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Resin-Based Bulk-Fill Composites: Tried and Tested, New Trends,
and Evaluation Compared to Human Dentin
Nicoleta Ilie

Department of Conservative Dentistry and Periodontology, University Hospital, Ludwig Maximilian University
of Munich, Goethestr. 70, 80336 Munich, Germany; nilie@dent.med.uni-muenchen.de

Abstract: A more-and-more-accepted alternative to the time-consuming and technique-sensitive,
classic, incremental-layering technique of resin-based composites (RBCs) is their placement in large
increments. The so-called bulk-fill RBCs had to be modified for a higher polymerization depth and
already have a 20-year history behind them. From the initial simple mechanisms of increasing the
depth of cure by increasing their translucency, bulk-fill RBCs have evolved into complex materials
with novel polymerization mechanisms and bioactive properties. However, since the materials
are intended to replace the tooth structure, they must be comparable in mechanical behavior to
the substance they replace. The study compares already established bulk-fill RBCs with newer,
less-studied materials and establishes their relationship to dentin with regard to basic material
properties such as hardness and indentation modulus. Instrumented indentation testing enables
a direct comparison of tooth and material substrates and provides clinically relevant information.
The results underline the strong dependence of the measured properties on the amount of filler
in contrast to the small influence of the material classes into which they are classified. The main
difference of RBCs compared to dentin is a comparable hardness but a much lower indentation
modulus, emphasizing further development potential.

Keywords: resin-based composites; bulk-fill; Vickers and Martens hardness; indentation modulus

1. Introduction

The constant expansion of scientific knowledge, underpinned by the further devel-
opment of existing filling materials and the introduction of completely new ones, leads
to changes in dental treatment concepts. In the chronological development of resin-based
composites (RBCs), bulk-fill RBCs represent the most recent development. They were
developed with the aim of significantly reducing the treatment time by no longer having
to build up RBC fillings in 2 mm layers, but instead applying them in 4 to 5 mm thick
layers. In addition, the risk of introducing defects such as voids or contaminants between
two-layered increments is also reduced. Since the classic incremental-layering technique
is time-consuming and technique-sensitive, especially in large-volume posterior cavities,
the bulk-fill application has attracted interest as an alternative. Today the concept is estab-
lished, and a clinical time saving of approx. 20% compared to the conventional, incremental
restoration technique is documented [1].

This alternative bulk-filling concept originally arose from the idea of combining bulk-
fill RBCs in two different viscosities. Although the first light-curing, high-viscosity bulk-fill
RBC (QuiXfil, Dentsply) [2] came onto the market 20 years ago, the bulk-fill concept only
gained clinical acceptance years later with the marketing of the low-viscosity (flowable)
bulk-fill RBCs. The concept of a bulk-fill flowable RBC was inspired by the habit of many
dentists of using more user-friendly and adaptable conventional flowable RBCs, when
the clinical situation allows. A flowable material requires fewer fillers, making it more
translucent, thus improving depth of cure by allowing light to penetrate deeper layers,
a fact closer to the bulk-filling concept. On the other hand, a lower amount of filler also
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lowers the mechanical properties of the material [3], which limits the clinical indication.
Therefore, when used in deep and large cavities, flowable bulk-fill RBCs require capping
with a higher-filled material. Bulk-fill materials with higher viscosity, which can also be
applied without capping, followed the path thus opened for the bulk-fill technique. In
addition to a still-reduced amount of filler compared to regular RBCs [4], a larger filler
size [5], and a reduction in color pigments also helped increase the depth of cure by
increasing translucency, as no other changes were made in the chemical composition of the
first bulk-fill compared to the conventional RBCs [6]. However, it was quickly recognized
that the increased translucency could potentially lead to less esthetic integration of the
restorations. Occasionally, a certain gray cast of the restoration was observed as well as a
low masking potential of dark tooth discolorations. Although this may not be a problem in
the posterior region, it must be taken into account in individual cases, e.g., on the mesial
surfaces of premolars.

The described aesthetic deficit has been addressed in following materials either by
adding suitable opacifiers (nanoparticles of zirconium oxide or ytterbium trifluoride) or by
focusing the polymerization process on mechanisms that are less dependent on reduced
translucency. These include the addition of new, more efficient photo-initiators (germanium-
based) [7] to supplement traditional ones (such as camphorquinone (CQ)/amine and acyl-
phosphine oxide) or the modification of the polymerization mechanism [8]. The germanium
based photoinitiators are Norrish Type I sensitizers that do not require a co-initiator as,
in contrast to the H-abstraction and electron transfer mechanism in CQ-amine systems
(Norrish Type II sensitizer), they are able to generate two radicals by α-cleavage upon
exposure to light [7]. This makes them more efficient compared to CQ as both radicals
can initiate radical polymerization compared to only one in CQ [7]. Their reactivity is
also classified as higher compared to CQ, which is due to the higher molar extinction
coefficient (ελ) and relates to a high probability of light absorption at a given wavelength.
Germanium-based initiators can be partially activated by the blue light, but they need
shorter wavelength light (violet) to reach their full potential [7]. This aspect requires
more caution in choosing the light curing device, which should be a violet-blue LED or a
halogen-light curing device [9].

Another advancement, which also relies less on reduced translucency, includes a mod-
ification of the polymerization mechanism, namely reversible addition-fragmentation chain
transfer (RAFT) polymerization [8,10]. It represents the most recent of the living/controlled
free-radical methodologies [11] and offers the advantage that the chemical composition
of methacrylate-based RBCs can be maintained while essentially adding a suitable RAFT
agent [12] to a conventional free-radical polymerization.

Bulk-fill RBCs with a different, optically perceptible translucency than the tooth in the
uncured state were also developed, to offer an additional clinical simplification of the ap-
plication. This allows for a clearer distinction between the RBC and the tooth when applied
in the cavity, while the translucency of the RBC decreases after curing [13] and is no longer
visually different. Recently introduced bulk-fill RBCs further simplify clinical application
by combining bulk-fill placement with universal chromatic concepts [14], eliminating the
time spent searching for a suitable shade to aesthetically match a clinical situation.

Additional features to support simplified restoration concepts, such as bioactive
properties [15–17], have also been implemented in bulk-fill RBCs, while the fact that some
materials have the option of dual-curing no longer limits bulk-fill placements [16,17]
to 4–5 mm, as is required in light-cured bulk-fill RBCs [18,19]. As a recent development,
these materials have been little studied and not directly compared to materials with the
same clinical indication.

Clinical evaluation of bulk-fill RBC restorations to date shows statistically similar
failure rates to conventional restorations that have been filled incrementally (2 mm in-
crements) [20]. While data on recently introduced materials are not yet available, many
bulk-fill RBCs have been extensively studied in vitro. Several hundred studies published
to date document product-specific physical [4] and mechanical properties [6]. The great



Materials 2022, 15, 8095 3 of 13

variability of the properties nevertheless reflects that of conventional RBCs [6]. The same
applies to the quality of the bond to the tooth structure [21,22] or biocompatibility [23,24].
In vitro studies also confirm that an increment thickness of 4 mm should not be exceeded
for most light-cured bulk-fill RBCs [18,19]. One of the postulated advantages of a bulk-fill
placement, the reduction of polymerization shrinkage stress compared to incremental
application, could not be clearly proven [25–27].

The present study aims to offer a direct comparison of bulk-fill RBCs belonging to
the different development and clinical application concepts described above, and to relate
them to the properties of dentin, the tooth structure they are intended to replace. This
direct comparison is possible through instrumented indentation techniques.

It is therefore hypothesized that bulk-fill RBCs will perform similarly to dentin in
terms of elastic–plastic mechanical behavior when measured under similar conditions and
within the material category for which they are marked.

2. Materials and Methods
2.1. Materials

A total of 18 commercially available bulk-fill resin-based composites (bulk-fill RBCs)
were characterized in terms of their micromechanical properties and related to properties
measured under identical conditions in human dentin (Table 1). The materials are divided
into the categories of low-viscosity light-curing bulk-fill RBCs (Table 1a), high-viscosity
light-curing bulk-fill RBCs (Table 1b) and dual-curing bulk-fill RBCs (Table 1c).

Table 1. Analyzed bulk-fill RBCs and amount of filler in volume (vol) and weight percent (wt) as
reported by the manufacturer. (a) light-cured low-viscosity bulk-fill RBCs; (b) light-cured high-
viscosity bulk-fill RBCs; (c) dual-curing bulk-fill RBCs.

RBC Manufacturer Lot Filler wt/vol %

(a)

Beautifil Bulk Flow Shofu 121301 72.5/51
Filtek Bulk Fill 3M N387662 64.5/42.5

Filtek™ Bulk Fill
Flowable Restorative Ivoclar/Vivadent N692537 64.5/42.5

SureFil® SDR™ flow Dentsply 100507 68/44
Tetric EvoFlow Bulk

Fill Ivoclar/Vivadent U12113 68.2/44.4

Venus Bulk Fill Kulzer 010108 65/38
Venus Bulk Flow One Kulzer M010021 65/41

x-tra base Voco V 45226 75/61

(b)

Admira Fusion x-tra Voco 1527519 84/-
Beautifil Bulk

restorative
Shofu 011402 87.0/74.5

Filtek One 3M N782223 76.5/58.5
QuixFil Dentsply 100774 85.5/66.4
SonicFill Kerr 4426994 83.5/-

SonicFill 2 Kerr 5767358 76.5/58.5
Tetric EvoCeram Bulk

Fill
Ivoclar/Vivadent P48872 79–81/60–61

X-tra Fil Voco 1202359 86/70.1

(c)

Cention N Ivoclar/Vivadent U19921 78.4/
Cention Forte Ivoclar/Vivadent ZL08SZ -/58–59
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2.2. Methods
2.2.1. Specimen Preparation

A total of 108 samples (2 mm × 2 mm × 18 mm) were prepared, corresponding to
six samples for each of the 18 bulk-fill RBCs analyzed, following the recommendation
of ISO 4049:2019 [28]. The unpolymerized material was therefore filled into a white
polyoxymethylene mold and pressed between two glass plates that were separated from the
material by transparent polyacetate films. The light-curing protocol included irradiation for
20 s on the top and bottom of the samples according to the standard mentioned above, with
three exposures overlapping an irradiated section by no more than 1 mm of the diameter
of the light guide to avoid multiple exposures. A blue LED (Light-Emitting Diode) LCU
(Light Curing Unit) (Bluephase® Style, Ivoclar Vivadent, Schaan, Liechtenstein) was used
for curing. Immediately after demolding, the samples were stored in distilled water at
37 ◦C for 24 h. After that, the surface that had received the first exposure was wet-ground
with silicon carbide paper (grain size p1200, p2500 and p4000, LECO) and polished with
a diamond suspension (average grain size: 1 µm) until the surface was shiny (grinding
machine EXAKT 400CS Micro Grinding System, EXAKT Technologies Inc., OK, USA). In
addition, tooth samples of 2 mm thickness were obtained from 10 caries-free human molars.
For this purpose, a slice was cut per tooth perpendicular to the longitudinal axis of the
tooth and polished as described above.

2.2.2. Instrumented Indentation Test (IIT): Quasi-Static Approach (ISO 14,577 [29])

The micromechanical properties were evaluated using an automated microindenter
(FISCHERSCOPE® HM2000, Helmut Fischer, Sindelfingen, Germany) equipped with a
Vickers diamond tip. Six indentations were performed in each bulk-fill RBC and tooth
specimen. Measurements were performed under force control by recording the indentation
depth and the indentation force during each indentation cycle, consisting of increasing
the force from 0.4 mN to 1000 mN within 20 s at constant speed, holding the maximum
force for 5 s and finally reducing it to zero within 20 s. Each indentation created an
impression, and the projected contact area of the indenter (Ac) and the surface area of
the indentation under the applied test load (As) were determined for further parameter
calculations. The projected indenter contact area (Ac) was determined from the force–
indentation depth curve considering the indenter correction according to the model of
Oliver and Pharr and described in ISO 14,577 [29]. Therefore, the indenter area function
was calibrated to two different materials (sapphire and fused silica) with consistent and
known material properties. Corrections obtained from the tip calibration were then used
for further computational data analysis. The elastic and plastic deformation was described
by the universal hardness (also known as Martens hardness = F/As(h)) and was calculated
by dividing the test load by the surface area of the indentation under the applied test load
(As). As a measure of the resistance to plastic deformation, the indentation hardness was
calculated from the maximum indentation force and the projected indenter contact area
(HIT = Fmax/Ac). This parameter was then converted to the more familiar Vickers hardness
(HV = 0.0945 × HIT). Finally, the indentation modulus (EIT) was calculated from the slope
of the tangent of the indentation–depth curve at maximum force.

2.3. Statistical Analysis

All variables were normally distributed, allowing a parametric approach to be used.
A multifactor analysis of variance was applied to compare the parameters of interest
(Martens and Vickers hardness, and indentation modulus). Results were compared using
one-way and multiple-way analysis of variance (ANOVA) and Tukey honestly significant
difference (HSD) post hoc-test using an alpha risk set at 5%. A multivariate analysis (general
linear model) evaluated the influence of the parameters filler volume, filler weight and
material category on the analyzed properties. The partial eta-squared statistic reported the
practical significance of each term, based on the ratio of the variation attributed to the effect.
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Larger values of partial eta-squared (ηP
2) indicate a greater amount of variation accounted

for by the model (SPSS Inc. Version 27.0, Chicago, IL, USA).

3. Results

A multifactorial analysis indicates a significant (p < 0.001) and very strong effect of
the parameters filler volume and filler weight on the measured properties, while the effect
of material category was consistently lower. The filler volume had the greatest impact on
indentation modulus EIT (ηP

2 = 0.918), closely followed by Martens HM (ηP
2 = 0.900) and

Vickers hardness HV (ηP
2 = 0.851). A similar ranking of the parameters was also observed

with regards to the effect strength of the filler weight (EIT: ηP
2 = 0.894; HM: ηP

2 = 0.878
and HV: ηP

2 = 0.832). For material category, e.g., low- and high-viscosity light-cured and
dual-cured bulk-fill RBCs, the ranking of the measured parameters with regard to the effect
strength exerted remained the same, but the effect was considerably lower (EIT: ηP

2 = 0.578;
HM: ηP

2 = 0.566 and HV: ηP
2 = 0.540).

The lowest filler weight and volume were found in the light-cured low-viscosity
bulk-fill RBC category (mean value: 67.7% and 45.4%, respectively) with a range of 64.5%
(Filtek™ Bulk Fill Flowable Restorative and Filtek Bulk Fill) to 75% (x-tra base) for the filler
weight and 38% (Venus Bulk Fill) to 61% (x-tra base) for the filler volume. For bulk-filled
high-viscosity light-cured RBCs, filler weight ranged from 76.5 (Filtek One and SonicFill 2)
to 87% (Beautifil Bulk restorative), while the filler volume ranged from 58.5 (Filtek One and
SonicFill 2) to 74.5% (Beautifil Bulk restorative).

Within a material category, a one-way ANOVA showed that only the material x-tra
base achieved a significantly higher HM value compared to dentin in the low-viscosity light-
cured bulk-fill RBC category (Figure 1a), while all bulk-fill high-viscosity RBCs achieved a
significantly higher HM value (Figure 2a). In dual-cured bulk-fill RBCs, Cention N behaved
similarly to dentin, and both showed significantly lower HM compared to Cention Forte
(Figure 1c).
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Figure 1. Martens hardness (means with 95% confidence interval) as a function of RBC and bulk-
fill category: (a) light-cured, low-viscosity bulk-fill RBCs; (b) light-cured, high-viscosity bulk-fill
RBCs; and (c) dual-cured bulk-fill RBCs. Letters indicate homogeneous groups within each material
category; Tukey’s post-hoc test (α = 0.05).
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fill category: (a) light-cured, low-viscosity bulk-fill RBCs; (b) light-cured, high-viscosity bulk-fill
RBCs; and (c) dual-cured bulk-fill RBCs. Letters indicate homogeneous groups within each material
category; Tukey’s post-hoc test (α = 0.05).
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The statistical analysis is somewhat similar for the Vickers hardness, while dentin has
similar HV values as Filtek Supreme XT flow and Tetric EvoFlow bulk-fill in the light-cured
low-viscosity bulk-fill RBCs (Figure 2a) and lower values than all analyzed high-viscosity
bulk-fill RBCs (Figure 2b). For dual-cured bulk-fill RBCs, the ranking was similar to that
for HM (Figure 2c).

A completely different situation was observed for the indentation modulus. Dentin
ranked highest among all light-cured low-viscosity bulk-fill RBCs (Figure 3a) and was
surpassed only by X-tra Fil and QuixFil among the high-viscosity bulk-fill RBCs (Figure 3b).
Cention Forte still outperformed Cention N in dual-cured bulk-fill RBCs, however, both
had a lower indentation modulus compared to dentin (Figure 3c).

4. Discussion

The health challenge posed by tooth decay places an enormous burden on healthcare
systems around the world [30]. Research is therefore focused on cost-effective materi-
als and/or cost-effective restorative techniques to make dental treatment affordable for
everyone. In this line, adhesive, tooth-colored restorations, with which lost tooth tissue
and caries defects can be replaced quickly and in just one step e.g., in bulk, are enjoying
increasing popularity.

Since dental materials are intended to replace the tooth structure, their properties
should be designed accordingly. However, test methods that allow a direct comparison
of both substrates are limited due to the small size and the heterogeneity of the tooth
samples. In the present study, we opted for the quasi-static micro-indentation method,
which, with indentation depths of 4–10 µm and standardized methods, not only enables a
direct material and tooth substrate comparison, but also comparison with data collected
over time in large databases that contain many clinically successful materials [3]. The latter
is particularly important for materials that have not yet been analyzed in clinical studies.
In addition to the plastic deformation defined by the Vickers hardness, the depth-sensing
indentation method used also allows the elastic deformation contained in the universal
hardness parameter to be assessed. Additionally, the tested indentation modulus is of
high relevance as it has previously been found to correlate with the modulus of elasticity
measured in three-point bending test [31], which is considered one of the most important
test methods for dental materials and one of the few that records a correlation with the
clinical behaviour of the materials [32]. Even if measured data have not yet been correlated
with the clinical performance of the materials, since many materials have not yet been
evaluated in clinical studies, they are valuable input parameters for further FEM analysis,
which allow us to predict the effect of the material within a restoration of a given size and
geometry, and the development of appropriate restoration techniques.

The classification of RBCs into material categories is rightly controversial and is very
often based on advertising strategies. While the low-viscosity bulk-fill RBCs are generally
characterized by lower filler content compared to the high-viscosity bulk-fill category,
individual materials may not reflect their classification system (Table 1). This statement
is again confirmed by the results of this study, since the effect of the material category on
the measured properties is significantly lower compared to the effect of the filler content,
confirming previous studies [3].

The dentin substrate tested in the present study should not only allow a comparison
with the analyzed materials, but also a ranking of all analyzed materials, since it serves
as a reference in all graphic representations (Figures 1–3). Generally speaking, dentin is a
porous, mineralized connective tissue with an organic matrix (collagenous proteins), an
inorganic component (hydroxyapatite), and a microstructure composed of different types of
dentin with its own peculiarities [33]. In the case of the Vickers indentation, the indentation
size (indentation diagonal) can be rated at around seven times the indentation depth
measured at maximum load. With indentation depths of 9 µm to 10 µm and corresponding
indentation sizes of 63 µm to 70 µm, the properties measured in dentin represent the
properties of the substrate at the measurement location and not the properties of the
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individual components (collagen, hydroxyapatite). Since the hardness and modulus of
elasticity depend on the measuring location and age and are higher at the dentin–enamel
junction and lower towards the pulp [34], indentations were performed arbitrarily in
different teeth and regions in order to do justice to this diversity. This allows value
ranges to be specified for the properties of the dentin and thus captures the variation
of the entire substrate area. Note that there is a discrepancy in the ranking of materials
and dentin as a function of the property analyzed, highlighting important differences in
the mechanical behavior of the restorative material and the tooth substrate. In terms of
hardness, the dentin ranks somewhat in the middle of the analyzed materials, showing
statistically similar hardness compared to three other materials, lower values compared
to nine and higher values compared to six. It is worth noting that the three materials
statistically showing the same hardness values as dentin belong to all three categories
examined, further confirming the previous statement about the meaningless categorization
of materials. In comparison, the indentation modulus of dentin was higher than that of 16
of the 18 materials studied. Ideally, the elastic modulus of a restorative material should
match the biologically replaced tissue to reduce the risk of creating a stress shielding effect
during chewing. While an excellent correlation between the amount of inorganic filler
and the indentation modulus was found for RBCs [3], the discrepancy with dentin cannot
be explained by the hydroxyapatite content (70% by weight, 40–45% by volume) [33],
which is lower as the inorganic filler amount in many of the analyzed materials and rather
comparable to the flowable analyzed materials (Table 1), but with the microstructure. When
considering the quotient of inorganic weight percent to volume percent in dentin vs. RBCs
tested (Table 1), it is important to note that the density of dentin is apparently higher
than that of the materials tested, confirming the influence of the microstructure on the
measured properties.

The analyzed light-cured low-viscosity bulk-fill RBCs reflect a time scale in the devel-
opment of the materials. The initial development of such materials, starting chronologically
with SureFil® SDR™ flow, aimed to create a material with excellent rheological properties to
allow flow in narrow and deep cavities where condensing a material is not possible, and/or
to serve as a flowable lining. The claimed that it reduced the polymerization shrinkage
required for proper adaptation to the cavity after curing was confirmed as it was found that
the shrinkage stress after polymerization not only compared to regular flowable materials
but also compared to higher-filled RBCs, or the low shrinkage silorane was lower [35]. This
effect is related to the incorporation of a polymerization modulator in a high-molecular-
weight urethane-based methacrylate resin capable of retarding gelation and thus reducing
polymerization shrinkage without impairing the degree of conversion [35]. With regard to
the analyzed micromechanical properties, it ranks in the middle of the materials developed
later, although it is true for all materials in this category that the lower indentation modulus
compared to dentin does not recommend them for use in larger cavities without capping.

Another distinctive feature of many bulk-fill RBCs—e.g., SDR, Venus Bulk Fill, Venus
Bulk One, Beautifil Bulk Flow—is that the base monomer bisphenol A-glycidyl methacrylate
(Bis-GMA) has been completely replaced by less-viscous dimethacrylates such as urethane
dimethacrylate (UDMA) and its derivatives, triethylene glycol dimethacrylate (TEGDMA)
or ethoxylated bisphenol-A-dimethacrylate (EBPDMA), which can form more flexible
polymers than Bis-GMA [36,37].

The progressive developments observed in regular RBCs are increasingly reflected
in bulk-fill materials as well. Here, too, there is a trend of modifying RBCs to meet the
increased demand for bioactive materials that can prevent the recurrence of carious lesions.
This was conducted in Beautifil Bulk Flow and Beautifil Bulk Restorative [15] by adding a
special filler, a pre-reacted glass-ionomer (PRG), developed and originally described by
Roberts et al. [38], that enabled the release of fluoride and other ions such as Na+, Sr2+,
Al3+, BO3

3−, and SiO3
3−. Silicate and fluoride are known to act as strong inducers of the

remineralization of the dentin matrix [39]. Strontium and fluoride, on the other hand,
also improve the acid resistance of teeth by acting on hydroxyapatite to transform it into
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strontium and fluoroapatite [40]. The difference in the amount of filler between the low-
and high-viscosity versions is clearly reflected in all measured parameters.

The ability to leach out caries-protective ions such as phosphate, fluorite, and especially
alkali and alkaline earth ions such as calcium [41,42], was also adopted in the development
of Cention N and its further development Cention Forte. This ability is caused by the
incorporation of alkaline glass fillers (SiO2-CaO-CaF2-Na2O glass) capable of raising the pH
and forming fluoroapatite in phosphate-containing media, which explains the low incidence
of secondary caries in Cention N [43]. In addition to the bulk-fill application, the strategy
of self-adhesiveness was pursued. While Cention N was originally designed to be applied
without additional surface pre-treatment, Cention Forte is used with a primer. However, it
has been shown that the additional use of an adhesion promoter in Cention N, for example,
a universal adhesive, improves the bond strength to dentin [44]. An additional advantage of
both materials is that they were designed as dual-cured materials, while the bulk application
requirements for both materials proved to be insensitive regardless of whether the material
receives additional light or not [16,17]. The additional exposure to light in Cention N was
only apparent in the first few minutes of polymerization, in that it was able to accelerate
polymerization kinetics and thus shorten the restoration process by curing the material when
required, but it did not affect the final mechanical properties or degree of cure [16]. The
bioactive potential of Cention N has also been demonstrated [43,45,46] along with its ability
to inhibit dentin and enamel demineralization at restoration margins [46]. The mechanical
properties of both materials are comparable to those of regular nano- and micro-hybrid
RBCs as well as bulk-fill RBCs [16,17]. Direct comparison of both materials in the present
study shows superior micromechanical properties in Cention Forte, while the relationship to
dentin indicates superior hardness but lower indentation modulus, confirming the behavior
observed in most RBCs.

The most recently launched bulk-fill RBC is Venus Bulk Flow One, a material that
meets two criteria at once to speed up the restoration process as it is a universal chromatic
material that can be applied in bulk [14]. Despite being a less-filled bulk-fill RBC, it is
said to have a modified rheology that allows its use in posterior occlusal cavities without
the need for covering with a higher-filled RBC. The material was intensively analyzed
as an experimental material in its last formulation before being launched [14] and has
been proven to meet the requirements of ISO 4049:2019 [28] for materials intended for
used in the occlusal areas, as it has a flexural strength > 80 MPa not only within the
testing criteria of the standard, but also after aging. However, due to the low modulus
of elasticity compared to clinically successful, high-viscosity RBCs, it was advisable to
limit the indication of the material to smaller cavities [14]. This is consistent with the
present study, as the measured micromechanical properties clearly place the material in the
low-viscosity, bulk-fill RBC category.

Since materials have individual properties that differ not only between material
categories but also within the material categories to which they belong and the tooth
substance, all null hypotheses are rejected.

5. Conclusions

Bulk-fill RBCs should not necessarily be classified into material categories but should
be considered as materials to be evaluated individually as the properties measured relate
to the amount of inorganic filler and not to the material category to which they belong.
The ratio of the tested materials to dentin is also individual, with the general conclusion
that the hardness of the tested RBCs is somewhat in the range of dentin, but dentin is
characterized by an indentation modulus superior to most of them. This aspect can be
useful in further material development, for a better adaptation of the material properties to
those of the dentin.
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