Skip to main content
. 2022 Nov 11;12(11):1847. doi: 10.3390/life12111847

Table 2.

Definition and implementation of the ten models in this study.

Classifier Implementation in Python 3.6
NB sklearn.naive_bayes. GaussianNB()
LR sklearn.linear_model.logisticRegressionCV(max_iter = 100,000, solver = “liblinear”)
DT sklearn.tree. DecisionTreeClassifier()
GBDT sklearn.ensemble.GradientBoostingClassifier()
nn sklearn.neural_network. MLPClassifier (hidden_layer_sizes = (400, 100), alpha = 0.01, max_iter = 10,000)
KNN sklearn.neighbors. sklearn.neighbors()
Ada sklearn.ensemble.AdaBoostClassifier()
DA sklearn.discriminant_analysis()
RF sklearn.ensemble.RandomForestClassifier(n_estimators = 200)
SVM sklearn.svm.SVC(kernel = ‘rbf’,probability = True)