase (Promega). NF-κB-TATA lucif-
erase reporter and pCMV4-HA-NEMO (IKKγ) plasmids were
kindly provided by Dr Edward Harhaj (Penn State College of
Medicine). Where indicated, cell culture medium was supple-
mented with recombinant human TNFα (20 ng/ml; Sigma)
or 1 μM N-(3,5-Bis-trifluoromethylphenyl)-5-chloro-2-
hydroxybenzamide (IMD0354; Cayman chemicals).

Immunofluorescent microscopy

Whole eyes were excised, and corneas were punctured, fol-
lowed by incubation in 4% paraformaldehyde (pH 7.5) for
30 min. Eyes were washed with PBS and incubated at 4 �C in
30% sucrose solution containing 0.05% sodium azide. Eyes were
10 J. Biol. Chem. (2022) 298(12) 102638
embedded in optimal cutting temperature compound, flash
frozen, and sectioned. Cryosections (10 μm) were fixed in 2%
paraformaldehyde, then permeabilized in PBS with 0.1% Triton-
X-100, and blocked in 10% normal donkey serum. Sections
were labeled with the appropriate antibodies (Table S1). All
sections were counter stained with 1.6 μmol/L Hoechst. Slides
were mounted with Fluoromount aqueous mounting media
(Sigma-Aldrich) and imaged with a confocal laser microscope
(Leica SP8; Leica) using frame-stack sequential scanning. As a
control for nonspecific secondary antibody binding, primary
antibody was omitted in analysis of some retinal sections
(Fig. S2). ImageJ was used to obtain macrophage counts after
thresholds were set to isolate positive cells and single stained
population counts were then confirmed manually.

In Situ hybridization

REDD1 mRNA was visualized using the RNAscope 2.5 HD
Assay-RED detection kit and the RNAscope Probe-Mm-Ddit4
probe (Advanced Cellular Diagnostics) targeting nucleotides
133-1480 of NM_029083.2. RNA-in situ hybridization was
carried out on 10 μm whole eye cryosections following the
manufacturer’s protocol. REDD1 mRNA hybridization was
carried out on protease and heat-treated sections. Sequential
hybridization with preamplifier, amplifier, and alkaline
phosphatase–labeled oligos was carried out followed by the
application of a chromogenic substrate. Tissue was counter-
stained with Mayer’s Hematoxylin and 0.02% ammonia wa-
ter, and micrographs were captured using an AmScope T720Q
brightfield microscope.

Nuclear fractionation

Retinas were homogenized in ice-cold hypotonic buffer
(20 mM Hepes pH 7.5, 5 mM NaF, 10 μM sodium molybdate,
0.1 mM EDTA, 0.5% Nonidet P-40, and 1% protease-
phosphatase inhibitors). Homogenates were centrifuged at
228g for 5 min at 4 �C to pellet nuclei. The nuclear pellet was
resuspended in 50 μL complete lysis buffer (Active Motif) and
incubated at 4 �C for 30 min on a shaking platform. Lysates
were centrifuged at 14,000g for 10 min at 4 �C. Nuclear extract
was collected as the supernatant fraction.

DNA-binding ELISA

NF-κB activity was quantified using a colorimetric NF-κB
p65 DNA-binding ELISA (Trans AM NF-κB p65; Active
Motif). Briefly, 20 μg of nuclear protein was incubated for 1 h
in the presence of an immobilized oligonucleotide encoding
the NF-κB consensus sequence. Binding of the p65 subunit
was quantified using an anti-p65 primary antibody and
horseradish peroxidase–conjugated secondary. The absor-
bance (λmax 450 nm) was recorded using Spectra Max M5
plate reader (Molecular Devices).

Immunoprecipitations

Immunoprecipitations were performed on 1000g superna-
tant fractions of cell lysate. HA-tag immunoprecipitation was
performed using EZview Red Anti-HA affinity gel (Sigma).
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Beads were washed with lysis buffer [1 mM EDTA, 5 mM
EGTA, 10 mM MgCl2, 50 mM β-glycerophosphate, and 0.1%
NP-40] and blocked with lysis buffer containing 1% bovine
serum albumin. Cells were harvested in lysis buffer supple-
mented with 2 mM N-ethylmaleimide, 10 mM sodium pyro-
phosphate, 1 mM benzamidine, 200 mM sodium vanadate, and
protease inhibitor mixture (10 μL/mL) and lysed for 30 min at
4 �C. Cell supernatants were collected by centrifuging lysates
for 3 min at 1000g and incubated with the appropriate affinity
resin overnight at 4 �C. Affinity resins were washed with cold
lysis buffer, resuspended in 1× SDS sample buffer, and boiled
for 5 min. The IP was subjected to Western blot analysis.
Western blotting

Retinas were flash frozen in liquid nitrogen and homoge-
nized as previously described (11). Retinal protein was quan-
tified by DC protein assay. Equal protein from cell lysates,
retinal homogenates, or nuclear extracts were combined with
Laemmli buffer, boiled, and fractionated in Criterion Precast 4
to 20% gels (Bio-Rad Laboratories). Proteins were transferred
to a polyvinylidene fluoride membrane, blocked in 5% milk in
Tris-buffered saline Tween 20, and evaluated with appropriate
antibodies (Table S1).
Luciferase reporter assay

Cells were cotransfected with NF-κB-TATA luciferase
(500 ng) and pRL-Renilla luciferase (50 ng) plasmids. After
24 h, transfection media was removed, and cells were exposed
to culture medium as indicated. Luciferase activity was
measured on a FlexStation3 (Molecular Devices) using a Dual-
Luciferase Assay Kit (Promega).
PCR analysis

Total RNA was extracted with TRIzol (Invitrogen). RNA
(1 μg) was reverse transcribed using the High-Capacity cDNA
Reverse Transcription Kit (Applied Biosystems) and subjected
to quantitative real-time PCR (QuantStudio 12K Flex Real-
Time PCR System, Thermo Fisher Scientific;
RRID:SCR_021098) using QuantiTect SYBR Green Master
Mix (Qiagen). Primer sequences are listed in Table S2. Mean
cycle threshold values were determined for control and
experimental samples. Changes in mRNA expression were
normalized to GAPDH mRNA expression using the 2−ΔΔCT

method.
Statistical analysis

Data are expressed as mean ± SD. Statistical analysis of
data with more than two groups were analyzed with two-way
ANOVA, and pairwise comparisons were made using the
Tukey’s test for multiple comparisons. Difference between
two groups was determined by unpaired Student’s t test.
Significance was defined as p < 0.05 for all analyses. Specific
p-values for experimental groups with different means are in
Table S3.
Data availability

All data for this publication are included in the article or are
available from the corresponding author upon request.
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