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Abstract: Obstructive sleep apnea (OSA) is a global health concern and is typically diagnosed using
in-laboratory polysomnography (PSG). However, PSG is highly time-consuming and labor-intensive.
We, therefore, developed machine learning models based on easily accessed anthropometric features
to screen for the risk of moderate to severe and severe OSA. We enrolled 3503 patients from Taiwan
and determined their PSG parameters and anthropometric features. Subsequently, we compared
the mean values among patients with different OSA severity and considered correlations among all
participants. We developed models based on the following machine learning approaches: logistic
regression, k-nearest neighbors, naïve Bayes, random forest (RF), support vector machine, and
XGBoost. Collected data were first independently split into two data sets (training and validation:
80%; testing: 20%). Thereafter, we adopted the model with the highest accuracy in the training and
validation stage to predict the testing set. We explored the importance of each feature in the OSA
risk screening by calculating the Shapley values of each input variable. The RF model achieved the
highest accuracy for moderate to severe (84.74%) and severe (72.61%) OSA. The level of visceral fat
was found to be a predominant feature in the risk screening models of OSA with the aforementioned
levels of severity. Our machine learning models can be employed to screen for OSA risk in the
populations in Taiwan and in those with similar craniofacial structures.
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1. Introduction

Obstructive sleep apnea (OSA) refers to sleep-disordered breathing caused by partial
or complete airway obstruction [1]. This disease has become a global health concern, with
approximately one billion people aged 30–65 years being affected by mild-to-severe OSA,
and 425 million having moderate to severe OSA [2]. In the United States, the prevalence
rate of OSA increased by approximately 30% between 1990 and 2010 [3]. OSA is regarded as
a risk factor for various comorbidities, including 2–3-fold increased risks of cardiovascular
and metabolic diseases [4], and decreased hippocampal volume, which is associated with
neurocognitive deficits [5]. Therefore, early diagnosis of and suitable treatment for OSA
are essential.

In-laboratory polysomnography (PSG) is the standard measurement to diagnose OSA
and differentiate severity. Specifically, the apnea–hypopnea index (AHI), which records
the total number of apnea and hypopnea events during sleep time, is determined using
PSG data; the index is used to differentiate between four OSA severity categories: normal
(AHI < 5), mild (5 ≤ AHI < 15 events/h), moderate (15 ≤ AHI < 30 events/h), and severe
(AHI ≥ 30 events/h) [6]. Curative interventions are generally recommended for patients
with moderate or severe OSA (AHI ≥ 15 events/h). Despite its usefulness, PSG has some
clinical shortcomings. For example, PSG requires a lengthy monitoring time and the
involvement of licensed technicians; thus, the average PSG waiting time in developed
countries ranges from months to 2 years [7]. The time-consuming and labor-intensive
nature of PSG may limit its efficiency and effectiveness. Alternative methods have been
proposed to improve measurement accessibility, including the OSA questionnaires and
home sleep tests (HSTs) through oximetry; however, none of them is fully reliable as a
surrogate for PSG. A review study indicated that inconsistent results from studies using
different OSA questionnaires (Berlin; apnea score; sleep apnea scale of the sleep disorders
questionnaire; snoring, tiredness, observed-apnea, and high blood pressure (STOP); STOP
including body mass index (BMI), age, neck circumference, and sex) can be attributed
to heterogeneity in study design and enrolled populations [8]. Regarding HSTs, despite
offering convenient diagnosis, this approach may be insufficiently accurate to rule out OSA
when the respiratory events of patients are mainly associated with arousals [9]. Moreover,
because of the reduced number of physiological channels in HSTs, this approach may not
be suitable for patients with complicated comorbidities [10]. Given the aforementioned
deficiencies in current methods, novel models to rapidly screen for OSA risk and thereby
increase the efficiency of the therapeutic decision-making process are required.

To develop clinically applicable models, exploring the relationships between OSA
severity and anthropometric features may be worthwhile. Sex, age, and BMI for instance,
have been suggested as useful indicators in OSA risk screening [11]. In one study, the
prevalence of moderate to severe OSA in middle-aged men (aged 30–49 years) and in older
men (aged 50–77 years) was 3.3-fold and 1.9-fold higher than the values of female cohorts
with the same age ranges, respectively [12]. Another study indicated that those with obesity
(BMI: 30–39.9 kg/m2) had higher mean AHI and oxygen desaturation index (ODI) values
than those with a healthy weight (AHI: 28.5 ± 1.22 events/h vs. 14.3 ± 1.40 events/h; ODI:
32.1 ± 1.20 events/h vs. 15.8 ± 1.40 events/h, all p < 0.01) [13]. Neck and waist size have
also been adopted as proxies for BMI when screening for OSA risk, with a neck size of
>43 cm in men or >38 cm in women and a waist size of >102 cm for both sexes indicating
increased risk [14]. In another study, neck size (ρ: 0.54), waist size (ρ: 0.75), and body
water (ρ: 0.69) were all significantly and positively correlated with AHI [15]. Moreover,
body fat level was significantly correlated with AHI (r = 0.65), and abdominal visceral
fat level calculated through cross-sectional computed tomography exhibited adequate
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sensitivity and specificity (p < 0.01) in differentiating between those with OSA and healthy
individuals [16]. Hence, these easily acquired anthropometric features may be useful in
OSA risk screening models because their associations with AHI have been demonstrated.

In this retrospective study, we sought to develop risk screening models for OSA using
machine learning approaches and easily acquired parameters, such as anthropometric
features. We hypothesized that anthropometric features (e.g., body profile and body
composition parameters), which are associated with OSA severity, would be beneficial
in models for screening the risk of moderate to severe OSA (AHI ≥ 15) and severe OSA
(AHI ≥ 30). We developed OSA risk screening models using various machine learning
approaches that incorporated easily accessed anthropometric features. Subsequently, we
compared the means of the obtained anthropometric features in groups with different OSA
severity. We also examined the correlations between anthropometric features and sleep
quality indices. The aim of these analyses was to elucidate the relationships between these
variables.

2. Materials and Methods
2.1. Ethics

The Ethics Committee of the Taipei Medical University-Joint Institutional Review
Board reviewed and approved the protocol of this retrospective study (TMU-JIRB No:
N201911007). All relevant procedures for data collection, analysis, and preservation were
conducted per the approved protocol.

2.2. Study Population

We retrospectively collected the data of patients who underwent PSG for OSA severity
assessment at the Sleep Center of Taipei Medical University–Shuang Ho Hospital (New
Taipei City, Taiwan) between May 2019 and December 2021. The inclusion criteria for data
use were as follows: age between 18 and 90 years, overall PSG recording time of >6 h and
sleep efficiency of >60%, no history of invasive surgery for OSA, and no regular use of
hypnotic or psychotropic medications. Using the medical registration number list of the
eligible individuals, we acquired their physical profiles, which included information on
age, sex, body mass index (BMI), and neck and waist circumferences, from their responses
to a baseline survey questionnaire recorded in a sleep center database. Next, we obtained
data regarding the participants’ medication and surgical history from their clinical records.
Because of known correlations between OSA severity and craniofacial features, we collected
data from only Han individuals to limit the effect of craniofacial feature disparities [17].

2.3. Body Composition

Body composition data were collected from the aforementioned sleep center database.
The procedures used for determining body composition are described below. Before the
patients underwent PSG, we measured their body compositions (through bioelectrical
impedance) using the Tanita MC-780 system (Tanita, Tokyo, Japan). Before the measure-
ment, the patients fasted for 3 h and emptied their bladder. During data reading, the
patients were instructed to stand still and hold the detection handles with both arms
straight down while ensuring their inner thighs did not touch. Fat mass and fat-free mass
(comprising bone and muscle mass) in various body regions (whole body, only limbs, and
only trunk) were assessed, and the percentages of fat and muscle in the aforementioned
regions were subsequently derived. Visceral fat level (as an index for evaluating fat en-
compassing the vital organs in the abdominal cavity; range 1–55I), basal metabolic rate (as
the minimum energy required by the body at rest), and physique rating (body fat mass
divided by muscle mass) were also determined. To evaluate water distribution in the body,
the volume of total body water (TBW), including the volumes of extracellular water (ECW)
and intracellular water (ICW), percentage of body water, ratio between ECW and ICW, and
ratio between trunk fat and whole-body fat were determined. All the derived parameters
were used in further analyses.
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2.4. Sleep Parameter

Sleep parameters were selected from the PSG database. The procedures used for PSG
are described below. In-laboratory PSG was conducted using the ResMed Embla N7000
(ResMed, San Diego, CA, USA) and Embla MPR (Natus Medical, Pleasanton, CA, USA)
systems. The PSG recorded various physiological signals, namely electroencephalography,
electrooculography, electromyography (chin and leg), electrocardiography, nasal and oral
airflow, snoring patterns, thoracic and abdominal impendence, sleeping position, and
oxygen saturation. A licensed PSG technologist scored recordings using RemLogic software
(version 3.41, Embla, Thornton, CO, USA), following the Americana Academy of Sleep
Medicine Scoring Manual Version 2.4 [18]. All the scored results were reviewed by another
technologist, and inconsistent scorings were identified and discussed further to achieve a
consensus. We determined the distribution of each sleep stage, namely wake, rapid eye
movement (REM), and non-REM (NREM), and we subsequently calculated the wake after
sleep onset (WASO) accumulation time. OSA severity was classified by AHI into four
levels: normal (AHI < 5 events/h), mild (5 ≤ AHI < 15 events/h), moderate (15 ≤ AHI <
30 events/h), and severe (AHI ≥ 30 events/h) [6]. For patients with AHI ≥ 15 events/h,
OSA intervention was recommended [19]. We thus developed two types of risk screening
models, one for the risk of moderate to severe OSA (AHI ≥ 15 vs. AHI < 15) and the other
for the risk of severe OSA (AHI ≥ 30 vs. AHI < 30).

2.5. Statistical Analysis

We employed Python (version 3.9.7) and an open-source statistics module, scikit-
learn (version 0.21.2), to perform the statistical analyses. Patients were split into three
groups according to OSA severity: normal-to-mild, moderate, and severe OSA groups. For
continuous variables, the Shapiro–Wilk test was first used to examine the normality of
their distribution. We employed nonparametric statistical approaches because the grouped
data were nonnormally distributed. Subsequently, we used Levene’s test to examine
the homogeneity of variance, followed by the Kruskal–Wallis test (homoscedastic) and
Welch’s analysis of variance test (heteroscedastic). Regarding nominal variables, we used
the chi-square test to compare intergroup differences. In addition, Pearson’s correlation
was applied to determine the correlations between anthropometric features and sleep
quality indices, namely AHI, ODI, snoring index, and arousal index. The level of statistical
significance was set at p < 0.05.

2.6. Machine Learning Approaches

Six supervised machine learning models, namely, logistic regression (LR), k-nearest
neighbors (kNN), naïve Bayes (NB), random forest (RF), support vector machine (SVM),
and extreme gradient boosting (XGBoost), were employed to develop the two types of
OSA risk screening models. Figure 1 illustrates the flowchart for the model establishment.
Initially, the data were independently separated into two data sets (training and validation
set and testing set) at a ratio of 80% and 20%. First, we applied grid search 10-fold cross-
validation during the training and validation stage to determine the optimal classifier for
each machine learning approach [20]. Specifically, we compared the accuracy by tuning
(a) the inverse values of regularization (C, from 10−5 to 105) for the LR models; (b) the k
value (ranging from 2 to 5) and weight type (uniform or distance) for the kNN models;
(c) the portion of the largest variance of all features for the NB models (var_smoothing, from
10−9 to 109); (d) various kernel types (linear, polynomial, and radial basis function) and
regularization values (C, between 10−3 and 103) for the SVM models, (e) the criterion (Gini
index or entropy) and the number of classification and regression trees (set as 250, 500, and
750) for the RF models with the bootstrap technique, and (f) the criterion (mean squared
error (MSE), Friedman MSE, or squared error) and the number of estimators (set as 250,
500, and 750) for the XGBoost models. The performance matrix and area under the receiver
operating characteristic curve (AUC) of each model were then determined. Thereafter, the
machine learning approach with the highest accuracy was employed in the testing stage for



Sensors 2022, 22, 8630 5 of 15

further evaluation, and the Shapley values of the input variables for the employed models
were calculated and visualized in a scatterplot to evaluate the contribution of each feature
within the OSA risk screening models [21].
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Figure 1. Training process with grid search cross-validation. Various machine learning models
were trained using grid search cross-validation (k-fold: 10). The model demonstrating the highest
accuracy in the validation stage was employed to predict the testing data, and the feature importance
was investigated. Abbreviations: LR, logistic regression; C, regularization values; kNN, k-nearest
neighbor; NB, naïve Bayes; var_smoothing, portion of the largest variance of all features; SVM,
support vector machine; RF, random forest; n_trees, number of classifications and regression trees;
XGBoost, extreme gradient boosting; n_estimators, number of gradient boosted trees; AHI, apnea–
hypopnea index.

3. Results
3.1. Characterization of Enrolled Participants

We recruited a cohort of 3503 individuals for this retrospective study. Table 1 presents
their anthropometric features grouped by OSA severity: normal-to-mild (AHI < 15), mod-
erate (15 ≤ AHI < 30), and severe OSA groups (AHI ≥ 30). Regarding body profiles, the
severe group demonstrated the highest mean values for BMI and neck and waist size, with
the ratio of men being higher in the severe OSA group (1299/284, 82.06%) than in the
normal-to-mild (348/603, 36.59%) and moderate OSA groups (677/292, 69.87%). For body
composition parameters, the severe OSA group exhibited the highest mean values for fat
mass and fat percentage (in the whole body, only limbs, and only trunk), visceral fat level,
and basal metabolic rate, but the lowest mean values for physique rating and muscle mass
as a percentage of whole-body mass (all p < 0.5). Similarly, for body water distribution,
the severe OSA group had the highest mean values for TBW (40.18 kg ± 6.37 kg), ECW
(16.5 kg ± 1.89 kg), and ICW (23.68 kg ± 4.63 kg), but the lowest mean values for body
water percentage (48.59% ± 5.76%).
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Table 1. Baseline characteristics and body composition parameters of participants grouped by OSA
severity.

Categorical Variables N-M Group
(N = 951)

M Group
(N = 969)

S Group
(N = 1583) Post Hoc

Age (years) a 43.19 ± 13.85 49.48 ± 13.26 49.85 ± 13.04 N-M < M ** & S **
Sex (male to female ratio) b 0.57 (348/603) 2.32 (677/292) 4.57 (1299/284) N-M < M ** & S **; M < S **
BMI (kg/m2) c 23.01 ± 3.33 26.55 ± 4.02 29.44 ± 4.83 N-M < M ** & S **; M < S **
Neck size (cm) a 33.96 ± 3.12 37.36 ± 3.34 39.85 ± 3.48 N-M < M ** & S **; M < S **
Waist size (cm) c 80.56 ± 9.49 91.35 ± 9.91 99.21 ± 11.03 N-M < M ** & S **; M < S **
Body composition data
Whole body

Fat mass (kg) c 16.58 ± 6.87 21.14 ± 8.72 25.87 ± 10.94 N-M < M ** & S **; M < S **
Muscle mass (kg) c 42.26 ± 8.69 50.13 ± 9.54 54.68 ± 9.17 N-M < M ** & S **; M < S **
Visceral fat level c 6.77 ± 3.35 11.83 ± 3.76 14.89 ± 3.96 N-M < M ** & S **; M < S **
Bone mass (kg) c 2.47 ± 0.44 2.84 ± 0.44 3.05 ± 0.42 N-M < M ** & S **; M < S **
Fat-free mass (kg) c 44.73 ± 9.1 52.97 ± 9.96 57.74 ± 9.57 N-M < M ** & S **; M < S **
Fat percentage (%) a 26.82 ± 8.63 28.13 ± 8.79 30.22 ± 8.79 N-M < S **; M < S **
Muscle percentage (%) a 69.15 ± 8.32 68.02 ± 8.48 66.08 ± 8.45 N-M > S **; M > S **
Basal metabolic rate (kJ) c 5415.96 ± 1009.17 6320.99 ± 1138.15 6919.51 ± 1144.22 N-M < M ** & S **; M < S **
Physique rating c 36.07 ± 9.89 29.5 ± 9.36 25.44 ± 8.7 N-M > M ** & S **; M > S **

Limbs
Fat mass (kg) c 7.46 ± 2.91 8.95 ± 3.81 10.97 ± 5.13 N-M < M ** & S **; M < S **
Fat-free mass (kg) c 20.75 ± 4.96 25.1 ± 5.83 28.11 ± 5.92 N-M < M ** & S **; M < S **
Muscle mass (kg) c 19.54 ± 4.67 23.65 ± 5.52 26.5 ± 5.63 N-M < M ** & S **; M < S **
Fat percentage (%) c 26.58 ± 8.49 26.13 ± 8.52 27.42 ± 8.16 N-M * & M ** < S

Trunk
Fat mass (kg) c 9.12 ± 4.07 12.19 ± 5.01 14.9 ± 6.04 N-M < M ** & S **; M < S **
Fat-free mass (kg) c 23.98 ± 4.44 27.87 ± 4.5 29.62 ± 4.42 N-M < M ** & S **; M < S **
Muscle mass (kg) c 22.72 ± 4.29 26.48 ± 4.38 28.18 ± 4.28 N-M < M ** & S **; M < S **
Fat percentage (%) a 27.01 ± 9.09 29.85 ± 9.27 32.72 ± 9.63 N-M < M ** & S **; M < S **
Trunk to whole-body fat ratio (%) c 54.24 ± 5.11 57.61 ± 3.36 57.85 ± 3.21 N-M < M ** & S **

Body water
TBW (kg) a 31.33 ± 6.09 36.84 ± 6.39 40.18 ± 6.37 N-M < M ** & S **; M < S **
ECW (kg) c 12.89 ± 2.06 15.22 ± 1.93 16.5 ± 1.89 N-M < M ** & S **; M < S **
ICW (kg) c 18.44 ± 4.19 21.62 ± 4.61 23.68 ± 4.63 N-M < M ** & S **; M < S **
Body water percentage (%) c 51.25 ± 5.41 50.03 ± 5.35 48.59 ± 5.76 N-M > M ** & S **; M > S **
ECW to ICW ratio (%) c 71.14 ± 7.88 71.98 ± 8.66 71.03 ± 8.14 M > S *

Abbreviations: N-M group, normal-to-mild OSA group; M group, moderate OSA group; S group, severe OSA
group; BMI, body mass index; TBW, total body water; ECW, extracellular water; and ICW, intracellular water.
Data are expressed in terms of mean ± standard deviation values. Significant difference was derived from
a Kruskal–Wallis test, b chi-square test, and c Welch’s analysis of variance test. * p < 0.05 and ** p < 0.01.

3.2. Sleep Parameters

The details of the sleep quality indices by sleep stage are presented in Table 2. The
severe group exhibited the lowest mean values for sleep efficiency (72.5% ± 16.99%), total
sleep time (264.96 min ± 62.5 min), and the mean (93.46% ± 2.58%) minimum values
(77.14% ± 8.64%) of oxygen saturation measured through pulse oximetry (SpO2). Re-
garding sleep stage parameters, the patients with severe OSA demonstrated the high-
est percentage for the wake stage (22.06% ± 16.18%) and highest mean WASO time
(73.98 min ± 53.48 min). Conversely, the severe OSA group had the lowest percentage
for both the REM and NREM stages (REM: 10.1% ± 6.3%; NREM: 67.83% ± 13.84%). Re-
garding the sleep quality indices, the severe group had the highest mean values for AHI,
ODI (≥3%), snoring index, and arousal index (all p < 0.05). By contrast, the normal-to-mild
OSA group had the lowest mean value for all of these indices.
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Table 2. Polysomnography parameters of participants grouped by OSA severity.

Categorical Variables
N-M Group

(N = 951)
M Group
(N = 969)

S Group
(N = 1583) Post Hoc

Sleep efficiency (%) a 75.27 ± 16.16 74.64 ± 16.5 72.5 ± 16.99 N-M > S **; M > S **
Mean SpO2 (%) b 96.35 ± 1.44 95.28 ± 1.51 93.46 ± 2.58 N-M > M ** & S **; M > S **
Minimum SpO2 (%) b 90.06 ± 4.7 84.48 ± 6.04 77.14 ± 8.64 N-M > M ** & S **; M > S **
WASO (min) b 54.1 ± 46.93 62.91 ± 50.0 73.98 ± 53.48 N-M < M ** & S **; M < S **
Total sleep time (min) b 276.4 ± 60.66 273.7 ± 60.72 264.96 ± 62.5 N-M > S **; M > S **
Sleep stage (% of SPT)

Wake b 16.64 ± 14.7 18.96 ± 15.42 22.06 ± 16.18 N-M < M ** & S **; M < S **
NREM b 71.26 ± 12.59 69.33 ± 12.87 67.83 ± 13.84 N-M > M ** & S **; M > S *
REM a 12.03 ± 6.9 11.68 ± 6.47 10.1 ± 6.3 N-M > S **; M > S **

Sleep quality index (events/h)
AHI b 7.81 ± 4.3 21.68 ± 4.24 56.5 ± 21.18 N-M < M ** & S **; M < S **
ODI b 4.02 ± 3.65 14.81 ± 6.46 48.84 ± 23.44 N-M < M ** & S **; M < S **
Snoring index b 99.73 ± 158.35 216.41 ± 214.94 315.69 ± 220.36 N-M < M ** & S **; M < S **
Arousal index b 13.81 ± 7.79 18.27 ± 9.28 32.67 ± 18.13 N-M < M ** & S **; M < S **

Abbreviations: N-M group, normal-to-mild OSA group; M group, moderate OSA group; S group, severe OSA
group; SpO2, oxygen saturation measured using pulse oximetry; WASO, wake after sleep onset; SPT, sleep period
time; NREM, nonrapid eye movement; REM, rapid eye movement; AHI, apnea–hypopnea index; and ODI,
oxygen desaturation index (≥3%). Data are expressed in terms of mean ± standard deviation values. Significant
difference was derived from the a Kruskal–Wallis test and b Welch’s analysis of variance test. * p < 0.05 and
** p < 0.01.

3.3. Sleep Quality Index and Anthropometric Features

The correlations between the sleep quality index and anthropometric features are
illustrated in Table 3. Regarding body profiles, BMI (ρ: 0.57), neck size (ρ: 0.59), and
waist size (ρ: 0.61) had significant moderate correlations with AHI (all p < 0.05). For body
composition parameters, fat mass, fat-free mass, and muscle mass (ρ: 0.4 to 0.48) in various
body regions (i.e., whole body, only limbs, and only trunk) exhibited significant moderate
correlations with AHI (all p < 0.05). Moreover, visceral fat level (ρ: 0.64) had a significant
moderate to strong correlation with AHI (p < 0.05). In terms of body water distribution,
AHI was positively correlated with TBW, ECW, and ICW (ρ: 0.43 to 0.58, p < 0.05), whereas
AHI was negatively correlated with body water percentage (ρ: −0.24, p < 0.05). Moreover,
the correlations of anthropometric features with other sleep quality indices, namely, ODI,
snoring index, and arousal index, were similar to the correlations with AHI.

Table 3. Pearson’s correlation coefficients for polysomnography parameters and body composition
parameters.

Categorical Variable
Sleep Quality Index (events/h)

AHI ODI Snoring Index Arousal Index

Age (years) 0.11 ** 0.08 ** 0.06 ** 0.09 **
Sex (male/female) 0.33 ** 0.30 ** 0.17 ** 0.21 **
BMI (kg/m2) 0.57 ** 0.59 ** 0.4 ** 0.3 **
Neck size (cm) 0.59 ** 0.58 ** 0.38 ** 0.36 **
Waist size (cm) 0.61 ** 0.61 ** 0.41 ** 0.35 **
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Table 3. Cont.

Categorical Variable
Sleep Quality Index (events/h)

AHI ODI Snoring Index Arousal Index

Body composition
Whole body

Fat mass (kg) 0.45 ** 0.47 ** 0.32 ** 0.23 **
Muscle mass (kg) 0.46 ** 0.45 ** 0.29 ** 0.28 **
Visceral fat level 0.64 ** 0.62 ** 0.41 ** 0.36 **
Bone mass (kg) 0.47 ** 0.47 ** 0.31 ** 0.28 **
Fat-free mass (kg) 0.47 ** 0.45 ** 0.29 ** 0.28 **
Fat percentage (%) 0.22 ** 0.24 ** 0.18 ** 0.08 **
Muscle percentage (%) −0.21 ** −0.23 ** −0.17 ** −0.08 **
Basal metabolic rate (kJ) 0.49 ** 0.49 ** 0.31 ** 0.28 **
Physique rating −0.41 ** −0.42 ** −0.3 ** −0.2 **

Limbs
Fat mass (kg) 0.42 ** 0.44 ** 0.3 ** 0.22 **
Fat-free mass (kg) 0.48 ** 0.48 ** 0.3 ** 0.28 **
Muscle mass (kg) 0.48 ** 0.48 ** 0.3 ** 0.28 **
Fat percentage (%) 0.11 ** 0.14 ** 0.12 ** 0.03

Trunk
Fat mass (kg) 0.46 ** 0.47 ** 0.32 ** 0.23 **
Fat-free mass (kg) 0.4 ** 0.38 ** 0.24 ** 0.25 **
Muscle mass (kg) 0.4 ** 0.38 ** 0.24 ** 0.25 **
Fat percentage (%) 0.29 ** 0.31 ** 0.22 ** 0.13 **
Trunk to body fat ratio (%) 0.22 ** 0.19 ** 0.13 ** 0.12 **

Body water
TBW (kg) 0.49 ** 0.48 ** 0.32 ** 0.29 **
ECW (kg) 0.58 ** 0.56 ** 0.38 ** 0.34 **
ICW (kg) 0.43 ** 0.43 ** 0.28 ** 0.26 **
Body water percent (%) −0.24 ** −0.26 ** −0.17 ** −0.1 **
ECW to ICW ratio (%) −0.05 * −0.05 ** −0.03 * −0.04 *

Abbreviations: AHI, apnea–hypopnea index; ODI, oxygen desaturation index (≥3%); BMI, body mass index;
TBW, total body water; ECW, extracellular water; ICW, intracellular water. Data are expressed as coefficients.
* p < 0.05; ** p < 0.01.

3.4. Validation Performance of Machine Learning Approaches

The performance of the training and validation stage of each machine learning ap-
proach is summarized in Table 4. For the moderate to severe OSA model, the RF model
exhibited the highest overall accuracy (LR: 81.55% ± 2.77%; kNN: 82.59% ± 2.05%; NB:
78.16% ± 3.29%; SVM: 83.51% ± 0.61%; RF: 85.19% ± 2.86%; XGBoost: 83.94% ± 2.52%). For
the severe OSA model, similarly, the RF model outperformed the other models in accuracy
(LR: 72.59% ± 0.99%; kNN: 70.52% ± 0.88%; NB: 72.66% ± 1.04%; SVM: 73.84% ± 0.04%;
RF: 75.95% ± 2.24%; XGBoost: 73.91% ± 0.48%). In terms of AUC, similar to the accuracy
results, the RF model demonstrated the highest values in both the moderate to severe (AUC:
90.41% ± 2.44%) and severe (83.24% ± 1.69%) OSA risk screening models. Because it had
the strongest performance (highest accuracy and AUC), the RF models were adopted to
predict the testing data sets and further explore their feature importance.
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Table 4. Accuracy of the models for screening moderate to severe and severe OSA when using grid
search cross-validation with the training data set.

Categorical Variables LR kNN NB SVM RF XGBoost

Moderate to severe OSA model AHI ≥ 15 (N = 2039)/AHI < 15 (N = 763)
Precision 91.4 ± 2.22 86.46 ± 1.77 90.3 ± 2.84 83.1 ± 0.79 86.72 ± 1.93 86.75 ± 1.01
Recall 82.44 ± 2.91 90.24 ± 1.93 78.47 ± 2.96 97.11 ± 1.45 94.07 ± 1.99 91.96 ± 2.71
Accuracy 81.55 ± 2.77 82.59 ± 2.05 78.16 ± 3.29 83.51 ± 0.61 85.19 ± 2.86 83.94 ± 2.52
F1 score 86.66 ± 2.07 88.29 ± 1.38 83.94 ± 2.44 89.55 ± 0.43 90.24 ± 1.88 89.27 ± 1.78
AUC 90.03 ± 2.67 83.43 ± 3.64 87.41 ± 3.27 89.86 ± 2.02 90.41 ± 2.44 88.64 ± 1.74

Severe OSA model AHI ≥ 30 (N = 1268)/AHI < 30 (N = 1534)
Precision 68.29 ± 1.22 67.08 ± 0.84 68.9 ± 1.07 71.32 ± 0.16 70.67 ± 2.86 70.3 ± 0.7
Recall 73.66 ± 1.26 68.45 ± 1.91 72.16 ± 1.67 70.58 ± 0.24 76.57 ± 3.39 73.34 ± 0.83
Accuracy 72.59 ± 0.99 70.52 ± 0.88 72.66 ± 1.04 73.84 ± 0.04 75.95 ± 2.24 73.91 ± 0.48
F1 score 70.86 ± 1.02 67.75 ± 1.19 70.49 ± 1.25 70.95 ± 0.04 73.44 ± 2.28 71.79 ± 0.46
AUC 80.87 ± 0.36 75.97 ± 0.64 80.8 ± 0.5 83.13 ± 0.17 83.24 ± 1.69 81.59 ± 0.71

Abbreviations: AHI, apnea–hypopnea index; LR, logistic regression; kNN, k-nearest neighbors; NB, naïve Bayes;
SVM, support vector machine; RF, random forest; XGBoost, extreme gradient boosting; AUC, area under the
curve. Data are expressed as the mean and standard deviation

3.5. Accuracy Performance and Feature Importance

The model performance summary for the testing data set from the RF models is
illustrated in Table 5. For the moderate-to-severe OSA RF model, the prediction accuracy
was 84.74% and the AUC was 89.58%. For the severe OSA RF model, the prediction
accuracy was 72.61% and the AUC was 80.07%. The feature importance in the RF models
for the two risk types is presented in Figure 2. In the figure, the variables are arranged from
top to bottom according to their Shapley values, with high and low values represented
by red and blue dots, respectively. In both risk screening models (for moderate to severe
and severe OSA), visceral fat level demonstrated the highest Shapley values, indicating the
highest feature importance. Moreover, high visceral fat level (red dot) contributed to high
OSA risk (high Shapley value). The ECW, neck and waist size, and BMI were alternately
ranked from second to fifth highest in feature importance in both the risk screening models
for moderate-to-severe OSA and severe OSA models.
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body water; ECW, extracellular water; ICW, intracellular water.
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Table 5. Classification of the results of the random forest model for screening moderate to severe and
severe risks of OSA by using the testing data set.

Categorical Variables Moderate-to-Severe
OSA Model Severe OSA Model

AHI ≥ 15 (N = 513); AHI < 15
(N = 188)

AHI ≥30 (N = 315); AHI < 30
(N = 386)

Precision % 85.74 67.72
Recall % 94.93 74.6
Accuracy % 84.74 72.61
F1 Score % 90.1 71.0
AUC, % (95% CI) 89.58 (87.44–92.01) 80.07 (77.05–82.80)

Abbreviations: AHI, apnea–hypopnea index; AUC, area under the curve; CI, confidence interval.

3.6. Supplementary

We further developed OSA screening models for multiclass classification, including
AHI < 15 (normal to mild OSA), 30 > AHI ≥ 15 (moderate), and AHI ≥ 30 (severe).
The outcomes are presented in Supplementary Information. As shown in Table S1, the
RF models exhibited the highest prediction accuracy (66.71%) and AUC (79.24%) in the
training and validation stage. Subsequently, the RF models were used to predict the
testing data sets because this approach outperformed other approaches; the outcomes are
summarized in Table S2. The accuracy of multiclass prediction was 62.91%, and the AUC
for this classification performance was 77.47%. Figure S1 illustrates feature importance in
the RF models used for predicting the severity of OSA. Similar to the findings obtained
using the moderate-to-severe and severe OSA models, the level of visceral fat exhibited
the highest Shapley value in the RF models for multiclass prediction, which indicated its
highest feature importance. Waist size, ECW, neck size, and BMI were sequentially ranked
from second to fifth in terms of feature importance.

4. Discussion

To develop robust models based on easily accessed parameters for OSA risk screening,
we investigated the relationships of anthropometric features with PSG parameters by using
a large sample from Taiwan (N = 3503). We conducted comparisons of the anthropometric
features and PSG parameters of patients with different OSA severity. We also examined
the correlations between sleep quality indices and anthropometric features, namely, body
profiles and body composition parameters. Subsequently, various machine learning models
based on anthropometric features were developed for screening the risk of moderate to
severe OSA (AHI ≥ 15) and severe OSA (AHI ≥ 30). The models with the highest accuracy
in the training and validation stage were used in the validation experiments; these models
for both types of OSA severity exhibited high classification accuracy when using the testing
data set. Moreover, we examined the feature importance of the adopted models in OSA
severity screening.

First, concerning model performance, the RF models using the bootstrap technique
with optimal parameters derived from grid search cross-valuation demonstrated the high-
est accuracy and AUC in both types of OSA risk screening models. Similar to the results
presented in Supplementary Information, the accuracy and AUC of the newly developed
RF models were superior to the classification performance of other approaches. Although
the literature does not provide evidence that RF outperforms other machine learning ap-
proaches, several plausible explanations may account for the present results. RF models,
constructed per the theory of ensemble learning, may promote the accurate convergence of
classification results (due in part to favorable antinoise ability) because this model architec-
ture is more sensitive to relevant features and adept at disregarding the effects of irrelevant
ones in comparison with other model architectures [22]. Moreover, the bootstrapping pro-
cedure and the number of decision trees in RF can be easily fine-tuned to avoid overfitting
and maintain model stability [23]. Hence, the RF approach has been broadly employed for
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aiding medical diagnosis [24,25]. Compared with current machine learning approaches for
screening OSA risk, the current models have some advantages. Specifically, our models
are more suitable for application in clinical scenarios and demonstrate adequate accuracy.
In related research, nocturnal oxygen saturation was adopted as a surrogate in OSA risk
evaluation, and models integrating pulse oximetry data were developed [26]. However,
variability in wearing situations, including incorrect probe placement, contact problems
with the probe, and individuals’ body movements, may contribute to severe artefacts in
the measurements [27]. Another study proposed machine learning models that integrated
electrocardiogram data from wearable devices to screen for OSA risk; these models exhib-
ited acceptable accuracy [28]. However, this type of screening method may not be suitable
for patients with cardiopulmonary diseases because of the irregular and complex electro-
cardiogram signals of such patients. Moreover, some researchers have proposed machine
learning models based on craniofacial feature images to predict OSA severity. Although
craniofacial factors are significantly associated with OSA risk, the accuracy of those models
was only 67% for classifying moderate to severe OSA [29]. This result may be attributed to
poor precision caused by variations in captured craniofacial images and the fact that OSA
pathology may not be entirely attributable to craniofacial factors. Prior studies have also
proposed machine learning approaches for screening OSA risk by using different types of
anthropometric features [30,31]; these methods exhibited relatively stable performance, and
the interpretation of feature importance was straightforward. The literature thus suggests
that machine learning models based on easily accessed anthropometric parameters may be
practical for rapid screening of OSA severity in clinical scenarios.

Regarding the importance of features used in the developed models, visceral fat level
had the highest Shapley value, suggesting that it is a predominant factor for screening
OSA risk. In terms of feature importance, BMI, neck size, and waist size followed visceral
fat level. These outcomes were consistent with our statistical findings that these anthro-
pometric parameters were correlated with AHI and ODI. These results can be partially
attributed to body fat deposition, which can be estimated using visceral fat (internal organs),
waist size (abdomen), neck size (upper airway), or BMI (whole body), being associated
with obesity level and thus affecting AHI [32]. Several studies exploring fat accumulation
in various body regions have suggested that body fat volume is associated with OSA
risk [33,34]. Studies have also indicated that BMI and waist size are significantly associated
with OSA [35] and suggested the feasibility of using BMI and neck size to predict OSA risk
for men and women, respectively [36]. In addition, for visceral fat, a related study indicated
that one of the clinical manifestations of OSA, nocturnal hypoxemia, was associated with
increased inflammatory responses in adipose tissue and decreased insulin sensitivity [37].
These interplays can interfere with glucose uptake and stimulate hepatic gluconeogenesis,
thereby increasing visceral fat accumulation. Biomechanically, the presence of visceral fat
is associated with reduced thoracic capacity and lung volume [38], potentially increasing
the workload of respiratory muscles and even resulting in more severe OSA. One study
investigated the biomechanism of visceral adipocytes during oxygen starvation and ob-
served that intermittent hypoxia may cause elevated oxidative stress and insulin resistance,
aggravate the inflammatory effect, and trigger initial dysmetabolism [39].

Regarding the effect of body water distribution on OSA risk prediction, ECW was
the second and fifth most important factor in the risk screening models for moderate to
severe and severe OSA, respectively. These results are likely attributable to the associations
between ECW and sleep apnea. Researchers have indicated that nocturnal Rostral fluid
redistribution from the lower limbs was independent of body weight, and that it may
increase the likelihood of upper airway narrowing, thereby contributing to OSA pathogen-
esis [40]. In another study, ECW was also associated with residual kidney function; the
resulting fluid overload can elevate the mucosal water content in the upper airway and
thereby aggravate OSA severity [41]. Studies comparing those with and without OSA have
observed a higher percentage of ECW [42] as well higher mean values in the percentages of
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TBW and ECW [43] in those with OSA. Collectively, body water distribution, especially
ECW, may serve as a practical indicator when screening the risk of OSA.

The present study has some strengths. First, using the models developed in this study,
we can identify patients with moderate to severe and severe risk of OSA on the basis of
easily acquired anthropometric parameters. The adequate classification performance of
the models may help optimize PSG to increase the availability of medical resources by
prioritizing high-risk patients for PSG and treatment. Second, although machine learning
approaches have been described as a black box method, which means how input variables
are combined to make predictions could not be determined, we evaluated the feature impor-
tance by calculating Shapley values; this may improve our understanding of correlations
between OSA risk and various input parameters. Finally, considering the outcomes of the
feature importance distribution, we may prevent OSA by reducing its effect. For instance,
reducing the level of visceral fat should be considered first for reducing OSA risk. Similarly,
because ECW was identified to be a key factor in leading OSA, performing exercises to
reduce body fluid levels and, by extension, body water retention before sleep time may
help reduce or eliminate the severity of OSA.

The current study has some limitations that should be considered and addressed
in future work. First, our models were population specific because we collected data
exclusively from the populations in Taiwan. However, not only anthropometric features
but also craniofacial factors have been reported to affect AHI and OSA severity [44]. Our
models, therefore, may only be applied to specific ethnicities or populations with cran-
iofacial features similar to the population in Taiwan. Second, our findings were based
on PSG results; because PSG involves manual scoring, interscorer variability between
PSG technologists may have affected our data quality. Although technicians from the
same sleep center undergo regular scoring training, some degree of human variability is
unavoidable [45]. Third, environmental factors, such as the first-night effect, may also have
affected the quality of our data set [46]. More precisely, sleeping in a new environment may
alter an individual’s sleep cycle and physiology, thereby causing inaccurate PSG outcomes.
Although we excluded patients with low sleep efficiency, further works may consider using
data from repeated PSG to prevent or reduce such bias [47]. Fourth, this retrospective study
lacked information regarding lifestyle habits (tobacco and alcohol use) [48] or personal
health status (menopausal status and comorbidities) [49,50]. Nevertheless, the association
between OSA and these baseline details has been documented. Future research can con-
sider obtaining these data by using questionnaires or retrospect patients’ disease-related
parameters from personal medical history. Such additional data may be helpful for training
more comprehensive models and increasing the accuracy of OSA risk screening.

5. Conclusions

To address the limitations of current screening tools for OSA severity, we developed
novel models using easily accessed parameters. On the basis of anthropometric features
obtained from 3503 patients in Taiwan, we developed various machine learning models to
predict the risk of severe-to-moderate OSA and severe OSA. In the training and validation
stage, the RF-based prediction models demonstrated the highest accuracy and AUC in both
OSA severity risk categories among all the machine learning approaches. We, therefore,
applied the RF models for testing data set prediction; the accuracy was 84.74% for the
moderate to severe model and 72.61% for the severe model. Regarding feature importance,
visceral fat level was the most critical feature in the OSA risk screening. Similarly, our
statistical outcomes suggested that AHI and ODI significantly correlated with the anthropo-
metric features related to obesity (i.e., BMI; neck size; waist size; visceral fat level; and the
mass and percentage of fat in the whole body, only limbs, and only trunk). Our machine
learning models may be employed to screen for OSA risk in populations with similar
craniofacial features.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/s22228630/s1, Figure S1: Density scatterplots showing the Shapley
values of the input parameters used in the RF models for assessing OSA severity using the testing
data set; Table S1: Classification of the results of the random forest model used to assess the severity
of OSA using the testing data set; Table S2: Classification of the results of the random forest model
used to assess the risk of OSA using the testing data set.
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