
Citation: Timofeeva, A.M.;

Galyamova, M.R.; Sedykh, S.E.

Bacterial Siderophores: Classification,

Biosynthesis, Perspectives of Use in

Agriculture. Plants 2022, 11, 3065.

https://doi.org/10.3390/

plants11223065

Academic Editor: Carmen Bianco

Received: 20 October 2022

Accepted: 11 November 2022

Published: 12 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

plants

Review

Bacterial Siderophores: Classification, Biosynthesis,
Perspectives of Use in Agriculture
Anna M. Timofeeva 1 , Maria R. Galyamova 2 and Sergey E. Sedykh 1,3,*

1 SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia
2 Center for Entrepreneurial Initiatives, Novosibirsk State University, 630090 Novosibirsk, Russia
3 Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
* Correspondence: sedyh@niboch.nsc.ru; Tel.: +7-913-272-1000

Abstract: Siderophores are synthesized and secreted by many bacteria, yeasts, fungi, and plants for
Fe (III) chelation. A variety of plant-growth-promoting bacteria (PGPB) colonize the rhizosphere
and contribute to iron assimilation by plants. These microorganisms possess mechanisms to pro-
duce Fe ions under iron-deficient conditions. Under appropriate conditions, they synthesize and
release siderophores, thereby increasing and regulating iron bioavailability. This review focuses on
various bacterial strains that positively affect plant growth and development through synthesizing
siderophores. Here we discuss the diverse chemical nature of siderophores produced by plant
root bacteria; the life cycle of siderophores, from their biosynthesis to the Fe–siderophore complex
degradation; three mechanisms of siderophore biosynthesis in bacteria; the methods for analyzing
siderophores and the siderophore-producing activity of bacteria and the methods for screening the
siderophore-producing activity of bacterial colonies. Further analysis of biochemical, molecular–
biological, and physiological features of siderophore synthesis by bacteria and their use by plants will
allow one to create effective microbiological preparations for improving soil fertility and increasing
plant biomass, which is highly relevant for sustainable agriculture.

Keywords: siderophores; bacteria; biosynthesis; PGPB; agriculture; soil bacteria; soil microbiome;
biofertilizers; rhizosphere; iron

1. Introduction

Fe ions are key components of various metabolic pathways in the cell. The Fe(II)/Fe(III)
pair is involved in catalyzing a wide range of redox reactions and in electron transfer
systems. Over a hundred metabolic enzymes have been described that possess iron-
containing cofactors, such as Fe-S clusters or heme groups [1]. Fe is essential for many
plant processes, including photosynthesis [2]: Fe is a part of photosystem I, cytochrome b6f
complex, and photosystem II, with Fe ions also being required for chlorophyll synthesis
and the general functioning of the photosynthetic apparatus [3]. In addition, some other
proteins and protein complexes involved in electron transport during photosynthesis
in chloroplasts and oxidative phosphorylation in mitochondria are Fe-dependent: non-
heme Fe-S proteins (e.g., ferredoxin), heme proteins (e.g., catalase and peroxidase), and
cytochromes [4]. Moreover, Fe serves as a cofactor in the synthesis of many plant hormones,
such as ethylene and 1-aminocyclopropane-1-carboxylate [5]. Since free Fe(II) is rapidly
oxidized to Fe(III), which is not bioavailable due to its low solubility, the amount of Fe for
assimilation is extremely limited despite the abundance of Fe(III) in the Earth’s crust [1]. Fe
deficiency in plants is a major economic issue that seriously impacts the quality and yield
of crops [3].

A variety of bacteria referred to as plant-growth-promoting bacteria (PGPB) are capa-
ble of colonizing the rhizosphere and promoting Fe uptake by plants. These microorganisms
can produce Fe ions under iron-deficient conditions. The PGPB of interest synthesize and
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release siderophores under appropriate conditions, thus increasing and regulating Fe
bioavailability [6]. Siderophores are low-molecular-weight compounds (500–1500 Da) with
a high affinity for Fe (III) (Kf > 1030). The affinity of siderophores for Fe is so high as to
remove Fe from the molecules of Fe-binding proteins, for example, ferritin, transferrin, and
lactoferrin [7,8]. Thus, the main function of siderophores is converting Fe bound to proteins
or water-soluble compounds into a form accessible to microorganisms [9].

Siderophore-producing PGPB promote plant growth and improve host plant nutri-
tion [10], but there are other benefits of PGPB for plants. For example, they can solubilize
phosphates [11] and fix atmospheric nitrogen [12]. Given that both mineral phosphate
and mineral (organic) nitrogen are required for siderophore synthesis, consortia of such
PGPB are regarded as potential micro-fertilizers. Other PGPB may affect crop growth
by reducing the impact of soil plant pathogens through the production of antimicrobial
compounds and extracellular enzymes [13]. Siderophore-producing microbes generate
numerous Fe-chelating compounds [14], thereby accelerating the physiological and bio-
chemical processes of plants under unfavorable conditions [15,16]. Adding both Fe(III) and
siderophores to the soil favors better plant growth compared to adding Fe(III) alone, as
evidenced by the increase in plant weight [17].

With the world population constantly growing, the area of arable land decreasing,
and the genetic potential of crops depleted, there is a strong necessity to introduce new
agricultural technologies. Ensuring a high demand for high-nutritional-value food is
possible when using low-impact agronomic solutions to increase plant resistance to adverse
soil conditions [18,19]. In May 2020, the European Union announced the Farm to Fork (F2F)
strategy, aimed at reducing the reliance on pesticides, antimicrobials, and excessive use of
fertilizers. For the past few years, research has focused on novel agro-ecological approaches
aimed at agro-biodiversity management [20].

Plant biostimulants are next-generation products likely to be effective for sustainable
agriculture. Such plant biostimulants may combine chemical fertilizers with microorgan-
isms and are therefore classified as microbial plant biostimulants [20]. Currently, there are
studies aimed at selecting microorganisms with specific growth activity to improve the
assimilation of nutrients in the case of their low availability, as well as at applying PGPB
isolated from regions affected by salinization and desertification [20].

This review considers the main siderophore-producing PGPB, covers the classification
of different types of siderophores produced by bacteria that are promising for agriculture,
and describes the life cycle of siderophores from their biosynthesis synthesis in the bacterial
cell to the release of Fe from the Fe–siderophore complex in the plant. Additionally, the
methods for detecting siderophores and siderophore-producing bacteria are discussed.

2. Siderophore-Producing Bacteria and Their Potential Applications in Agriculture

Siderophore-producing bacteria have been described in 20 genera: Azotobacter [21,22],
Azospirillum [23], Bacillus [24], Dickeya [25], Enterobacter [26], Klebsiella [27], Kosakonia [28],
Methylobacterium [29], Nocardia [30], Pantoea [31], Paenibacillus [32], Pseudomonas [33], Rhodococ-
cus [26], Serratia [34], Streptomyces [35] and others. The production of siderophores by bac-
teria is beneficial to plants and is considered to be a significant feature of PGPB [36], which
can influence plant growth [37]. Siderophores produced by soil microorganisms supply Fe
to plants and promote their growth. However, bacterial siderophores are responsible for
limiting the development of some fungi and bacteria pathogenic to plants [38]. The biosyn-
thesis of siderophores is not only characteristic of PGPB since some siderophore-producing
bacteria are pathogenic to humans.

Several PGPB-producing siderophores also possess other plant-growth-promoting
activities. A number of species of Pantoea produce siderophores: P. diversa [39], P. agglomer-
ans [40], P. eucalyptii [41], P. allii [42], and P. ananatis [43]. The inoculation of soil P. ananatis
has been shown to lead to the solubilization of phosphate and zinc and the production of
siderophores and indole-3-acetic acid [44]. According to the whole-genome sequencing
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of Pantoea species, they have three clusters of genes homologous to clusters of different
siderophore types (see Section 3 for details) [31].

PGPB that can simultaneously produce siderophores and possess nitrogen fixation have
been described in a number of rhizobacteria: Pantoea dispersa and P. cypripedii AF1, Enterobac-
ter asburiae [39], Kosakonia arachidis EF1 [41] and K. radicincitans BA1, and Stenotrophomonas
maltophilia COA2 [28]. Such PGPB as Variovorax paradoxus, Pseudomonas fluorescens and Bacil-
lus megaterium possess even more activities that are beneficial for plant growth: siderophore
production, phosphate solubilization, exopolysaccharide production, indoleacetic acid
production, and ACC deaminase activity under saline and normal conditions. Inoculation
with these microorganisms was shown to positively affect the growth of cucumbers [45].

B. subtilis produces Fe-chelating compounds, resulting in improved wheat plant
growth under drought conditions [46]. B. subtilis MF497446 and P. koreensis MG209738 were
shown to produce siderophores and induce Cephalosporium maydis disease resistance in
maize crops [47]. A strain of Bacillus subtilis 330-2 isolated from rapeseed was found to pro-
duce siderophores and significantly suppress fungal infections in vitro: Rhizoctonia solani
AG1-IA, Botrytis cinerea, Fusarium oxysporum, Alternaria alternata, Cochliobolus heterostrophus
and Nigrospora oryzae. This strain increased the growth of rice and corn seedlings [48].
B. aryabhattai MS3 was shown to increase rice yield by 60 and 43% in non-saline and saline
(200 mM NaCl) conditions, respectively [15].

Pseudomonas sp. are widely presented in the rhizosphere of plants and stimulate
growth by secreting enzymes and metabolites, solubilizing nutrients, and producing
siderophores [49]. P. chlororaphis, P. fluorescens, P. protegens, P. kilonensis P. putida, P. simiae
and P. syringe are used in agriculture to control plant diseases and increase yield [50–52].
Pseudomonas sp. GRP3 increased the chlorophyll level in siderophore-treated mung bean
plants [53]. Under conditions of Fe deficiency, Pseudomonas sp. SP3 effectively stimulated
the growth of apple tree rootstock and improved plant nutrition [54]. Pseudomonas sp.
IB-4 is capable of solubilizing phosphates, producing siderophores, and promoting plant
growth [55].

Azotobacter vinelandii is a Gram-negative, free-living nitrogen-fixing bacterium pos-
sessing three nitrogenases with metal clusters. These nitrogenases are expressed in the
presence of metal ions: Fe, Mo, and Va [56]. With all types of nitrogenases requiring Fe(III),
A. vinelandii secretes siderophores with a potent ability to chelate Fe to ensure its uptake
in Fe-limited environments [57]. The nitrogen-fixing bacterium A. chroococcum is capable
of producing siderophores and positively affecting the growth of various crops under
different soil types and climatic conditions. A. chroococcum AC1 and AC10 were shown to
increase cotton biomass [22] and the content of soluble sugars in canola [58,59] and corn
plants grown in saline soils [60]. In Argentina, Azospirillum brasilense Az39 isolated from
wheat roots is recommended to be used in commercial preparations [61] due to its effective
growth stimulation of this cereal [62].

An example of antagonistic activity is Brevibacillus brevis GZDF3 isolated from Pinellia
rhizosphere, which is effective against Candida albicans fungal disease due to siderophore
production [63].

A genome analysis of three cold-active strains of the Antarctic bacteria Pseudomonas sp.
ANT_H12B, Psychrobacter sp. ANT_H59, and Bacillus sp. ANT_WA51 revealed the poten-
tial to stimulate plant growth through the secretion of various biomolecules, including
siderophores. These bacteria stimulated alfalfa growth by increasing shoot length and
biomass [64]. Pseudomonas sp. EMN2 isolated from the rhizosphere and inner parts of
the roots of Coffea arabica plants was found to contain achromobactin– and aerobactin–
siderophore receptors but to lack the genes responsible for producing these siderophores,
indicating an interaction of this bacterium with other bacteria [65].

Unfortunately, many studies on the effect of siderophore-producing PGPB on plant
growth and development revealed siderophore activity only by the chromium azurolsul-
fonate (CAS) test, which only allows one to establish the presence or absence of siderophore-
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producing activity. For more details on the structure of siderophores and examples of
bacteria producing specific siderophores, the reader is referred to the next section.

3. Chemistry and Classification of Siderophores

All siderophores exhibit a higher affinity for Fe(III) than for Fe(II) without exception.
Additionally, their affinity for Fe(III) is much higher than that of the other bivalent or
trivalent metals. Moreover, siderophores can be involved in the uptake of several heavy
metals from contaminated soils, which may be relevant for bioremediation [66].

The siderophore molecule usually has its iron atom coordinated with oxygen atoms,
with the most common geometry being octahedral, allowing the six ligands to be arranged
around the Fe center with minimal ligand repulsion. The octahedral field contributes
to the formation of thermodynamically stable high-spin Fe(III) particles. Depending on
the type of siderophore, the octahedral field can be distorted, and sometimes nitrogen
or sulfur may be incorporated into the siderophore as coordinating atoms, with such
siderophore variants having a lower affinity for Fe(III) [66]. The siderophore structure
can have Fe(III) coordinated with such bidentate functional groups as hydroxamates, α-
hydroxycarboxylates, and catecholates, as well as combinations of polydentate phenolates,
nitrogen heterocycles, and carboxylates [67].

Depending on their chemical nature, siderophores are classified into catecholates and
phenolates, hydroxamates, carboxylates, and mixed-type siderophores [68,69]. Mixed-
type siderophores correspond in their structure to two or three classes simultaneously.
Therefore, they are treated as a separate class. The chemical structures of different classes of
siderophores are shown in Figures 1–3, with hydroxamate functional groups marked in blue,
catecholate functional groups in red, and carboxylate functional groups in green. The specific
features of siderophores of different classes will be discussed in the following subsections.
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3.1. Hydroxamate Siderophores

Hydroxamate siderophores contain the structure C(=O)N-(OH)R, with R being an
amino acid or its derivative containing two oxygen atoms forming a bidentate ligand
with Fe ions. Each siderophore is capable of forming hexadentate ligands and octahedral
complex compounds with Fe(III) ions [68]. When hydroxamate combines with Fe(III),
its functional group loses a proton from the hydroxylamine group (-NOH) to form a
bidentate ligand [70].
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The bacterium Bacillus megaterium ATCC 19213 is known to produce two hydroxam-
ate siderophores (shizokinen and N-deoxyshizokinen) under Fe-limited conditions [71].
In addition to the high affinity for Fe(III) ions, these siderophores are capable of chelat-
ing aluminum [72]. The Rhizobium leguminosarum IARI 917 is also known to produce
the schizokinen siderophore [73]. The Pantoea vagans C9-1 produces hydroxamate-type
desferioxamine-like siderophores [74]. Some strains of Rhizobium radiobacter are capable of
producing hydroxamate-type siderophores [75]; for example, Rhizobium meliloti produces a
siderophore called rhizobactin [76]. The R. meliloti 1021 produces a variant of rhizobactin
called rhizobactin 1021 [77]. Vicibactin is a cyclic trihydroxamate siderophore and was
found in R. leguminosarum and in R. phaseoli [78,79].

3.2. Catecholate Siderophores

In catecholate-type siderophores, the Fe(III) ion is bound to hydroxyl or catecholate
groups. Upon chelation with Fe(III), a hexadentate–octahedral complex is formed, with
two oxygen atoms from each catecholate group involved [80]. All catecholate siderophores
are the derivatives of salicylic or 2,3-dihydroxybenzoic acid (2,3-DHBA) [23].

The catecholate-type siderophore, referred to as spirilobactin, is produced by Azospir-
illum brasilense in an Fe-depleted medium [81]. The Azospirillum lipoferum produces 2,3-
dihydroxybenzoic acid (2,3-DHBA) and 3,5-DHBA conjugated to threonine and lysine [82],
which also exhibit siderophore activity.

Azotobacter vinelandii is known to produce four catecholate siderophores: aminocholine,
nitrocholine, protochelin, and 2,3-DHBA [57,68,83]. The Rhizobium leguminosarum IARI
102 also produces 2,3-DHBA conjugated to threonine (2,3-DHBA-Thr) [73].

Bacillus subtilis is characterized by the formation of 2,3-dihydroxylbenzoylglycine,
also known as itoic acid [84]. A trimeric ester of this acid, referred to as bacillibactin, was
described [85]. The production of bacillibactin was also described for B. thuringiensis [86].
The Pantoea vagans C9-1 produces the enterobactin-like catechol siderophore [87]. Rhizobium
radiobacter produces a tricatecholate siderophore, which is called agrobactin [88,89].

3.3. Carboxylate and Mixed-Type Siderophores

Carboxylate-type siderophores bind to Fe via carboxyl and hydroxyl groups [80].
Carboxylate-type siderophores in PGPB have not been described in the literature. However,
these siderophores are found among mixed-type siderophores.

In addition to the types mentioned above, some siderophores contain several Fe-
chelating groups and are therefore classified as mixed-type siderophores.

The siderophores produced by fluorescent strains of Pseudomonas are pyoverdines [90,91].
All pyoverdines contain one quinoline chromophore, a peptide, and a dicarboxylic acid
(or its corresponding amide) attached to the chromophore. The peptide is always the
same in bacteria of the same strain but can differ across strains and species [92]. For ex-
ample, three different pyoverdines, called pyoverdine, pyoverdine 0, and pyoverdine A
(or ferribactin), have been isolated from Pseudomonas fluorescens [93]. Other bacteria of
the genus Pseudomonas, such as Pseudomonas syringae, are also known to produce pyover-
dine siderophores [94]. Additionally, Pseudomonas aureofaciens was reported to produce
pyoverdine siderophores [95].

The first siderophore isolated from Azotobacter vinelandii was azotobactin [96], a
pyoverdine-type siderophore. The pyoverdine structure of A. vinelandii was determined by
the nuclear magnetic resonance method [97]. Chromophore has unique optical properties
and specific absorption and fluorescence at 380 and 500 nm, respectively [56].

The structures of pseudobactin and pseudobactin A (distinguished by quinoline deriva-
tives in the structure) were described for Pseudomonas B10 [98]. Pseudomonas fluorescens
produces several other siderophores, such as enantio-pyochelin [99], quinolobactin [100],
ornicorrugatin and pseudomonins [101]. The Pantoea eucalypti M91 is capable of producing
pyoverdine-like and pyochelin-like siderophores in alkaline media [10].
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It is worth noting that siderophores exhibit antifungal properties. One of the most
studied siderophores with direct antifungal properties is pyoverdine produced by Pseu-
domonas spp., which contributes to the suppression of pathogen development by increasing
competition for Fe: fungal siderophores generally have a lower affinity for Fe(III) than
bacterial siderophores [53]. For example, P. fluorescens WCS374r (Psb374) was shown to
be necessary for inducing siderophore-mediated resistance in rice when infected with
Magnaporthe oryzae. The inoculation of soil with a mutant WCS374r strain deficient in
pseudobactin and the subsequent infection of rice leaves with M. oryzae after 4–5 days
demonstrated no suppression of siderophore–mutant bacteria disease in rice compared
with the wild-type P. fluorescens [102].

Pyoverdins are supposed to be involved in the biological control of phytopathogenic
microorganisms in the rhizosphere, as they are known to form stable complexes with soil
Fe, making this essential element unavailable for consumption by harmful rhizosphere
microorganisms [103].

Table 1 presents the major siderophore-producing PGPB with an established
siderophore structure.

Table 1. Major siderophore-producing PGPB for which the siderophore structure has been established.

Genus Strain Gram
Siderophore

Reference
Name Type

Azospirillum Azospirillum brasilense Negative Spirilobactin Catechol [81]

Azospirillum lipoferum Negative
2,3-DHB,

3,5-DHB-threonine,
3,5-DHB-lysine

Catechol [82]

Azotobacter Azotobacter vinelandii Negative
Aminochelin,
Azotochelin,

Protochelin, 2,3-DHB
Catechol [68,104,105]

Azotobacter vinelandii
Negative Azotobactin Mixed [56,96]
Negative Vibrioferrin Mixed [21]

Bacillus Bacillus megaterium Positive
Schizokinen,

N-schizokinen,
N-schizokinen-A

Hydroxamate [71,106]

Bacillus subtilis, Bacillus
thuringiensis Positive Itoic acid, Bacillobactin Catechol [85,107]

Pantoea Pantoea vagans C9-1 Negative Enterobactin-like Catechol [74]
Negative Desferrioxamine-like Hydroxamate [74]

Pantoea eucalypti M91 Negative Pyoverdine-like,
Pyochelin-like Mixed [10]

Pseudomonas Pseudomonas B10 Negative Pseudobactin(s) Mixed [98]
Pseudomonas
fluorescens,

Pseudomonas
aeruginosa,

Pseudomonas syringae,
Pseudomonas
aureofaciens

Negative Pyoverdine(s) Mixed [94,95,108,109]

Pseudomonas fluorescens Negative Ferribactin Mixed [93]
Rhizobium Rhizobium radiobacter Negative Agrobactin Catechol [88,89]

R. leguminosarum, R.
phaseoli Negative Vicibactin Hydroxamate [78,79]

Rhizobium
leguminosarum

Negative Schizokinen Hydroxamate [73]
Negative 2,3-DHB-threonine Catechol [73]

Rhizobium meliloti Negative Rhizobactin Catechol [77]
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4. Biosynthesis of Siderophores

Siderophore biosynthesis in bacteria is performed by several enzymes: non-ribosomal
peptide synthetase (NRPS), polyketide synthase (PKS), and NRPS-independent siderophore
synthetase (NIS) [110].

4.1. Siderophore Biosynthesis by NRPS

Siderophores synthesized by NRPS are primarily composed of amino acids, including
non-proteinogenic amino acids, linked together by peptide bonds [111,112]. NRPS are large
multi-domain and multi-enzyme complexes, with each subunit responsible for attaching
one amino acid to a growing peptide chain, including non-proteinogenic amino acids
and hydroxy acids [113]. The standard NRPS architecture comprises modular sequences
of adenylation (A), condensation (C), peptidyl carrier protein (P) and thioesterase (T),
as well as other specific functional domains including epimerization (E), oxidation (Ox),
methylation (Mt) and cyclization (Cy) [113,114].

The A domains are called the “gatekeepers” of the NRPS assembly line due to selec-
tively activating and incorporating the corresponding amino acids into the growing peptide
chain [115]. The amino acid is activated by conversion to the aminoacyl–AMP domain by
the A domain. Then, it is covalently attached (with loss of AMP) to the P domain (Figure 4).
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hydrolysis in the thioesterase domain after the product is transferred to the conserved serine residue.
Orange—adenylation domain (A); yellow—peptidyl domain (P); blue—condensation domain (C);
green—thioesterase domain (T).

The P domain acts as a binding system for the growing peptide chain. The P domain
contains a post-translational modification by coenzyme A over the conserved serine residue.
As a result, a swinging 4’-phosphopantetheinyl (Ppant) shoulder is formed. The Ppant P
domain thiol performs a nucleophilic attack on the carboxyl group of aminoacyl–AMP,
removing AMP and forming an aminoacyl–thioether bond (initiation). After priming, the
thioether bond on the P domain transfers the amino acid sequence to the next domains.
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The formation of the first peptide bond or peptide elongation is catalyzed by amino acid
residues of the two primed modules within the C domain. The thioether bond is broken
as the peptide bond is formed, resulting in a peptide elongation. These reactions occur
until peptide synthesis is complete. Chain elongation is terminated by the thioesterase
(T) domain. The T domain removes the entire chain from the last domain. The peptide is
transferred from the P domain to the conserved serine residue of the T domain, forming an
amino ether and allowing the hydrolysis and release of the mature peptide [116].

The secondary metabolites generated by NRPS are more than just short peptides.
Siderophores contain metal-chelating thiazoline or oxazoline rings added by Cy/Ox do-
mains to cysteine and serine residues. Additionally, the C-glycosylation of enterobactin
occurs, catalyzed by glycosyltransferase IroB, during the synthesis of salmohelin [117].
Most bacteria have their genes encoding NRPS and aryl acid synthesis enzymes directly
regulated by iron via the repressor Fur.

In some cases, NRPS are partially involved in the generation of hydroxamate and
carboxylate siderophores by synthesizing a peptide backbone to which iron-coordinating
residues are attached. This has been shown for S. coelicolor celichelin [118,119], exochelins
of nonpathogenic mycobacteria [120,121] and ferricchromes/ferricercins from various
fungi [122–124].

4.2. Siderophore Biosynthesis by Polyketide Synthases

Some siderophores are synthesized by polyketide synthases. The PKS module includes
a ketosynthase domain, an acyltransferase domain, and a carrier domain (the schemes a
presented in Figure 5). The initiation module is covalently attached to the carrier domain by
the acyltransferase domain, releasing CoA (Figure 5A). The acyl chain is transferred from the
P domain of the loading module to the cysteine in the ketosynthase domain (Figure 5B). The
ketosynthase domain catalyzes a condensation reaction whereby the growing chain attaches
to the carrier domain of the first module and can be moved to the ketosynthase domain of
the next module. As a result, this conveyor mechanism results in various domains being
incorporated into each module, allowing different functions to be added. The following
modifications are possible: ketoreductases, dehydratases, methyltransferases, and oxidases.
The thioesterase domain removes the entire chain from the final carrier domain by reduction,
hydrolysis, or sometimes cyclization [125,126]. The P domains in PKS, as in NRPS, provide
cotyledon and amino acid incorporation into the siderophore chain skeletons.
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Figure 5. Siderophore biosynthesis by polyketide synthase. Acyltransferase domains load acyl
groups on the P domains of Module 1. The acyl group from the loading module is transferred to the
ketosynthase domain of Module 1, thereby initiating the module (bottom left). The ketosynthase
domain catalyzes the condensation reaction. The growing chain is transferred to the ketosynthase
domain of the next module to continue synthesis. AT—acyltransferase; P—acyl carrier protein;
K—ketosynthase. The wavy line marks the post-translational modification of Ppant. The short straight
line in the KS domain denotes the cysteine residue of the active center.



Plants 2022, 11, 3065 10 of 22

4.3. Siderophore Biosynthesis by NIS Synthetase

Some siderophores are synthesized not by NRSP or PKS [67], but by NRPS-independent
siderophore synthetases [127]. NIS synthetases form siderophores containing citric acid,
α-ketoglutarate, or succinic acid. The NIS synthetase contains an acyladenylation domain
that forms, for example, citrate–AMP, providing an energy-rich bond for the condensation
reaction with an amino acid or polyamine. Siderophores constructed with NIS include
aerobactin, achromobactin (Pseudomonas syringae), desferioxamine (Streptomyces griseus),
baumannoferrin (Acinetobacter baumannii) [128], putrefactins (Shewanella putrefaciens).

5. Secretion of Siderophores into the Environment, Transport of Fe–Siderophore
Complexes into the Cell

After the biosynthesis, apo-siderophores are secreted into the medium. Several differ-
ent secretion systems have been identified, including transporters from the major facilitator
superfamily (MFS) and efflux pumps from the resistance, nodulation, and cell division
(RND) superfamily [129].

Many NRPS-based siderophore gene clusters contain a gene encoding the MFS trans-
porter, a member of the broad substrate transporter group [130]. The MFS protein YmfE
involved in the secretion of the siderophore bacillibactin was identified in B. subtilis [131].
The mutant strain deficient in the YmfE gene was shown not to grow in Fe-deficient
medium. The RND superfamily is a group of proton antiporters particularly common
among Gram-negative bacteria [132]. See Figure 6A.
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Fe–siderophore complexes bind to specific outer membrane receptors with high affin-
ity (Kd ~ 0.1 µM). In contrast to porins, which use passive diffusion to absorb dissolved
substances, outer membrane receptors actively pump siderophores into the periplasm
against the concentration gradient using an energy-dependent transport mechanism. Sev-
eral siderophore-mediated Fe-uptake pathways consisting of an outer membrane receptor,
a periplasmic binding protein, and a complex of one or two cytoplasmic membrane proteins
with an associated ATP-binding cassette (ABC) forming altogether a carrier have been
described in Gram-negative bacteria. Most bacteria have separate systems, each specific for
one siderophore. Bacteria are known to be able to use siderophores secreted by coexisting
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microbes [133]. Despite different structures and properties, all siderophores have a peptide
backbone that interacts with outer membrane receptors present on the cell surface [134].

There are different systems used by microorganisms to transport Fe–siderophore com-
plexes. The transport systems differ between Gram-positive bacteria and Gram-negative
bacteria. In Gram-negative bacteria, the pathway for the Fe–siderophore complex to enter
the cell is arranged so that Fe chelates are transported across the outer membrane, the
periplasm, and the cytoplasmic membrane by discrete transporters. The proteins required
for each transport step are localized in different cell membrane compartments and have
specific energy requirements [133].

The transport of siderophores across the outer cell membrane of Gram-negative bacte-
ria is mediated by a complex of three transmembrane proteins: TonB, ExbD, and ExbB [133].
This family of outer membrane transport proteins is called TonB-dependent receptors. TonB-
dependent receptors consist of five copies of ExbB, two copies of ExbD, and TonB [135].
The Ton complex proteins are embedded in the cytoplasmic membrane and penetrate the
periplasm [136]. TonB-dependent receptors recognize Fe(III)–siderophore complexes on
the cell surface [137]. The Fe(III)–siderophore complex is then bound to the periplasmic
binding protein [138], which accompanies the complex to the cytoplasmic membrane and is
released into the periplasmic space [139]. The Fe–siderophore complex is transported from
the periplasm into the cytoplasm through the inner membrane by the ABC and reaches the
cytoplasm as an Fe(II) ion [140].

Gram-positive bacteria lack the outer membrane and the corresponding receptors.
The Fe(III)–siderophore complexes are bound by periplasmic siderophore-binding proteins
fixed on the plasma membrane [141], followed by Fe(III)–siderophore complexes being
transported into the cytoplasm by the ABC transport system in the same manner as in
Gram-negative bacteria [142]. See Figure 6B.

5.1. The Fate of the Fe–Siderophore Complex in the Cell

Inside the bacterial cell, Fe ions are released from the Fe–siderophore complex and
become available for metabolic processes. Two main mechanisms of Fe release have been
described. The first involves the reduction of siderophore-bound Fe(III) to Fe(II) followed
by the spontaneous release or competitive binding of reduced ions [66]. To date, two
families of proteins, siderophore-interacting protein (SIP) and Fe–siderophore reductase
(FSR), involved in this process have been identified.

The second pathway of Fe release uses specialized enzymes that hydrolyze the Fe–
siderophore complex and destabilize it [1]. Examples of such enzymes are esterases of
the α/β-hydrolase family of enzymes [143]. Due to causing the siderophore backbone
destruction, the hydrolytic release of Fe is more costly for the cell than Fe siderophore
reduction, mostly allowing the siderophore to be reused.

The fate of Fe after its release in the bacterial cell may be to bind to spare proteins such
as ferritins, bacterioferritins, and ferrochelatin [1].

5.2. The Fate of the Fe–Siderophore Complex outside the Bacterial Cell

Bacterial siderophores are known to provide plants with Fe and promote their growth
when Fe bioavailability is low. The exact mechanisms of these processes have not been
established, but two possible ways for plants to obtain Fe from microbial siderophores have
been proposed. The first mechanism suggests that bacterial siderophores with a high redox
potential can be reduced to give Fe(II) back to the plant transport system. It is proposed
that, according to this mechanism, Fe(III)–siderophores from bacteria are first transported
to the plant root apoplast, where siderophore reduction occurs. Thus, Fe(II) is captured by
the apoplast, possibly leading to a high local concentration of Fe in the root. The second
mechanism is for the bacterial siderophores to chelate Fe from the soil and perform ligand
exchange with phyto-siderophores [144]. The mechanisms described are theoretical and
have not yet been confirmed experimentally.
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In nature, most bacterial producers of siderophores are related to the rhizosphere
of plants. For this reason, siderophore concentrations are highest in the rhizosphere,
where 0.1 µM to mM concentrations of siderophores have been demonstrated [145]. The
concentration of siderophores decreases significantly in the soil outside the rhizosphere,
where it can be as low as 10 nM [146]. In the soil, siderophores are adsorbed on clay
minerals and organic matter [147].

In the environment, siderophores can undergo abiotic degradation through hydrol-
ysis and/or oxidation. Siderophores with hydroxamate groups can hydrolyze to form
hydroxylamine groups, during which Fe(III) is reduced to Fe(II) [148].

Exposure to sunlight can also stimulate the degradation of siderophores. For example,
hydroxycarboxylates in complex with Fe are photoreactive, and catecholates, on the con-
trary, are photoreactive only in the absence of Fe; hydroxamates are not photoreactive [149].

Free siderophores inevitably interact with various organisms and are absorbed by
bacteria and plants [150]. The ability of some bacteria to use siderophores as a source of
carbon and nitrogen was described [151].

Figure 7 shows the life cycle of siderophores within and outside the bacterial cell.
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6. Application of Siderophores to Control Phytopathogens: Use of Siderophores in
Soils Contaminated with Heavy Metals

Siderophores play an important role in the biological mechanism of controlling some
phytopathogens. Since siderophores firmly bind Fe and reduce its bioavailability to plant
pathogens, they can facilitate the destruction of phytopathogens [144,152]. For example,
pyoverdine siderophores produced by Pseudomonas chlororaphis YL-1 were shown to possess
extensive antimicrobial activity against phytopathogens [153]. In addition, Pseudomonas
orientalis F9 was shown to exhibit antagonistic properties toward phytopathogens and
contain genes of pyoverdine biosynthesis. The antagonistic effect of Pseudomonas syringae
pyoverdins on Caenorhabditis elegans was demonstrated [154]. In addition to pseudomonads,
siderophores produced by Bacillus subtilis also are of crucial importance in the biocontrol of
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Fusarium oxysporum, leading to fusarium wilt in pepper [155]. To sum up, siderophores can
be regarded as a potential biological control agent against several phytopathogens.

Metals other than Fe are also capable of stimulating or inhibiting siderophore produc-
tion in a number of bacteria, even in the presence of high concentrations of Fe. For example,
the presence of Mo in Azotobacter vinelandii media regulates the production of azotochelin,
a catecholate siderophore that can chelate this metal [156]. High concentrations of Al
were shown to enhance the production of schizokinene and N-deoxyschizokinene (both
hydroxamate siderophores) in Fe-limited cultures but not in cultures of Bacillus megaterium
with high Fe content [72].

The fact that toxic metals were observed to induce the production of some siderophores
suggests that these siderophore chelators may play an important role in the resistance of
bacteria to heavy metals. Toxic metals enter the periplasm of Gram-negative bacteria
mainly by diffusion through porins [157]. Thus, the binding of metals to siderophores in
the extracellular medium decreases the concentration of free metals, thus probably reducing
diffusion, since the molecular weight of the formed siderophore–metal complex is too large
for its diffusion through porins and, consequently, it affects their toxicity.

Siderophores can modify the degree of oxidation of heavy metals such as Cd, Cu, Ni,
Pb, Zn and Th, U, and Pu, making them less toxic [157]. Siderophores also bind various
toxic Cr, Cu, Pb, Cu, V, and Al, with the binding ability of siderophores to Fe being greater
than to other heavy metals [158,159]. Thus, the ability of siderophore to detoxify and bind
toxic heavy metals plays a prominent role in plant growth in soil contaminated with heavy
metals.

The bacterial strain P. fluorescence produces the pyoverdine-type siderophore, which
increases mobility and reduces the toxicity of heavy metals in uranium mines [160]. Two
species of Providencia sp. (TCR05) and Proteus mirabilis (TCR20) were shown to lower
Cr toxicity by reducing Cr(VI) to Cr(III) in contaminated soils [161]. PGPB rhizobacteria
Streptomyces tenae F4 phytormediate Cd and enhance the uptake of other metals in soils
contaminated with heavy metals [162]. The Rhizobium strains promote Cu uptake, while
the Pseudomonas strain promotes Cu and Fe uptake by Phaseolus vulgaris plants [163], and
P. acidiscabies secretes the hydroxamate types of siderophores responsible for Ni and Fe
dissolution and absorption by Vigna unguiculata plants under nickel stress [164]. The
symbiotic association of Kluyvera ascorbata and plants decreases heavy metal toxicity [165]
and suppresses phytopathogens [166].

7. Methods for Siderophore Detection and Characterization

The characterization of siderophore-producing activity is usually performed by a
combination of several methods. At first, bacterial colonies are screened on solid agarized
media to determine whether they are capable of producing siderophores. Next, the type of
siderophore can be determined on Petri dishes: hydroxamate, catecholate, or carboxylate.

For a more detailed examination, siderophores can be identified by HPLC, with NMR
and mass spectrometry also used to establish the structure. Gene expression analysis is
used to establish the changes in the transcriptional activity of genes depending on the Fe
concentration in the medium. This method allows one to establish the genes responsible
for the siderophore-producing activity.

7.1. Method for Determining the Presence of Siderophore-Producing Activity with Chromium
Azurolsulfonate

The ability of microorganisms to produce siderophores is usually determined by the
chromium azurolsulfonate (CAS) assay [167]. The possible structure of Fe(III) and CAS is
presented in Figure 8 [168].
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The chromazurol S × Fe(III) × hexadecyltrimethylammonium bromide (HDTMA)
ternary complex is an indicator: when the potent chelator removes Fe from the dye, its
color changes from blue to orange; see Equation (1) [167].

FeDye3−λ + Lκ− → FeL3−κ + Dyeλ− (1)

The reaction of Fe(III) with chromazurol S. L is the siderophore under study.
This method is highly sensitive and allows one to detect siderophores on the super-

natant of the culture liquid. Siderophores secreted by selected bacterial cultures can be
quantitatively analyzed by growing the bacterial cultures in the Modi medium. In this case,
the amount of siderophore is measured spectrophotometrically [167].

Solid agar medium containing CAS is also used for the qualitative determination
of siderophore production. Orange halos around the colonies on blue agar indicate the
excretion of siderophores.

Both methods require the CAS reagent to be prepared according to Schwyn and
Neilands [167]: 121 mg of CAS are dissolved in 100 mL of distilled water, and 20 mL of
1 mM FeCl3·6H2O in 10 mM HCl are added to the solution. To the resulting solution,
20 mL of HDTMA solution (729 mg HDTMA in 400 mL of distilled water) are added under
stirring. The CAS–HDTMA solution is sterilized before further use.

The siderophore content is quantified in the supernatant of a bacterial culture grown
in the LB medium. The supernatant of 0.5 mL is mixed with 0.5 mL of CAS reagent, and the
optical density is measured after 20 min at 630 nm. The amount of siderophores produced
by the strains is measured in percent siderophore units (psu), which are calculated using
the formula [169]:

Siderophore Unit (%) =
(Ar − As)

As
× 100

with Ar being the optical density at A630 nm (CAS analysis solution mixed with an equal
volume of unseeded medium) and As being the optical density of the sample at 630 nm
(CAS analysis solution + supernatant) [167].

7.2. Identification of Catechin and Hydroxamate Groups

The technique described above does not determine the type of siderophore. The
Arnow [170], Csáky [171], and Shenker [172] tests are used to analyze the type of siderophore
contained in the nutrient medium. The Arnow test detects the presence of catechin groups,
the Csáky test is used to detect hydroxamic groups, and the Shenker test is used to detect
carboxylates.

The Arnow method is based on the reaction between the catechol and the nitrite–
molybdate reagent in an acidic medium with the formation of a yellow color. In an
alkaline medium, the color changes to an intense orange–red color. The protocol is the
following: mix 1.0 mL of supernatant with 1.0 mL of 0.5 M HCl, add 1.0 mL of sodium
nitrite and molybdate (10 g sodium nitrite and 10 g sodium molybdate dissolved in 100 mL
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of deionized water) and 1.0 mL of 1 M NaOH. The color development occurs at room
temperature for 5 min. If a catecholate siderophore is present, the solution stains orange–
red. The intensity of the staining depends on the amount of catechol present [170].

The Csáky test detects hydroxamate-type siderophores by the formation of a stained
complex [171]. The protocol is the following: 1.0 mL of 6 N H2SO4 is added to 1.0 mL
of supernatant, incubated for 30 min at 130 ◦C. Add 3.0 mL of sodium acetate (350 g/L)
and 1.0 mL of sulfanilic acid (10 g/L in 30% acetic acid v/v), followed by 0.5 mL of iodine
solution (13 g/L in glacial acetic acid). After 3–5 min, the excess iodine is neutralized by
adding 1.0 mL of 20 g/l sodium arsenite. Finally, 1.0 mL of α-naphthylamine solution
(3 g/l in 30% acetic acid v/v) is added and left to develop color for 20–30 min. Dark pink
staining indicates the presence of hydroxamates in the solution.

7.3. HPLC, NMR, and Mass-Spectroscopy

Fractions are lyophilized and reduced with D2O (vibrioferrin, aminohelin) or deuter-
ated MeOH to obtain 1H-NMR and correlation spectroscopy. Siderophores are quantified
by 1H-NMR with the addition of an internal sodium benzoate standard for vibrioferrin or
by UV–visible emission using the literature extinction coefficients for acidified solutions
of DHBA, aminohelin, nitrohelin, protochelin, and azotobactin [173,174]. Petrobactin was
isolated by the UHPLC method on a C18 sorbent [86].

Hydroxamates are isolated from liquid cultures by benzyl alcohol extraction and
purified by gel filtration and HPLC. Hydroxamates have a characteristic absorption maxi-
mum at 420–423 nm, which does not shift between pH 3.0 and 9.0. By combining cyclic
voltammetry of Fe complexes with hydroxamate with mass spectra, the molecular weights
of the compounds can be determined. To prove the presence of hydroxamic acids, reductive
hydrolysis in 57% hydrogen iodide acid is used, resulting in the formation of ornithine,
which is determined by tandem gas chromatography and mass spectrometry [175].

Azotobactin synthesized by A. vinelandii can be determined spectrophotometrically.
The optical density of azotobactin not bound to metal ions is very sensitive to pH: at pH
7.0, azotobactin has two peaks, at 380 and 420 nm, with the peak at 420 nm decreasing
with decreasing pH, whereas at pH 7.5, there is one peak at 420 nm. On the other hand,
the siderophore bound to metal ions shows one peak at 380 nm at all pH [56]. Given the
differences in the siderophore absorption profile, one can determine azotobactin in complex
with Fe and individually.

A recent advance in siderophore research is using electrospray and high-resolution
liquid chromatography ionization mass spectrometry (HR–LC–MS) techniques that exploit
the characteristic isotope structure of 54Fe–56Fe associated with organic chelates [176–178].
Data analysis techniques have been developed to filter out the relevant isotopic structures
associated with Fe complexes, even at low contents and in highly complex matrices, and to
detect relevant aposiderophores [176]. The species thus identified can then be characterized
by analyzing the tandem MS and MS/MS spectra and additional UV spectroscopy and
NMR data.

Siderophores in supernatant extracts are analyzed by capillary liquid chromatography
followed by ESI-MS or ESI-MS/MS detection. Liquid chromatography is performed using
C18 columns, and elution is performed with a mobile phase containing 5% v/v acetonitrile
in 11 mM ammonium formate at pH 4.0. A mass spectrometer is used in ESI positive scan
mode between m/z 550 and 750 amu [179].

8. Conclusions

Plants interact with beneficial and pathogenic microorganisms that can produce
siderophores. The analysis of the mechanisms of siderophore synthesis and their effect
on plant growth and development are essential for the development of new strategies for
rational farming.

Despite considerable scientific interest in siderophore-producing bacteria as new
biofertilizers, there is currently no understanding of the relationship between the na-
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ture of siderophores and their effect on plant growth and development. Nor is there an
understanding of the exact mechanism by which plants assimilate Fe with the help of
bacterial siderophores.

Further analysis of biochemical mechanisms and molecular biological features of
siderophore biosynthesis and its physiological role is required to find new efficient combi-
nations of rhizospheric PGPB to obtain consortia leading to a comprehensive increase in
plant productivity.
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