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Abstract: Accurate and reliable outcome predictions can help evaluate the functional recovery of
ischemic stroke patients and assist in making treatment plans. Given that recovery factors may
be hidden in the whole-brain features, this study aims to validate the role of dynamic radiomics
features (DRFs) in the whole brain, DRFs in local ischemic lesions, and their combination in predicting
functional outcomes of ischemic stroke patients. First, the DRFs in the whole brain and the DRFs in
local lesions of dynamic susceptibility contrast-enhanced perfusion-weighted imaging (DSC-PWI)
images are calculated. Second, the least absolute shrinkage and selection operator (Lasso) is used
to generate four groups of DRFs, including the outstanding DRFs in the whole brain (Lasso (WB)),
the outstanding DRFs in local lesions (Lasso (LL)), the combination of them (combined DRFs), and
the outstanding DRFs in the combined DRFs (Lasso (combined)). Then, the performance of the four
groups of DRFs is evaluated to predict the functional recovery in three months. As a result, Lasso
(combined) in the four groups achieves the best AUC score of 0.971, which improves the score by
8.9% compared with Lasso (WB), and by 3.5% compared with Lasso (WB) and combined DRFs. In
conclusion, the outstanding combined DRFs generated from the outstanding DRFs in the whole brain
and local lesions can predict functional outcomes in ischemic stroke patients better than the single
DRFs in the whole brain or local lesions.

Keywords: DSC-PWI; dynamic radiomics features; whole brain; local lesions; lasso; outcome prediction

1. Introduction

Stroke has become the second leading cause of death and the third leading cause of
disability globally [1]. Nearly 40% of those surviving stroke have a moderate functional
impairment, and 15–30% sustain severe permanent disability [2], resulting in impaired
quality of life. Thrombolytic therapy is the primary clinical treatment method for ischemic
stroke [3,4]. The effect of thrombolytic therapy is mainly determined by the patient’s
characteristics and individual treatment plans [5]. If the neurological functional recovery
after treatment can be predicted, it will be helpful to make the appropriate treatment
decision. Therefore, it is desirable to accurately predict the prognosis and rehabilitation
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of patients to assist physicians in making suitable treatment programs for patients and
reducing their adverse prognosis.

The modified Rankin Score (mRS), ordered from 0 (no symptoms at all) to 6 (death),
is the most widely used functional outcome measure for stroke. An mRS from 0 to 1 is
defined as a good outcome, while scores 2 to 6 are defined as a poor outcome in the clinic [6].
Previous studies have identified clinical text information (CTI) from patients and medical
images associated with stroke outcomes. For example, Refs. [7–10] proved that basic patient
information, physical symptoms, clinical scores, and features in damaged tissue could
predict stroke outcome, and could especially predict the modified Rankin Score (mRS)
in three months. Ref. [11] provided an additional feature selection mechanism to select
essential features from the CTI for improving outcome prediction. Ref. [12] developed a
nomogram model with 12 independent predictors of patients to identify the mortality in
intensive care unit patients with stroke. Although the recovery status of stroke patients
can be preliminarily predicted through the CTI, it is difficult to improve the prediction
performance due to the limitation of missing the information reflecting patients’ cerebral
blood flow (CBF) status.

Recently, the significant value of medical images in predicting stroke outcomes has
been revealed. For example, multiple-category prediction was achieved using the hemody-
namic parameters computed from perfusion images provided by ISLES 2016 and 2017 [13–15].
In addition, some scholars used collateral vessels on computed tomography angiography
(CTA) to predict outcomes [16]. The added value of computed tomography perfusion
(CTP) and CTA parameters in outcome prediction of acute stroke patients were proved in
Ref. [17]. However, although clinical control variables computed from medical images have
been widely used in the functional recovery prediction of stroke patients, the stable value
of medical images in predicting outcomes is not clear-cut [18]. Therefore, it is necessary
to develop new intelligent methods to improve the value of medical images in stroke
outcome prediction.

Radiomics refers to the automated extraction of quantifiable data from radiological
images, and the extracted features can be used in predicting clinical outcomes [19–22].
Refs. [23,24] concluded that the radiomics signatures obtained by feature selection have
better performance than those without feature selection. Moreover, after exploring the
application of radiomics features of three-dimensional (3D) images, the radiomics features
of four-dimensional (4D) perfusion images containing blood flow information began to
be recognized and applied to outcome prediction. Some researchers combined CTI and
radiomics features to improve the outcome prediction. Ref. [25] extracted radiomics features
from 3D images in time series of dynamic susceptibility contrast-enhanced perfusion-
weighted imaging (DSC-PWI) to generate dynamic radiomics features (DRFs), and the
performance of DRFs, CTI, generated survival features, and the combination of them were
compared and evaluated. The results showed that the CTI performed better than DRFs of
ischemic lesions, and the additional survival features can improve the predictive ability.
Based on the above, it can be concluded that the current research in prognosis prediction
mainly focuses on features of local lesion regions in medical images. However, it should
not be ignored that the appearance of local ischemic lesions will inevitably lead to changes
in the cerebral blood flow parameters in the whole brain [26,27]. Both local lesions and the
whole brain should imply neurological impairment and recovery ability [28]. Therefore,
the comparative and exploration of the influence of whole-brain features and local-lesion
features on the outcome may provide more possibilities for the clinical treatment and
prognosis prediction of ischemic stroke patients.

This study investigated and validated the role of dynamic radiomics features (DRFs)
in the local lesions and the whole brain of DSC-PWI images for predicting ischemic stroke
outcomes (90-day mRS). The outstanding DRFs in the whole-brain and local-lesion regions
were extracted and combined, and the combined DRFs successfully improved the outcome
prediction compared to the individual DRFs. This study is expected to be a potential tool
in the clinic.
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2. Materials and Methods

A detailed introduction of the materials and methods is listed below. The provided
methods mainly consist of five steps: (1) preprocessing datasets, (2) segmentation of
the whole brain and ischemic lesion, (3) calculating DRFs and t-test analysis, (4) feature
selection and combination, and (5) ischemic stroke outcome prediction.

2.1. Materials

The datasets were collected from 2013 to 2016 by the Neurology Department of
Shanghai Fourth People’s Hospital Affiliated with Tongji University School of Medicine,
China. The datasets reviewed 78 DSC-PWI images from 56 consecutive patients with
ischemic stroke. Their neurological function recovery was redefined depending on the
90-day mRS scored by an experienced physician. In detail, the 90-day mRS was divided
into good outcomes and poor outcomes. A score greater than 2 was defined as a poor
outcome, while the opposite situation was defined as a good outcome. Then, 42 cases with
good outcomes and 36 with poor outcomes were obtained. Moreover, all DSC-PWI images
were scanned within 24 h of symptom onset by the 1.5T MR scanner (Siemens, Munich,
Germany). Table 1 shows the details of the DSC-PWI datasets.

Table 1. Patient information and DSC-PWI images parameters.

Item Parameter

Patient information

Patients 78

Male 61 (78.21%)

Age 71.68 ± 10.66

90-day mRS 2.60 ± 2.34

DSC-PWI images

Matrix 256

Slices 20

Number of measurements 50

Thickness 6.5 mm

2.2. Methods
2.2.1. Preprocessing Datasets

Figure 1 shows the flowchart of our provided methods. The first work in this study
was to reduce noise and position deviation in DSC-PWI datasets. With the multiplicative
intrinsic component optimization algorithm introduced in Refs. [29,30], the image series in
DSC-PWI data were registered, and the potential patient motion was reduced. Next, this
study used neuroimaging software package FSL [31] to segment the skull from the average
3D DSC-PWI image, then obtain the brain tissue region of DSC-PWI images. Since the time
period of the contrast agent passed through is in the range of about 17 to 22 and the end
of the reaction is located at a time value greater than 30 [25], the average 3D image was
computed from the first 15th and the last 15th 3D images to reduce the influence of the
contrast agent. The computation of the average 3D image is expressed as Equation (1).

avg_pwi =

n
∑

i=1
S(i) +

N
∑

i=N−n
S(i)

2n
(1)

where avg_pwi is the average 3D image, N is the total measurements of DSC-PWI (N = 50 in
this study), n = 15, and S(i) is the ith 3D image in the DSC-PWI sequence.
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Figure 1. Flowchart of the provided method in this study: (a) preprocessed DSC-PWI images;
(b) segmentation of the whole brain and ischemic lesion; (c) computed dynamic radiomics features
from the whole brain and ischemic lesion; (d) feature selection and combination; (e) ischemic stroke
outcome prediction.

Moreover, we used the data smoothing filter with a 1 × 3 filtering kernel introduced
in Ref. [25] to smooth DSC-PWI images and decrease their noise. Then, the time–intensity
curve of each voxel in the DSC-PWI image was smoothed. This way, the DSC-PWI images
in the datasets included the smoothed 3D images with 50 measurements.

2.2.2. Segmentation of the Whole Brain and Ischemic Lesion

The primary task for comparative analysis of features in the whole brain and local
lesions is to detect both regions. The regions of interest (ROIs) of the whole brain in the
DSC-PWI images were obtained based on the result of skull segmentation in Section 2.2.1.
Depending on the software FSL, the brain tissue mask and skull mask can be obtained, and
then the brain tissue mask can be regarded as the ROI of the whole brain in the DSC-PWI
image. For the detection of ischemic stroke lesions, the Rapid Processing of Perfusion and
Diffusion (RAPID) software (iSchemaView, Menlo Park, CA, USA) [32] was applied to
make the ROI of the ischemic stroke lesions in the whole brain, and the set condition was
Tmax > 6 s. Then, the ROIs of local ischemic lesions and the whole brain can be obtained
for each DSC-PWI image (seen in Figure 2).
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2.2.3. Calculating DRFs and Selecting Significant Radiomics Features by t-Test Analysis

Due to the 4D characteristics of the DSC-PWI images, this study split them into
N 3D images to process separately. In detail, this study used radiomics technology to
calculate the radiomics features of the whole brain and local lesions in each 3D image
(Figure 3a). The radiomics features were combined according to the time order to generate
the dynamic radiomics features (DRFs). That means the radiomics features of the whole
brain and ischemic tissue in each 3D image could be computed separately. Then, the
radiomics features list can be generated by combining the radiomics features of all the 3D
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images in the time order. The combined radiomics features were defined as DRFs of the
DSC-PWI images.
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Among the DRFs, there were six feature groups: First-Order Statistics (First_order), Gray-
Level Dependence Matrix (GLDM), Gray-Level Co-Occurrence Matrix (GLCM), Gray-Level
Run-Length Matrix (GLRLM), Gray-Level Size-Zone Matrix (GLSZM), and Gand Neighboring
Gray-Tone Difference Matrix (NGTDM) (Figure 3b). In this study, radiomics features were
automatically calculated by using the PyRadiomics package implemented in Python [33,34].
The 3D image in the DSC-PWI was defined as S(n), n ∈ [0, 49], and the calculated DRFs were
defined by combining their radiomics feature names and the n-values of the 3D images. For
example, “wavelet-HHL_gldm_SmallDependenceLowGrayLevelEmphasis_1” represents
the radiomics feature “wavelet-HHL_gldm_SmallDependenceLowGrayLevelEmphasi” of
3D image S(1), which is the second 3D image (the first one is S(0)) in DSC-PWI data, and
this feature belongs to the GLDM group and filtered by wavelet.

Before feature selection, a feature normalization is necessary to remove the influ-
ence of differences between samples and features. This study used each feature’s mean
and standard deviation to normalize the feature vector. The transformation is given in
Equation (2).

F∗i =
(

Fi − Fi
)
/(Fimax − Fimin ) (2)

where F∗i is the updated normalized result of Fi; Fi, Fimax, and Fimin represent the mean,
maximum, and minimum of Fi; and i is the order of DRF.
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Then, this study used the t-test algorithm to extract the significant DRF (Figure 3c).
First, this study detected the homogeneity of variance of each DRF. When obtaining a
positive result that the feature had homogeneity of variance, the t-test was performed
directly. However, if obtaining a negative result, this study set the parameter equal_val as
false when performing t-test analysis. Last, the significant DRFs (p < 0.05) remained in the
t-test analysis. Therefore, two groups of significant DRF from the whole brain and local
lesions were obtained, and they were defined as T-test (WB) and T-test (LL) in this study.
Moreover, the Levene test was used to realize the homogeneity of the variance test.

2.2.4. Feature Selection and Combination

Feature selection plays a crucial role in data mining and improving algorithms per-
formance, which is necessary work in feature processing. The Lasso algorithm has been
recognized as one of the most effective selection methods for selecting relevant features
with target variables [25,35,36]. Therefore, this study used Lasso to select outstanding
radiomics features for 90-day mRS, and the feature with a non-zero coefficient was selected
as one of the outstanding DRFs. The Lasso was implemented by the LassoCV function
imported from sklearn.linear_model package in Python 3.6, and the cv was set as 10 in the
function. The mathematical principle of Lasso is shown in Equation (3). By the supervised
feature selection, outstanding DRFs can be obtained according to the ground truth of 90-day
mRS. The outstanding DRFs selected from original radiomics features of the whole brain
were defined as Lasso (WB), while those of local lesions were defined as Lasso (LL).

Lasso(Ft−test) = argmin{
M

∑
i=1

(yi − β0 −
q

∑
j=1

β jxij)

2

+ λ
q

∑
j=0
|β j|} (3)

where, Lasso (Ft-test) represents the selected outstanding DRFs for the outcome prediction
from the significant DRF Ft-test; xij is the independent DRF in Ft-test; yi is the ground truth of
the ith case; λ is the penalty parameter greater than zero; βj is the regression coefficient;
M represents the number of samples for the selection operation; q represents the selected
DRFs by the Lasso algorithm; i ∈ [1, M]; and j ∈ [0, q].

Then, this study combined the DRFs from both regions and regarded them as com-
bined DRFs (Lasso (WB) + Lasso (LL), ‘+’ means the concatenation operation of features).
Furthermore, this study used the Lasso algorithm to perform feature extraction on the
combined DRFs, and the outstanding combined features defined as Lasso(combined)
were obtained.

2.2.5. Ischemic Stroke Outcome Prediction

(1) Experiments

To verify the proposed methods, we used the methods to process the DSC-PWI
datasets. The outcome prediction performance of outstanding DRFs in the whole brain,
outstanding DRFs in the local lesions, combined DRFs, and outstanding combined DRFs
can be obtained. Then, their performance can be calculated.

(2) Evaluating the Performance of Outcome Prediction

This study used ten machine learning models to evaluate four groups of DRFs. By
training the ten models with the four groups of features (Lasso (WB), Lasso (LL), combined
DRFs (Lasso (WB) + Lasso (LL)), and Lasso (combined)), the area under the curves (AUCs)
of ten machine learning models can be computed, respectively. According to the AUCs, the
ability of four groups of outstanding DRFs to predict stroke outcomes can be examined.
For the ten models, this study selected the ten most widely used learning models for the
classification task in data mining and intelligent analysis [37–39]. In detail, the ten learning
models are listed in Table 2 and implemented by Python 3.6, including GaussianNB (NB),
logistic regression (LR), decision tree (DT), gradient boosting classifier (GBDT), multilayer
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perceptual neural network (nn), k-nearest neighbors (KNN), Adaboost classifier (Ada),
linear discriminant analysis (DA), random forest (RF), and support vector machine (SVM).

Table 2. Definition and implementation of the ten models in this study.

Classifier Implementation in Python 3.6

NB sklearn.naive_bayes. GaussianNB()

LR sklearn.linear_model.logisticRegressionCV(max_iter = 100,000, solver = “liblinear”)

DT sklearn.tree. DecisionTreeClassifier()

GBDT sklearn.ensemble.GradientBoostingClassifier()

nn sklearn.neural_network. MLPClassifier (hidden_layer_sizes = (400, 100), alpha = 0.01, max_iter = 10,000)

KNN sklearn.neighbors. sklearn.neighbors()

Ada sklearn.ensemble.AdaBoostClassifier()

DA sklearn.discriminant_analysis()

RF sklearn.ensemble.RandomForestClassifier(n_estimators = 200)

SVM sklearn.svm.SVC(kernel = ‘rbf’,probability = True)

When performing the tenfold cross-validation, the StratifiedKFold function imported
from the sklearn package was used to ensure the same proportion of positive and negative
samples in the training and test sets.

3. Results

The detailed results of the provided methods are divided into four parts, including
calculated DRFs and selected significant DRFs, generated four groups of radiomics features
by Lasso, and the outcome prediction performance. A description of the detailed results is
provided below.

3.1. Computed DRFs and Selected Significant DRFs
3.1.1. Computed DRFs

For each 3D image in the 4D DSC-PWI image, 1674 radiomics features belonging to
six radiomics feature groups can be calculated. These six groups of radiomics features are
324 first-order features, 432 GLCM features, 288 GLRLM features, 288 GLSZM features,
90 NGTDM features, and 252 GLDM features. Thus, 83,700 DRFs (50 measurements ×
1674 features) for the DSC-PWI image can be obtained (see Figure 4a).

3.1.2. Selected Significant DRF of Whole Brain and Local Lesions

By the t-test analysis, this study extracted 5564 significant DRFs from the whole brain,
and there were 1410 DRFs in First_order with p-values of 0.024± 0.015, 1332 DRFs in GLCM
(0.025 ± 0.015), 782 DRFs in GLDM (0.024 ± 0.014), 1000 DRFs in GLRLM (0.025 ± 0.015),
752 DRFs in GLSZM (0.026 ± 0.014), and 288 DRFs in NGTDM (0.025 ± 0.012). Moreover,
this study extracted 14661 significant DRFs from the local lesions, and there were 4177 DRFs
in First_order with p-values of 0.02± 0.014, 2445 DRFs in GLCM (0.026± 0.013), 1830 DRFs
in GLDM (0.019 ± 0.013), 3248 DRFs in GLRLM (0.02 ± 0.012), 2303 DRFs in GLSZM
(0.022 ± 0.014), and 658 DRFs in NGTDM (0.022 ± 0.014). The detailed statistics of each
significant DRF were introduced in Tables 3 and 4 and Figure 4.
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Table 3. Descriptions of the obtained DRFs in each feature processing method.

Item First_Order GLCM GLDM GLSZM GLRLM NGTDM Sum

All DRF 16,200 21,600 12,600 14,400 14,400 4500 83,700
T-test (WB) 1410 1332 782 752 1000 288 5564
T-test (LL) 4177 2445 1830 2303 3248 658 14,661
Lasso (WB) 9 15 8 2 5 5 44
Lasso (LL) 7 15 0 9 0 1 32

Combined DRFs 10 16 5 8 2 4 45
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Table 4. Statistics of the significant DRFs in the whole brain and local lesions.

DRFs Group Mean Std Sum Minimum Medium Maximum

T-test (WB)

First_order 0.024 0.015 33.57 <0.0001 0.023 0.050
GLCM 0.025 0.015 32.986 <0.0001 0.025 0.050
GLDM 0.024 0.014 18.69 <0.0001 0.023 0.050

GLRLM 0.025 0.015 18.538 <0.0001 0.024 0.050
GLSZM 0.026 0.014 25.912 <0.0001 0.026 0.050
NGTDM 0.025 0.012 7.322 0.002 0.025 0.050

T-test (LL)

First_order 0.020 0.014 84.315 0.000 0.016 0.050
GLCM 0.026 0.013 63.610 0.001 0.026 0.050
GLDM 0.019 0.013 34.826 0.001 0.015 0.050

GLRLM 0.020 0.012 44.914 0.001 0.015 0.050
GLSZM 0.022 0.014 69.973 0.001 0.019 0.050
NGTDM 0.022 0.014 14.393 0.001 0.019 0.050

3.2. Selected Outstanding DRF and Combined DRF

By Lasso analysis, 44 outstanding DRFs were selected from significant DRFs of the whole
brain, and there were 9 DRFs in First_order, 15 DRFs in GLCM, 8 DRFs in GLDM, 5 DRFs
in GLRLM, 2 DRFs in GLSZM, and 5 in NGTDM. The Pearson coefficients of the selected
outstanding DRFs and 90-day mRS ranged from 0.287± 0.053. Moreover, 32 outstanding DRFs
were selected from significant DRFs of the local lesions, and there were 7 DRFs in First_order,
15 DRFs in GLCM, 9 DRFs in GLSZM, and 1 DRF in NGTDM. The Pearson coefficients of
the selected outstanding DRFs and 90-day mRS ranged from 0.278 ± 0.047. Comparing
44 outstanding DRFs of the whole brain and 32 outstanding DRFs of local lesions, only
one feature, ‘log-sigma-3-0-mm-3D_glszm_SmallAreaLowGrayLevelEmphasis_13’ was in
both sets. Based on the results, this study redefined the selected DRFs by connecting the
character ‘F’ and the order of the feature. All selected outstanding DRFs were F1 to F75,
in which F16 was the common DRF (see Tables 3 and 4 and Figure 5a,b). By combining
the outstanding DRFs in the whole brain and local lesions, 76 DRFs were obtained, and
45 DRFs among them were selected by Lasso and regarded as Lasso (combine).
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3.3. Performance of Four Groups of DRFs for Predicting Ischemic Stroke Outcome

This study validated the ability of outstanding DRFs in the whole brain (Lasso(WB)),
outstanding DRFs in local lesions (Lasso (LL)), and the combination of them in the outcome
prediction of stroke patients.

Table 5 shows the AUCs of the four groups of DRFs on the ten models. The outstanding
DRFs in the local lesions (Lasso (LL)), the outstanding DRFs in the whole-brain (Lasso
(WB)), combined DRFs (Lasso (WB) + Lasso (LL)), and outstanding combined DRFs (Lasso
(combined)) obtained AUCs of 0.802± 0.069, 0.826± 0.088, 0.820± 0.117, and 0.838± 0.142,
respectively. For the four groups of DRFs, the best AUC achieved by Lasso (LL) was 0.882,
while Lasso (WB) and combined DRFs achieved the same best AUC of 0.936, and Lasso
(combined) got the best AUC of 0.971 which was the best score in the four groups. Among
the ten models, except for models Ada, GBDT, and DA, Lasso (WB) performed better than
Lasso (LL) on the other models. When using Lasso (WB) and Lasso (LL) to obtain the
combined DRFs, the AUC was improved on some models, but the best AUC was still
0.936. However, when selecting Lasso (combined) from combined DRFs, the best AUC was
raised to 0.971. According to the above result, it can be found that both the information
in the whole brain tissue and ischemic tissue can reflect the functional outcome of stroke
patients, and in some specific models, whole-brain-features Lasso (WB) containing local
lesion information achieved better than local-features Lasso (LL) themselves. Although the
direct combining of them failed to improve the prediction performance, it was effectively
improved after the lasso algorithm was used to extract Lasso (combined), revealing the
linear relationship between Lasso (WB) and Lasso (LL).

Table 5. Performance of four groups of outstanding DRFs.

Models Lasso (WB) Lasso (LL) Combined DRFs Lasso (Combined) CTI + survF in
Ref. [26]

SVM 0.907 0.857 0.923 0.948 0.897
nn 0.923 0.844 0.923 0.971 0.882
RF 0.802 0.784 0.801 0.801 0.949
DT 0.729 0.659 0.676 0.556 0.890

KNN 0.869 0.844 0.911 0.9 0.851
Ada 0.698 0.753 0.738 0.718 0.918
LR 0.936 0.882 0.923 0.971 0.892
NB 0.886 0.857 0.936 0.942 0.821

GBDT 0.74 0.744 0.722 0.691 0.908
DA 0.772 0.798 0.643 0.879 0.790

Mean ± Std 0.826 ± 0.088 0.802 ± 0.069 0.820 ± 0.117 0.838 ± 0.142 0.880 ± 0.047

In general, SVM, nn, and LR performed better than others of all ten models, and the
performance rules of the four groups of DRFs on these three models are Lasso (combined)
> combined DRFs ≥ Lasso (WB) > Lasso (LL).

As described above, a previous study [26] used the survival features SurvF to improve
the outcome prediction by combining SurvF with the CTI and DRFs extracted from the
ischemic lesions. The best performance of the combination of CTI and SurvF (CTI + SurvF),
and the combination of the CTI, DRFs in ischemic lesions and SurvF (ALL) are listed in
Table 5. The best AUC achieved by Ref. [26] was 0.949, which was lower than the best AUC
of Lasso (combined).

4. Discussion

Physicians often make treatment decisions for stroke patients based on their judgment
about whether the patient will benefit from the designed treatment. Over the years, many
challenges and attempts have been made to realize the accurate outcome prediction for
ischemic stroke [40,41]. Most previous studies have been based on the clinical information
of patients (sex, age, hypertension, diabetes, dizziness, etc.) and imaging information of
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stroke lesions (volume, image features) to carry out predictive analysis of stroke. However,
it has been certified that the CBF parameters are damaged in the regions surrounding or
in the stroke lesions [42–44]. Recently, Refs. [45,46] have proved that brain changes after
stroke are not only characterized by regional changes in the lesion region. Therefore, it
is reasonable to believe that the functional recovery of stroke patients is not only related
to the condition of the local lesion region but also the information in other regions or the
whole brain can affect or characterize the recovery of patients. This study investigated and
validated the significance of the DRFs in local lesions and the whole brain for predicting
ischemic stroke prognosis. As a result, the outstanding combined DRFs extracted from
the whole brain and local lesions achieved an AUC of 0.971. In theory, physicians could
eventually use the methods to predict outcomes for a stroke patient by combining imaging
variables in the whole-brain and local-lesion regions. Therefore, this study is expected to
contribute to clinical practice and provide a clinical tool for physicians.

Medical images, such as CTP and PWI, have been widely used in stroke detection,
lesion segmentation, final infarct prediction, and prognosis assessment [27,43,47–49], prov-
ing that these imaging features are closely related to the current and future rehabilitation
of stroke patients. Although the ability of features in stroke lesions to reflect functional
recovery has been revealed [23–25], few studies are related to the role of whole-brain fea-
tures in stroke outcome prediction. Under the inspiration of Ref. [25], predicting outcome
with the DRFs extracted from ischemic lesion regions, and Ref. [28], using the DRFs in
the whole brain to detect stroke and predict outcomes, this study innovatively combined
the DRFs of local lesions and the whole brain to explore their contribution to prognosis.
As a result, the performance of DRFs in the whole brain (best AUC = 0.936) was better
than the DRFs in the local lesions (best AUC = 0.882). It can be concluded that compared
with the local-lesion region, the whole-brain features may provide additional information
in assessing the recovery of neurological function. Some studies have demonstrated that
the abnormalities in brain regions may bring about changes in multiple regions [26,27].
This means that the appearance of local ischemic lesions will inevitably lead to changes
in the CBF parameters in the whole brain. Both local lesions and the whole brain con-
tain information reflecting neurological impairment and recovery ability. This study also
proved the above viewpoints and concluded that the whole-brain features could better
reflect the prognosis. Moreover, based on the distribution of DRFs shown in Figure 5, the
outstanding DRFs in the whole brain and local lesions are relatively independent. That
means the features in global and local regions that affect the patient’s ability to function
are differentiated. Thus, it is necessary to separately analyze the features of both groups in
predicting stroke outcomes.

Furthermore, to make further improvements for the outcome prediction, this study
attempted to combine the outstanding DRFs selected from the whole brain and local lesions
and compare the performance of the combined DRFs and the outstanding DRFs in the
combined DRFs (Lasso (combined)). It is gratifying to note that both the combined DRFs
and the outstanding combined DRFs can improve the results in some models, and Lasso
(combined) achieved the best AUC of 0.971. Thus, the linear relationship of DRFs in both
the whole brain and local lesions and the functional recovery of stroke patients can be
established. Therefore, the outstanding combined DRFs can be used to predict stroke
outcomes effectively.

There are some limitations of this study. First, the size of the datasets is relatively
small, and the ratio of female patients to male patients is disproportionate. As for the fact
that there are 78.2% male patients in the datasets, a previous study [50] has proved that sex
differences in stroke outcomes are slight. Ref. [51] indicated women fared poorly compared
to men, but this negative prognostic sex effect was neutralized by thrombolysis. Therefore,
it can be seen that the imbalance of sex has little influence on the outcome prediction.
Moreover, depending on the statistics of the datasets, the patients with good and poor
outcomes were 42 and 36, respectively. The number of positive and negative samples is
similar, reducing the possibility of inadequate training. Under the weak influence of the
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gender gap and balanced sample, the datasets of this study can be used for classification
prediction research, and the results are credible. Furthermore, since this study aims to
evaluate the role of the combined DRFs of the whole brain and local lesions in predicting
the prognosis of stroke, only imaging features (DRFs) extracted from DSC-PWI images
were involved. That means the basic information of patients (age, gender, medical history,
etc.) and other clinical text information were not regarded as the evaluation factors but
a comparison with the method proposed in this study. As shown in Table 5, the best
AUC score in Ref. [24] using the CTI and DRFs in the ischemic lesions was 0.949, while
the best AUC in our study was 0.971. Thus, the method of this study is outstanding
in terms of results. In addition, ten machine learning models were used to perform the
validation. The result is credible and better. According to the results in Table 5, SVM, nn,
LR, and NB obtained the same performance pattern, Lasso (combined) > combined DRFs
≥ Lasso(WB) > Lasso(LL), and nn and LR achieved the best AUC score of 0.971. Since the
results of multiple models are consistent, it can be proved that the results of this study
are not accidental. Furthermore, when evaluating the performance of the four groups
of DRFs (Lasso (LL), Lasso (WB), combined DRFs, and Lasso (combined)), the tenfold
cross-validation was performed to reduce the influence of sample size. The StratifiedKFold
function used in the tenfold cross-validation ensured an equal proportion of positive and
negative samples in training and test sets. Thus, the stability of the evaluation results can
be improved through balanced sample distribution and cross-validation. Based on the
above, the provided method of this study is feasible, the results are referable and credible,
and it has potential application value for clinical practice.

Another limitation is our method’s limited complexity. The role of DRFs extracted from
the local ischemic region and the whole brain in predicting stroke outcomes has been proved
in Refs. [25,28]. Both of them are preliminary works of this study. In Ref. [25], the CTI,
DRFs extracted from the ischemic lesions, and survival features were fused and compared.
As it turned out, the performance of the CTI was better than the DRFs. When combining
the survival features with the CTI or DRFs, the performance can be improved, and the best
score in predicting good and poor outcomes was 0.949. In Ref. [28], the supervised feature
selection (Lasso) and unsupervised feature selection methods (five-feature dimension-
reduction algorithms) were used to generate different combinations of DRFs, to improve
the performance. Although previous studies have proved that the DRFs in local lesions
or the DRFs in the whole brain can be used for prognostic prediction, different feature
processing methods or novel features are necessary to improve the predictive ability when
the two are used alone. In that case, this study intended to evaluate the role of the combined
DRFs in the whole brain and local lesions in predicting the prognosis of stroke without
using other complex fusion methods. Although the method is not particularly complicated,
the results show that the prediction performance is significantly improved by combining
lesion and whole-brain features, which was better than the previous study Ref. [25]. Thus,
even though this study’s innovation is to combine the DRFs of local lesions and the whole
brain, its excellent performance cannot be ignored. Although the results showed that the
outstanding combined DRFs selected from whole-brain DRFs and local-lesion DRFs could
improve the performance of outcome prediction, further validation should be performed
before the methods are used in the clinical setting. We will validate and improve our
provided methods with more extensive and diverse datasets in the future. This study is
expected to become the guiding tool for physicians in making stroke treatments.

5. Conclusions

In conclusion, this study may contribute to guiding physicians to make clinical deci-
sions for ischemic stroke patients. First, the outstanding DRFs in the whole brain and local
lesions can predict ischemic stroke outcomes. Second, the performance can be improved
when combining the DRFs in the whole-brain and local-lesion regions. Moreover, the
outstanding combined DRFs extracted from the combined DRFs can improve the predictive
performance further. Because the classifiers used in this study have different attributes,
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their performance varies. Among the ten learning models, SVM, nn, LR, and NB achieved
better performance than others in our study. Thus, model selection is necessary when
performing predictions.
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