
Singha et al. BMC Cancer         (2022) 22:1211  
https://doi.org/10.1186/s12885-022-10293-0

RESEARCH

Artificial intelligence to guide precision 
anticancer therapy with multitargeted kinase 
inhibitors
Manali Singha1†, Limeng Pu2†, Brent A. Stanfield3, Ifeanyi K. Uche3,4,5, Paul J. F. Rider3,4, 
Konstantin G. Kousoulas3,4, J. Ramanujam2,6 and Michal Brylinski1,2* 

Abstract 

Background:  Vast amounts of rapidly accumulating biological data related to cancer and a remarkable progress in 
the field of artificial intelligence (AI) have paved the way for precision oncology. Our recent contribution to this area 
of research is CancerOmicsNet, an AI-based system to predict the therapeutic effects of multitargeted kinase inhibi-
tors across various cancers. This approach was previously demonstrated to outperform other deep learning methods, 
graph kernel models, molecular docking, and drug binding pocket matching.

Methods:  CancerOmicsNet integrates multiple heterogeneous data by utilizing a deep graph learning model with 
sophisticated attention propagation mechanisms to extract highly predictive features from cancer-specific networks. 
The AI-based system was devised to provide more accurate and robust predictions than data-driven therapeutic 
discovery using gene signature reversion.

Results:  Selected CancerOmicsNet predictions obtained for “unseen” data are positively validated against the bio-
medical literature and by live-cell time course inhibition assays performed against breast, pancreatic, and prostate 
cancer cell lines. Encouragingly, six molecules exhibited dose-dependent antiproliferative activities, with pan-CDK 
inhibitor JNJ-7706621 and Src inhibitor PP1 being the most potent against the pancreatic cancer cell line Panc 04.03.

Conclusions:  CancerOmicsNet is a promising AI-based platform to help guide the development of new approaches 
in precision oncology involving a variety of tumor types and therapeutics.
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Background
Cancer initiation and progression involve a sequence of 
gene-environment interaction events changing the gene 
expression and ultimately leading to the disruption of 

homeostasis [1]. The phosphorylation of various proteins 
is one of the key processes regulating various cellular 
functions, including cell cycle, apoptosis, proliferation, 
differentiation, growth, and others. The phosphoryla-
tion of tyrosine, serine, and threonine residues is the 
primary function of kinase proteins [2], 518 of which 
are encoded by the human genome [3]. A disruption of 
kinase activity can trigger the dysregulation of cellular 
functions and many dysregulated kinases have oncogenic 
effects responsible for cancer [2]. The discovery of kinase 
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inhibitors for cancer therapy has changed the course of 
treatment from a conventional chemotherapy to the tar-
geted pharmacotherapy. Although selective inhibitors are 
available to target certain kinases in human cancers [4], 
the majority of compounds bind to the highly conserved 
ATP binding sites of multiple targets [5–7]. Certainly, 
the binding promiscuity of kinase inhibitors can lead to 
adverse drug reactions [8–10], but also to the desired 
polypharmacological effects by simultaneously targeting 
multiple proteins involved in cancer-related processes 
[11–13]. Large-scale kinase inhibitor profiling experi-
ments provide the information on the enzymatic activ-
ity inhibition across the human kinome [14, 15] greatly 
facilitating research on kinase-centric polypharmacologi-
cal anticancer agents [16–18].

Nonetheless, the clinical efficacy of kinase-specific 
inhibitors is confounded by numerous factors. The suc-
cess of a cancer treatment strongly depends on the 
underlying genetic features of the tumor, the microen-
vironment, the possibility of the development of drug 
resistance, and pharmacogenomics [8]. Numerous stud-
ies suggest that the accumulation of genetic alterations 
and the subsequent changes in gene expression patterns 
are major factors driving cancer progression [19–21]. 
Therefore, the identification of differentially expressed 
genes in various tumor types not only enhances our 
understanding of cancer biology [22–24], but it can also 
reveal new opportunities for precision oncology [25–27]. 
Indeed, tumor profiling with the transcriptomic analy-
ses of gene expression networks and oncogenic pathways 
can increase treatment efficacy [28]. The premise of gene 
signature (GS)-based therapy is that an effective drug 
should reverse the anomalous gene expression in the dis-
ease state back to normal expression levels. Numerous 
resources are available to facilitate GS-based therapeutic 
approaches including libraries of differential gene expres-
sion for chemical perturbagens, gene knockouts, and dis-
eases. Gene signature profiles of drug-treated and disease 
cells can be analyzed by various metrics of distance, simi-
larity, anticorrelation, and those generated by machine 
learning models [29].

The Connectivity Map (CMap) [30] is frequently used 
to find connections between small molecules and dis-
eases with the Gene Set Enrichment Analysis (GSEA) 
[31]. In this approach, each gene is assigned an expres-
sion value indicating to what extent it is up- or down-
regulated. A disease set contains rank-ordered genes 
based on their differential expression against normal 
cells. For a given drug, a similar set of rank-ordered 
genes is constructed using a differential expression for 
drug-treated and untreated cells. Subsequently, these 
two lists are compared to one another to test for a nega-
tive connectivity, i.e., genes up-regulated in disease tend 

to be down-regulated in drug-perturbed cells and those 
down-regulated in disease tend to be up-regulated by the 
drug treatment. A strong negative connectivity indicates 
that treating disease cells with the drug can, in princi-
ple, restore the normal gene expression profile. On the 
other hand, if up- and down-regulated disease genes 
appear near the middle of the drug-perturbed list, one 
can assume that there is no connectivity between the 
drug and the disease, thus this treatment is unlikely to be 
effective.

This technique has been shown to be effective in find-
ing new treatments for Alzheimer’s disease (AD) and 
glucocorticoid-resistant acute lymphoblastic leukemia 
(ALL) [32]. Two gene signatures, one constructed by a 
comparison of hippocampus from AD and the normal 
brain [33] and the other derived from the comparison 
between cerebral cortex from AD brain and age-matched 
controls [34], yielded a statistically significant nega-
tive connectivity with 4,5-dianilinophthalimide (DAPH) 
in the CMap. Indeed, a high-throughput screen of over 
3000 small molecules identified DAPH as the most effec-
tive compound reversing the formation of neurotoxic 
fibrils associated with AD [35], followed by a synthesis 
of a variety of DAPH analogs as potential treatments for 
AD [36]. Another example is the pharmacologic modu-
lation of glucocorticoid-resistant ALL [37]. Querying the 
CMap with a disease signature constructed by compar-
ing bone-marrow leukemic cells from patients exhibiting 
either dexamethasone sensitivity or resistance discovered 
that mTOR inhibitor sirolimus can revert dexamethasone 
resistance. Interestingly, treating a lymphoid cell line with 
sirolimus significantly reduced the median inhibitory 
concentration (IC50) of dexamethasone, thus it induced 
the glucocorticoid sensitivity as expected [32]. Further, it 
was found that sirolimus sensitized tumor cells to gluco-
corticoid-induced apoptosis via the modulation of antia-
poptotic protein MCL1 [37].

A key limitation of current drug connectivity-map-
ping approaches is the subjective selection of disease 
signatures. To address this issue, Dr. Insight imple-
ments a new statistical model utilizing the genome-
wide screening of concordantly expressed genes (CEGs) 
[38]. Rather than extracting significantly up- and down-
regulated genes from differential gene expression data, 
this method employs order statistics to combine drug-
perturbed and disease state expression data. As a result, 
individual genes are assigned a concordant expression 
score quantifying the drug-disease connectivity and 
those genes having statistically significant connectiv-
ity scores are designated CEGs. The performance of Dr. 
Insight was evaluated against breast and prostate can-
cer datasets from The Cancer Genome Atlas (TCGA) 
[39, 40] and an additional prostate cancer dataset from 
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the Gene Expression Omnibus (GEO) [41]. Encourag-
ingly, Dr. Insight successfully identified fulvestrant, an 
FDA-approved drug against hormone receptor-positive 
breast cancer, and tanespimycin, alvespimycin, vori-
nostat, and sirolimus, which are in advanced stages of 
clinical trials for treating breast cancer [42]. In addi-
tion to these compounds in the ground-truth breast 
cancer drug list, a few novel drug treatments against 
breast cancer were discovered, such as 15-deoxy-delta-
12,14-prostaglandin J2 inducing programmed cell 
death of breast cancer cells [43], and trichostatin A, a 
histone deacetylase inhibitor with antitumor activity 
against breast cancer [44].

Co-expressed GSEA can also be combined with the 
pathway analysis in order to infer the drug mode of 
action in a disease context. An example is Cogena, a 
pathway-guided disease and drug repositioning approach 
that identifies drugs acting mechanistically within the 
framework of coordinated changes in disease transcrip-
tomes [45]. Cogena first performs a co-expression analy-
sis by clustering genes showing differential expression in 
the disease state compared to normal cells. Subsequently, 
co-expressed gene clusters are subjected to a hypergeo-
metric test against gene sets from KEGG for the pathway 
analysis and CMap for drug repositioning. In addition to 
finding new treatment opportunities, the putative drug 
mode of action in the disease state can be inferred from 
the pathway analysis and the known mode of action of a 
drug in the same cluster. Using the psoriatic skin tran-
scriptome, Cogena not only successfully recovered two 
widely used drugs to treat psoriasis with distinct modes 
of action, methotrexate and ciclosporin, but it also identi-
fied several novel drugs with a high potential for reposi-
tioning to treat this disease.

The compromised drug efficacy leading to the lack of 
tumor response to pharmacotherapy presents notable 
challenges in clinical oncology. Addressing this problem 
requires an ability to integrate vast datasets, learn intri-
cate relations among numerous factors, and utilize exist-
ing knowledge, surpassing the analysis of gene expression 
alone. Deep learning is the latest technology in the field 
of artificial intelligence capable of performing such com-
plex tasks by employing sophisticated nonlinear transfor-
mations to extract patterns from high-dimensional data. 
Not surprisingly, deep learning has already begun to sig-
nificantly impact biological and biomedical research [46]. 
For instance, it can help identify phenotype-related sin-
gle nucleotide polymorphisms to develop accurate dis-
ease models [47], find small molecules binding to target 
pockets in protein structures [48–50], detect molecular 
targets for drugs [51], and identify opportunities for the 
repositioning of existing drugs to treat other conditions 
[52, 53].

Many recent strategies for precision oncology employ 
deep neural network (DNN)-based frameworks [54]. For 
example, a DNN trained and optimized on a pharma-
cogenomics database of 1001 cancer cell lines showed a 
high prediction accuracy against multiple clinical patient 
cohorts [55]. Another approach, DrugCell, is an inter-
pretable deep learning model of human cancer cells inte-
grating tumor genotypes with drug structure to predict 
response to therapy [56]. Predictions by DrugCell were 
shown not only to be accurate in cell lines, but also to 
stratify clinical outcomes. Deep learning models predict-
ing drug response can be guided by additional data, such 
as signaling pathways, gene expression, and copy number 
variation of individual genes. Indeed, signaling pathway-
constrained consDeepSignaling evaluated on the multi-
omics data of ∼1000 cancer cell lines was demonstrated 
to achieve an unparalleled performance [57]. Finally, an 
interpretable AI model called HiDRA (the hierarchical 
network for drug response prediction with attention) is 
capable of interpreting intrinsic characteristics of can-
cer cells and drugs to accurately predict cancer-drug 
responses [58]. This high prediction accuracy of HiDRA 
was attributed to paying attention to drug-target genes 
and cancer-related pathways when predicting a response. 
Despite encouraging advances in precision oncology, 
many existing approaches to predict the response of can-
cer cells to pharmacotherapy operate in the Euclidean 
space by utilizing various drug and cell line features. Yet, 
cancer initiation and development are increasingly per-
ceived as systems-level phenomena involving intra- and 
inter-cellular signaling networks of the ecosystem of can-
cer and stromal cells [59].

To take advantage of cancer-related data having a 
non-Euclidean structure, we recently developed Can-
cerOmicsNet, a graph-based deep learning system with 
sophisticated attention propagation mechanisms to pre-
dict the therapeutic effects of kinase inhibitors across 
various tumors [60, 61]. In carefully designed cross-vali-
dation benchmarks against the Library of Integrated Net-
work-Based Cellular Signatures (LINCS) dataset [62, 63], 
it was shown to outperform other deep learning, graph 
kernel, and traditional approaches, including molecular 
docking and binding pocket matching. In this commu-
nication, we present the application of CancerOmicsNet 
to guide precision anticancer therapy with multitargeted 
kinase inhibitors. We first compare its performance to 
that of a traditional GS-based method. Next, selected 
predictions obtained by the application of CancerOmics-
Net to “unseen” data are validated against the biomedical 
literature. Finally, we present the results of the experi-
mental validation of CancerOmicsNet by live-cell time 
course growth rate inhibition assays for multiple drugs 
and tumor types not only focusing on the treatment 
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efficacy, but also taking into account the effective drug 
concentration and the experimental reproducibility.

Methods
Benchmarking datasets for anticancer therapy
The original dataset of 3549 cell line-drug combinations 
involving 359 cell lines and 29 drugs was previously com-
piled from six LINCS-Dose-Response datasets, Broad-
HMS LINCS Joint Project, LINCS MCF10A Common 
Project, HMS LINCS Seeding Density Project, MEP-
HMS LINCS Joint Project, Genentech Cell Line Screen-
ing Initiative, and Cancer Therapeutics Response Portal 
[62]. These data contain drug responses in terms of GR50 
and GRmax quantifying the proliferation by the value of 
growth rate inhibition (GR) measured in time course and 
endpoint assays. GR50 is the concentration of a drug at 
which GR is 0.5, whereas GRmax is the maximum meas-
ured GR value. Based on the sign of GRmax, 2124 effective 
(negative GRmax) and 1425 ineffective (positive GRmax) 
therapies are identified. Differential gene expression pro-
files for the disease state were obtained from the CCLE 
[64]. This dataset, referred to as LINCS-3549, was used 
to train the deep graph learning model in CancerOmic-
sNet [60].

Next, we obtained drug-perturbed gene expression 
profiles from the CMap [30] for 107,404 combinations 
of 41 cell lines and 1797 small molecules, most of which 
have been tested at six different concentrations, 40 nm, 
120 nm, 370 nm, 1.11 μm, 3.33 μm, and 10 μm. Mapping 
these data to LINCS-3549 resulted in 87 combinations of 
11 cell lines and 24 drugs, referred to as the LINCS-87 
dataset, which was employed to conduct the compara-
tive benchmarks of CancerOmicsNet and the GS-based 
method. The LINCS-87 dataset comprises 40 effective 
(negative GRmax) and 47 ineffective (positive GRmax) 
therapies.

“Unseen” dataset for anticancer therapy
From the Team-SKI collection of 49,348 small molecules 
tested against 411 protein kinases, we selected 2497 
molecules absent from the LINCS  growth rate inhibi-
tion dataset, thus not included in the LINCS-3549 data-
set used to train CancerOmicsNet. Applying Lipinski’s 
rule of five [65] identified 2295 valid molecules, 288 of 
which are commercially available according to the ZINC 
library of purchasable small organic molecules [66]. Next, 
we selected 20 cancer cell lines from the LINCS-3549 
dataset having a high balanced accuracy in the original 
tissue-split cross-validation benchmarks [60] and a high 
biomedical relevance according to a manual survey of the 
biomedical literature. The selected cell lines belong to 7 
different tissue types, breast (HCC1428, MDAMB468, 
HCC70, HCC1569, HCC1937, HCC1187, HCC1395), 

excretory (LNCAPCLONEFGC, DU145, KMRC1, 786O), 
digestive (PANC0403, KYSE30, PSN1), haematopoi-
etic and lymphoid (GRANTA519, K562), nervous (GI1, 
HS68), female reproductive (IGROV1), and endocrine 
(8505C) systems. Combining 288 commercially available 
kinase inhibitors with 20 cancer cell lines creates a data-
set of 5760 therapies referred to as the “unseen” dataset 
because none of the drugs included in this dataset was 
used to train the machine learning model. This dataset is 
employed to validate CancerOmicsNet predictions.

Gene signature‑based method to predict drug response
Comparing gene signatures for drug-treated and disease 
cell lines is a traditional method to find potentially effec-
tive therapeutics. The GS-based method employed in 
this study is similar to the LINCS L1000 characteristic 
direction signature search engine (L1000CDS2) [67]. This 
technique utilizes the cosine distance (COS) between two 
types of gene expression signatures:

where A is the gene signature of cancer against healthy 
cells and B is the gene signature of the same cell type 
before and after drug treatment. Each gene signature 
comprises 11,113 genes that are present in differential 
gene expression profiles for the disease state from the 
CCLE and drug-perturbed gene expression profiles from 
the CMap. Disease gene expression values are converted 
to level-5 moderated Z-scores [30, 67]. COS values range 
from 0 (signatures A and B are the same) to 2 (signatures 
A and B are exactly opposite). For each treatment, six 
COS values are calculated for all drug concentrations and 
the one having the longest distance is selected as a metric 
to predict the anticancer drug response.

AI‑based method to predict drug response
CancerOmicsNet is an AI-based system to predict a 
response of tumor cells to pharmacotherapy [60]. It 
employs a GNN model with customized graph convolu-
tion blocks and attention propagation mechanisms uti-
lizing the cosine similarity between individual nodes. 
The cosine similarity quantifies a similarity of two vec-
tors, such as node feature vectors in graphs, objects in 
clustering tasks, and texts in information retrieval [68], 
by measuring the cosine of the angle between them. The 
cosine measure was selected because of its low com-
plexity and an ability to capture the semantic similarity. 
CancerOmicsNet was trained against the LINCS-3549 
dataset and benchmarked with a tissue-level split into 
nine folds, digestive system, respiratory system, hae-
matopoietic and lymphoid tissue, breast tissue, female 
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reproductive system, skin, nervous system, excretory sys-
tem, and others.

Cell lines and culture conditions
All cell lines were maintained at 37 °C and 5% CO2 in a 
water jacketed tissue culture incubator. Pan 04.03 cells 
(ATCC, CRL-2555), derived from a primary tumor 
removed from the head-of-the-pancreas of a 70-year-old 
white male with pancreatic adenocarcinoma, were main-
tained in RPMI-1640 (ATCC, 30–2001), human recombi-
nant insulin (20 units/mL), and 15% fetal bovine serum. 
HCC70 cells (ATCC, CRL-2315), isolated from a primary 
ductal carcinoma from a 49-year-old black female, were 
maintained in RPMI-1640 (ATCC, 30–2001) and sup-
plemented with 10% fetal bovine serum. DU 145 cells 
(ATCC, HTB-81), derived from a 69-year-old white male 
with prostate cancer, were maintained in Eagle’s mini-
mum essential medium (EMEM) (ATCC, 30–2003) and 
supplemented with 10% fetal bovine serum.

Lentivirus transduction
Incucyte nuclight red lentivirus reagent (Sartorius, Cat-
alogue No. 4476) was purchased and used to transduce 
Pan 04.03, DU 145, and HCC70 cell lines at a multiplicity 
of infection (MOI) or 1. Briefly, 3 × 105 cells were seeded 
into one well of a 6 well plate (Corning, Catalogue No. 
353046). After an overnight incubation, 200 μL of lenti-
virus particles consisting of ~ 3 × 105 transducing units 
were applied to the cells and returned to the incubator 
overnight. The following day, the media was replaced and 
cells were allowed to expand for 3 days. Next, cells were 
selected for transduction with the addition of 1 μg/mL 
puromycin. Nuclear fluorescence was visualized on an 
inverted fluorescent microscope maintained and under 
continual selection for further analysis.

Drugs
JNJ-7706621 (MedChemExpress, HY-10329), PP1 (Med-
ChemExpress, HY-13804), AZD6482 (MedChemExpress, 
HY-10344), XMD8–93 (MedChemExpress, HY-14443), 
GW2580 (MedChemExpress, HY-10917), and PI-103 
(MedChemExpress, HY-10115) were purchased from 
suppliers and resuspended to a stock concentration of 
10 mm in DMSO.

Live‑cell time course inhibition assay
Cells were seeded at a density of 5000 cells/well in 384 
well plates (Corning, Catalogue No. 3764) in duplicate 
wells containing 20 μL media and incubated overnight. 
The following day, 20 μL of a 2× dilution series was 
applied to the cells to produce the final concentrations of 
1 nm, 3.162 nm, 10 nm, 31.62 nm, 100 nm, 316.2 nm, 1 μm, 
3.162 μm, and 10 μm. Cells were then imaged for 72 hours 

with the IncuCyte S3 system at 400 ms acquisition time in 
the red channel and the 10× objective. Adherent cell-by-
cell analysis was conducted to quantify the number of red 
nuclei in each well over the 72-hour observation period. 
The entire experiment was repeated after a week; we refer 
to the first series of measurements as experiment A and 
the second series as experiment B.

Cell count
For any sample, including drug-treated and control 
groups, at any time t during the 72-hour observation 
period, a normalized cell count, Nnorm, is calculated as:

where N(t) is the number of red nuclei and N(t0) is the 
initial number of red nuclei recorded at the outset of 
measurements. This way, the normalized initial number 
of cells across all experiments is always 100. In addition 
to the normalized cell count, a relative cell count for the 
drug-treated group with respect to the control, Nrel, is 
calculated as:

where Nnorm(d, c, t) is the normalized number of red 
nuclei for the group treated with a drug d at concentra-
tion c, and Nnorm(ctrl, t) is the normalized number of red 
nuclei for the same cell line in DMSO measured at the 
same time t.

Growth rate calculation
Following the original paper describing the growth rate 
formalism [62], a GR value for a drug d at concentration c 
and time t is calculated as:

where N(d, c, t ± Δt) is the cell count for the group treated 
with drug d at concentration c and time t ± Δt while 
N(ctrl, t ± Δt) is the cell count for the control group at 
time t ± Δt. Δt is chosen as 6 hours according to the origi-
nal work [62]. For each experiment involving a cell line 
and a drug at a certain concentration, a series of GR val-
ues are calculated at different time points and the mini-
mum numerical GR value is selected as the GRmax (max 
stands for the maximum efficiency).

Results
Overview of CancerOmicsNet
CancerOmicsNet utilizes an integrated graph representa-
tion of multiple heterogeneous data, including biological 

(2)Nnorm(t) =
N (t)

N (t0)
× 100

(3)Nrel(d, c, t) =
Nnorm(d, c, t)

Nnorm(ctrl, t)

(4)GR(d, c, t) = 2
log2(N (d,c,t+�t)/N (d,c,t−�t))

log2(N (ctrl,t+�t)/N (ctrl,t−�t)) − 1
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networks, pharmacogenomics, kinase inhibitor profil-
ing, and gene-disease associations [61]. The flowchart of 
CancerOmicsNet is presented in Fig.  1. Input data, a 
cancer cell line and a kinase inhibitor (Fig. 1A), are used 
to obtain a differential gene expression profile from the 
Cancer Cell Line Encyclopedia (CCLE) [64], disease-
gene associations from DISEASES [69] and DisGeNET 
[70], and the kinase inhibitor profile from Team-SKI [71]. 
These data are integrated and mapped onto the human 
protein-protein interaction (PPI) network from STRING 
[72] to build a cancer-specific network for a given com-
bination of a cell line and a drug (Fig. 1B). Subsequently, 
the full-size network is subjected to a reduction proce-
dure driven by the biological knowledge to construct 
a compact, information-rich graph increasing the fea-
ture entropy and preserving the valuable graph-feature 
information (Fig. 1C) [61]. The reduced network is then 
utilized by a graph neural network (GNN) with sophis-
ticated attention propagation mechanisms (Fig.  1D) to 
predict the therapeutic effect of the input drug on the cell 
line of interest (Fig. 1E).

The GNN model contains a series of customized graph 
convolution blocks (Fig.  1F) to generate node embed-
dings. Each block utilizes a cosine similarity-based atten-
tion mechanism to better direct the information flow 
between nodes. The information carried by individual 
nodes in the graph is represented by different colors in 

Fig.  1F. After each propagation step (hollow arrows) 
nodes receive the information from their neighbors. 
The information from different convolution blocks is 
aggregated by a jumping knowledge network (JK-Net) 
designed to combine node embeddings produced by 
individual blocks into a single embedding for each node 
(Fig. 1G) [73]. The JK-Net can be viewed as an attention 
mechanism for different convolution layers yielding a sig-
nificant performance boost. Next, the Set2Set pooling 
layer [74] is employed to integrate the embeddings of all 
nodes into the graph embedding accounting for the lack 
of node order in the graph (Fig.  1H). Finally, the graph 
embedding is passed through a series of fully connected 
layers (Fig. 1I) to predict the outcome of the drug treat-
ment (Fig. 1J), either effective (E) or ineffective (I).

Comparative benchmarks of GS‑ and AI‑based methods
We first compare the performance of CancerOmicsNet 
to that of a traditional approach employing the gene sig-
nature analysis. As a GS-based method, we implemented 
an algorithm similar to the L1000CDS2 search engine 
prioritizing small molecule signatures for their predicted 
ability to either reverse or mimic gene expression in a 
disease state [67]. This method utilizes the cosine dis-
tance (COS) between the gene signatures of disease cells 
and drug-treated cells. COS values larger than 1 indicate 
that a drug can reverse the disease state, so the treatment 

Fig. 1  Flowchart of CancerOmicsNet. A The input consists of a cancer cell line and a drug. B The graph representation of the input data integrating 
a PPI network, differential gene expression, kinase inhibitor profiling, and gene-disease associations. C A graph reduction procedure guided by the 
topological information and the biological knowledge. D The graph neural network utilizing attention propagation mechanisms. E The predicted 
response of the cell line to the drug treatment. F A series of customized graph convolution blocks to generate node embeddings with information 
propagation steps represented by hollow arrows. The information initially carried by individual nodes is shown in different colors. G The JK-Net 
combining node embeddings produced by individual blocks. H A global pooling layer integrating node embeddings into the graph embedding. I 
A set of fully connected layers. J An output layer predicting the cell response to the drug treatment (E – effective, I – ineffective)
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is predicted to be effective. In contrast, COS values less 
than 1 indicate that a drug treatment mimics the disease 
state, therefore it is unlikely to be effective.

Table  1 shows the performance of CancerOmicsNet 
and the GS-based method against the LINCS-87 growth 
rate inhibition dataset. CancerOmicsNet clearly out-
performs the gene signature analysis, especially looking 
at the accuracy (ACC) and the area under the receiver 
operating characteristic curve (AUC-ROC). Although the 
GS-based method yields high precision (PPV), which is 
the fraction of effective treatments among the retrieved 
instances, the recall (TPR) quantifying the fraction of 
effective treatments that were retrieved is low. These 
results indicate that even though those treatments pre-
dicted by the analysis of gene signatures to be effective 
are usually correct, the majority of effective treatments 
remain undetected. Contrastingly, CancerOmicsNet 
yields not only a much higher prediction accuracy for 

the same dataset, but the results are overall more robust 
compared to the GS-based approach.

In order to better illustrate the concept of the GS-based 
prediction of drug efficacy, we discuss two representa-
tive examples selected from the benchmarking dataset. 
The first example is an ATP-competitive protein tyrosine 
kinase inhibitor dasatinib [75] impeding the growth of 
the breast adenocarcinoma cell line MCF7 with a half-
maximal growth inhibitory concentration (GI50) of 1.6 μm 
[76]. Dasatinib is effective against MCF7 with a GRmax of 
− 0.07, which is indicative of a cytotoxic response. The 
COS distance is 1.08, therefore the GS-based method 
correctly predicted the sensitivity of MCF7 to dasatinib. 
The second example is a selective JAK1 and JAK2 inhibi-
tor ruxolitinib [77] and the skin melanoma cell line A375 
with a GRmax value of − 0.25. Ruxolitinib is in phase 2 of 
a clinical trial against squamous cell skin cancer [78]. The 
GS-based method incorrectly predicted the treatment of 
A375 with ruxolitinib to be ineffective based on the COS 
distance of 0.96 between drug-perturbed and disease 
gene signatures.

Figure 2 shows the scatter plots of moderated Z-score 
(modZ) values computed for gene expression in can-
cer cell lines and those obtained for the drug treat-
ment. Since the GS-based approach predicts effective 
treatments when drugs can potentially reverse the gene 
expression state of cancer cells, one would expect to find 
most genes in quadrants II and IV in Fig. 2. This is not 
the case because the fractions of genes in quadrants I, II, 

Table 1  Performance of the gene signature (GS)-based 
method and CancerOmicsNet in detecting effective anticancer 
treatments. Recall (TPR), precision (PPV), accuracy (ACC), F1 score, 
and the area under the receiver operating characteristic curve 
(AUC-ROC) are calculated for a dataset of 87 treatments

Method TPR PPV ACC​ F1 score AUC-ROC

GS-based 0.447 0.950 0.437 0.608 0.475

CancerOmicsNet 0.714 0.712 0.714 0.712 0.761

Fig. 2  Gene signature-based approach to predict the outcome of anticancer drug treatment. A The cell line MCF7 and dasatinib and B the cell line 
A375 and ruxolitinib. Each dot represents a gene whose differential expression in the disease state is on the abscissa and drug-perturbed differential 
expression is on the ordinate. Differential expression values are computed as the moderated Z-score (modZ) weighted averages of replicated level-5 
gene signatures. Those genes having disease associations with breast adenocarcinoma in A and skin melanoma in B are shown as larger circles 
colored according to the scale on the right. Each plot is divided into quadrants, which are labeled I-IV in A 
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III, and IV are, respectively, 0.22, 0.25, 0.28, and 0.25 for 
dasatinib and MCF7 (Fig.  2A), and 0.27, 0.26, 0.22, and 
0.23 for ruxolitinib and A375 (Fig. 2B). We also mapped 
disease association scores to individual genes accord-
ing to the color scale shown in Fig.  2. Interestingly, the 
sum of scores for genes in quadrants II and IV (752.1) is 
higher than for genes in quadrants I and III (731.5) for 
the treatment of MCF7 with dasatinib that was correctly 
predicted by the GS-based analysis to be effective. For the 
treatment of A375 with ruxolitinib, incorrectly predicted 
to be ineffective, the sum of scores in quadrants II and IV 
(1568.0) is lower than in quadrants I and III (1664.5).

In contrast to the GS-based approach, AI-based Can-
cerOmicsNet correctly predicted both treatments, MCF7 
with dasatinib and A375 with ruxolitinib, to be effective 
with probabilities of 0.99 and 0.65, respectively. AI mod-
els are specifically designed to learn complex patters from 
the input data in order to make accurate predictions. To 
better understand the performance of machine learning 
in detecting effective treatments, high-dimensional graph 
embeddings from the output layer of CancerOmicsNet 
can be visualized in a two-dimensional space with t-dis-
tributed stochastic neighbor embedding (t-SNE), a non-
linear dimensionality reduction technique [79]. Figure 3 
shows the visualization of 40 effective (blue) and 47 inef-
fective (gold) treatments from the LINCS-87 growth rate 
inhibition dataset. The t-SNE algorithm models the data 
such that similar instances are close to one another, while 
dissimilar instances are far away from each other. Indeed, 
groups of neighboring points in Fig. 3 contain predomi-
nantly either effective or ineffective treatments, which is 
consistent with the high accuracy of CancerOmicsNet in 
predicting the outcome of anticancer treatment.

Literature‑based validation of CancerOmicsNet
We discuss the performance of CancerOmicsNet in sev-
eral cases of “unseen” data, viz. treatments absent from 
the LINCS-3549 growth rate inhibition dataset that was 
originally used to train the machine learning model. Each 
novel prediction is supported by the evidence found 
in the biomedical literature. The structures of drugs 
selected for the literature-based validation are presented 
in Fig. 4A-C. The first molecule is motesanib (AMG 706, 
Fig. 4A), an anthranilamide inhibitor of vascular endothe-
lial growth factor receptors (VEGFR) with IC50 values of 
2 ± 0.7 nm (VEGFR1), 3 ± 0.5 nm (VEGFR2), and 6 ± 4 nm 
(VEGFR3) [80]. Although VEGFR kinases are its primary 
targets, motesanib also inhibits the activity of plate-
let derived growth factor receptor beta (PDGFRβ) at an 
IC50 of 84 ± 33 nm, mast/stem cell growth factor recep-
tor Kit (c-KIT) at an IC50 of 8 ± 2 nm, and tyrosine-pro-
tein kinase receptor Ret (c-RET) at an IC50 of 59 ± 4 nm 
[81]. This drug has been tested alone and in combination 

with chemotherapy in human non-small-cell lung can-
cer xenograft models created by injecting NCI-H358, 
NCI-H1299, NCI-H1650, A549, and Calu-6 cancer cell 
lines subcutaneously into mice. Tested against A549 
at three different concentrations, 7.5, 25, and 75 mg/
kg b.i.d, motesanib inhibited the tumor growth by 45, 
84, and 107%, respectively. CancerOmicsNet estimated 
a high probability of 0.82 for the growth inhibition of 
A549 cell line by motesanib. Further, the tumor growth 
of Calu-6 xenograft was inhibited by 66% at the highest 
tested dose of motesanib [82]. Encouragingly, the prob-
ability that motesanib inhibits the growth of Calu-3 cell 
line reported by CancerOmicsNet is as high as 0.97. Note 
that according to the Cellosaurus [83], Calu-3 (originated 
from a 25-year-old male) and Calu-6 (originated from a 
61-year-old female) are closely related lung adenocarci-
noma cell lines.

Motesanib also has antitumor activity against breast 
cancer [80]. Its primary targets, VEGFR proteins, are 
angiogenic factors that modulate processes playing 
important roles in the development and progression of 
breast cancer [84]. Motesanib was tested against MCF-7, 
MDA-MB-231, and Cal-51 xenografts of breast cancer. It 
inhibited MCF-7 tumor growth by 44% at a concentra-
tion of 25 mg/kg and by 65% at a concentration of 75 mg/
kg. Further, motesanib inhibited MDA-MB-231 tumor 
growth by 64% at the highest concentration. Cal-51 
tumor growth was also reduced by 38, 74 and 81% when 
the drug was administered at 7.5 mg/kg, 25 mg/kg and 

Fig. 3  Separation of the output layer graph embeddings of 
CancerOmicsNet in a low-dimensional space. The T-distributed 
Stochastic Neighbor Embedding (t-SNE) technique is applied to 40 
effective (blue) and 47 ineffective (gold) treatments in the LINCS-87 
growth rate inhibition dataset
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75 mg/kg, respectively [84]. CancerOmicsNet estimated 
that the probabilities of inhibiting the growth of MCF-
7, MDA-MB-231, and Cal-51 breast cancer cell lines are 
0.88, 0.95, and 0.93, respectively.

Pazopanib (GW786034, Fig.  4B) inhibits intracel-
lular tyrosine kinases, PDGFRα with an IC50 of 73 nm, 
PDGFRβ with an IC50 of 215 nm, VEGFR1 with an IC50 of 
7 nm, VEGFR2 with an IC50 of 15 nm, and VEGFR3 with 
an IC50 of 2 nm [85]. It exhibits antiangiogenic properties 
and it is used to treat renal cell carcinoma (RCC) [86]. 
Pazopanib was tested in 8 human RCC cell lines, 769-P, 
786-O, HRC-24, HRC-31, HRC-45, HRC-78, RCC-26B, 
and SK-45, showing a varying degree of antiprolifera-
tive activities [87]. For instance, it reduces the prolifera-
tion of 786-O cell lines by 50% at > 100 μm. According 
to CancerOmicsNet, the probability of inhibition of the 
786-O cell line growth by pazopanib is 0.76. Pazopanib 
was also tested alone and in combination with topote-
can against anaplastic thyroid cancer (cell line 8305C) 
[88], one of the most aggressive, but rare forms of thyroid 
cancer. 72 hours after the treatment with pazopanib, the 
proliferation of 8305C cell line was inhibited at an IC50 of 
25 ± 3.2 μm. According to the Cellosaurus, 8305C (origi-
nated from a 67-year-old female) and 8505C (originated 
from a 78-year-old female) cell lines are closely related 
anaplastic thyroid cancers and CancerOmicsNet esti-
mated that pazopanib inhibits the growth of 8505C with 
a high probability of 0.93.

Lestaurtinib (CEP-701, Fig.  4C) is a multitargeted 
kinase inhibitor structurally related to staurosporine [89]. 
It inhibits FMS-like tyrosine kinase 3 (FLT3) with an IC50 
of 2 to 3 nm [90], Janus kinase 2 (JAK2) with an IC50 of 
1 nm [91], and tyrosine receptor kinases (Trk) with an 

IC50 of 100 nm [92]. Human pancreatic ductal adenocar-
cinoma (PDAC) shows an aberrant expression of neuro-
trophin and its associated Trk receptors [93]. After the 
drug was administered at 10 mg/kg b.i.d into a mouse 
model created by subcutaneously injecting a PDAC cell 
line Panc1, the growth of the xenograft showed a sig-
nificant decrease with a p-value of < 0.01 [93]. CancerO-
micsNet predicted with a high probability of 0.98 that 
lestaurtinib inhibits the growth of Panc 04.03, which is a 
closely related PDAC cell line.

Experimental validation of CancerOmicsNet
Selected predictions by CancerOmicsNet for the 
“unseen” data were subjected to experimental valida-
tion by live-cell time course inhibition assay. Eight drugs, 
whose structures are presented in Fig.  4D-I, have been 
tested at nine different concentrations, ranging from 
1 nm up to 10 μm. The measured relative cell counts are 
shown in Fig.  5, whereas the corresponding GRmax val-
ues are reported in Table 2. The first two drugs are JNJ-
7706621 (Fig.  4D) and PP1 (Fig.  4E). JNJ-7706621 is a 
pan-CDK inhibitor, which also potently inhibits Aurora 
kinases A and B [94]. It exhibits an antiproliferative activ-
ity against several cell lines, A-375 (melanoma) with an 
IC50 of 447 nm, HCT116 (colorectal carcinoma) with an 
IC50 of 254 nm, and HeLa (Human papillomavirus-related 
endocervical adenocarcinoma) with an IC50 of 284 nm 
[95]. Another study of JNJ-7706621 reports IC50 values of 
286 ± 72 nm (HeLa), 189 ± 42 nm (HCT116), 410 ± 75 nm 
(SK-OV-3, ovarian cancer), 112 ± 12 nm (PC-3, pros-
tate cancer), 416 ± 54 nm (A-375), 514 ± 63 nm (MDA-
MB-231, triple-negative breast cancer), 263 ± 113 nm 
(DU 145, prostate cancer), and 413 ± 4 nm (MES-SA, 

Fig. 4  Drugs selected for literature-based and experimental validation of CancerOmicsNet predictions. A AMG 706, B GW786034, C CEP-701, D 
JNJ-7706621, E PP1, F AZD6482, G, XMD8–92, H GW2580, and I PI-103
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uterine sarcoma) [94]. PP1 is a potent and selective Src 
inhibitor for LCK and Fyn kinase proteins [96] that has 
been tested against the acute megakaryoblastic leuke-
mia cell line M-07e at 100 nm, 500 nm, 1 μm, 2.5 μm, and 
5 μm concentrations [97]. PP1 inhibited the stem cell fac-
tor (SCF) induced proliferation with an IC50 of 0.5–1 μm, 
whereas 2.5 μm completely prevented the SCF-induced 
proliferation of M-07e cells.

Interestingly, CancerOmicsNet predicted that both 
compounds are effective against the pancreatic adeno-
carcinoma epithelial cell line Panc 04.03 with a high 
confidence of 0.93 for JNJ-7706621 and 0.91 for PP1. 

Figure 6 shows fluorescent microscopy images recorded 
in experiment A for the treatment of Panc 04.03 cells 
with JNJ-7706621 (Fig.  6A) and PP1 (Fig.  6B), both at 
10 μm concentration, compared to the control group con-
sisting of vehicle (DMSO)-treated cells (Fig. 6C). Experi-
ments started with a normalized initial number of 100 
cells (the first row of Fig. 6). Three days after cells have 
been treated with drugs, the normalized cell counts were 
110 for JNJ-7706621 and 117 for PP1 (the second row of 
Fig.  6A and B, respectively). The second row of Fig.  6C 
shows that the control group significantly proliferated 
in 3 days to the normalized cell count of as high as 725. 

Fig. 5  Time courses of relative cell counts after a drug treatment in different concentrations. Panc 04.03 treated with (A) JNJ-7706621 and (D) PP1, 
DU 145 treated with (B) AZD6482 and (E) XMD8–92, and HCC70 treated with (C) GW2580 and (F) PI-103

Table 2  Experimental validation of drug treatment predictions by CancerOmicsNet. GRmax values obtained for three cell lines treated 
with six drugs at various concentrations. For each treatment, two values collected from experiment A / experiment B are reported

Drug concentration Panc 04.03 DU 145 HCC70

JNJ-7706621 PP1 AZD6482 XMD8–92 GW2580 PI-103

1 nm −1.000 / -0.596 −1.000 / -0.771 − 0.344 / -0.147 − 0.791 / -0.998 − 0.086 / -0.361 0.176 / -0.077

3.162 nm −1.000 / -0.807 − 1.000 / -0.830 − 0.908 / -0.968 − 0.892 / -0.992 0.129 / -0.040 0.042 / 0.036

10 nm − 1.000 / -0.922 − 1.000 / -0.697 − 0.788 / -0.429 − 0.929 / -0.998 0.245 / 0.022 − 0.472 / -0.265

31.62 nm −1.000 / -0.708 − 1.000 / -0.257 − 0.609 / -0.995 − 0.962 / -0.996 − 0.131 / -0.048 − 0.274 / 0.176

100 nm − 1.000 / -0.818 − 0.999 / -0.908 − 0.977 / -0.991 − 0.840 / -0.999 − 0.421 / 0.335 0.158 / -0.076

316.2 nm −0.111 / -0.968 − 1.000 / -0.759 − 0.340 / -0.977 − 0.557 / -0.976 −0.116 / 0.556 − 0.353 / -0.437

1 μm − 0.570 / -0.982 −1.000 / -0.838 −0.581 / -0.982 − 0.892 / -0.996 0.139 / 0.249 0.238 / -0.330

3.162 μm −0.026 / -0.665 −1.000 / -0.738 −0.211 / -0.998 − 0.799 / -0.993 −0.206 / -0.345 − 0.943 / -0.884

10 μm − 0.188 / -0.723 −1.000 / -0.739 −0.987 / -0.995 − 0.714 / -0.852 −0.808 / -0.319 − 0.985 / -0.797
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Further, Fig.  5A (JNJ-7706621) and 5D (PP1) show that 
the relative cell counts calculated against the control 
group systematically decrease after the treatment in a 
concentration-dependent manner. For instance, 3 days 
after Panc 04.03 cells were treated with JNJ-7706621 at 
1 nm, 10 nm, 100 nm, 1 μm, and 10 μm, the relative cell 
counts are 0.76, 0.72, 0.58, 0.27, and 0.15, respectively 
(Fig.  5A). In addition to the time course of relative cell 
counts, Table 2 reports GRmax values calculated for JNJ-
7706621 and PP1 against Panc 04.03 in two experiments, 
A and B, carried out at a one-week interval. Encourag-
ingly, negative GRmax values show that these drugs are 
effective at all concentrations, clearly inhibiting the pro-
liferation of Panc 04.03 cells with respect to the vehicle-
treated control group.

The next two compounds are AZD6482 (Fig.  4F) 
and XMD8–92 (Fig. 4G). The former drug is a selective 
PI3Kβ inhibitor with an IC50 of 0.69 nm [98]. Tested in 
various PTEN-deficient cancer cell lines including breast 
(HCC70, MDA-MB-468, and BT-549) and prostate 
(PC3) cancers, AZD6482 was demonstrated to efficiently 
inhibit the tumor growth by strongly impairing the PI3K 
signaling [99]. XMD8–92 is a potent and selective dual 
inhibitor of big map kinase (BMK1, ERK5) and bromodo-
main-containing proteins (BRDs, BET) with a Kd of 80 nm 
for ERK5 and 170 nm for BRD4 [100]. This compound 
was profiled against a diverse panel of tumor types, 
exhibiting an antiproliferative activity with EC50 values 
in the single-digit micromolar range against prostate 

(PC-3 and BPH-1), brain (SK-N-AS) and non-small cell 
lung (NCI-H1299 and NCI-H522) cancer cell lines [101]. 
CancerOmicsNet predicted that AZD6482 and XMD8–
92 should also be effective against the human prostate 
cancer cell line DU 145 with confidence indices of 0.73 
and 0.79, respectively. The time courses plotted in Fig. 5B 
for AZD6482 and 5E for XMD8–92 show that although 
treated cells initially continue to proliferate, the relative 
cell counts drop below the 1.0 threshold for higher drug 
concentrations. For example, 3 days after the cells were 
treated with AZD6482 and XMD8–92 at 10 μm, the rela-
tive cell counts are 0.76 and 0.83, respectively. Further, 
GRmax values calculated for AZD6482 and XMD8–92 
reported in Table 2 show that both drugs are systemati-
cally effective against the DU 145 cell line.

The last two drugs are GW2580 (Fig.  4H), a selective 
CSF1R inhibitor of c-FMS with an IC50 of 30 nm [102], 
and PI-103 (Fig.  4I), a multi-targeted PI3K inhibitor 
of p110α/β/δ/γ with an IC50 of 2 nm/3 nm/3 nm/15 nm 
[103]. Although GW2580 strongly inhibited the growth 
of freshly isolated human monocytes with an IC50 of 
330 ± 50 nm, the growth of human foreskin fibroblasts, 
endothelial cells, and five tumor cell lines (breast MDA-
MB-231 and BT-474, lung A549, head/neck HN-5, and 
gastric NCI-N87) was highly resistant to GW2580 [102]. 
Tested in three different glioblastoma cell lines contain-
ing PTEN mutations, PI-103 was demonstrated to block 
PI3K signaling and inhibit the proliferation of U-118 MG 
at 60 nm, U-87 MG at 600 nm, and U-138 MG at 1.0 μm 

Fig. 6  Microscopy images of Panc 04.03 cells. The treatment with (A) JNJ-7706621 at 10 μm and (B) PP1 at 10 μm is compared to (C) the vehicle 
treatment. The first row shows images recorded before the treatment and the second row shows images taken 3 days after the treatment
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[104]. CancerOmicsNet predicted that both compounds 
are effective against the human triple-negative mammary 
carcinoma cell line HCC70 with a confidence of 0.76 
for GW2580 and 0.74 for PI-103. When these drugs are 
administered at higher concentrations, the relative cell 
counts drop below the 1.0 threshold, for instance, the 
relative cell count is 0.93 and 0.55 3 days after the cells 
were treated with GW2580 and PI-103, respectively, both 
at 10 μm. Further, GRmax values reported in Table 2 show 
that these compounds, depending on the concentration, 
can inhibit the proliferation of the HCC70 cell line.

Experimental reproducibility
The experimental validation of CancerOmicsNet predic-
tions was conducted in two series of growth rate inhibi-
tion assays, referred to as experiments A and B, carried 
out at a one-week interval. Figure  7 shows correlation 
plots for GRmax values collected from these two experi-
ments. In order to help evaluate the consistency between 
different experiments, each plot is divided into quad-
rants, labeled I-IV in Fig.  7A, according to the sign of 
GRmax indices calculated from the data collected in each 
series of experiments. Encouragingly, most data points 
are in quadrant III (colored green in Fig. 7) encompass-
ing drug concentrations with negative GRmax values in 
both experiments, meaning that these compounds sys-
tematically inhibited the proliferation of cancer cells. A 

few points in quadrant I in Fig.  7C and F represent the 
concentrations of GW2580 and PI-103 with positive 
GRmax values observed in both experiments against the 
HCC70 cell line. Lastly, data points in quadrants II and 
IV in Fig. 7C and F correspond to those concentrations 
of GW2580 and PI-103 inhibiting the proliferation of 
HCC70 cells only in one out of two experiments. None-
theless, these points not only represent low drug con-
centrations and are close to borderlines with quadrants I 
and III, but there is also a noticeable correlation between 
GRmax values collected against the HCC70 cell line in 
experiments A and B. Overall, both validation experi-
ments yielded consistent results positively validating 
CancerOmicsNet predictions.

Effective drug concentration
Finally, we conducted a statistical analysis of effective 
drug concentrations measured in validation experiments 
in comparison to those obtained from the LINCS-3549 
growth rate inhibition dataset. Here, a drug concentra-
tion is considered effective when the corresponding 
GRmax value is negative. Figure 8 shows that 54.2% com-
binations of cancer cell lines and anticancer compounds 
in the LINCS-3549 dataset have effective concentra-
tions with a mean ± standard deviation of 9.4 ± 12.1 μm. 
Encouragingly, 71.3% cases of CancerOmicsNet predic-
tions tested experimentally show negative GRmax values 

Fig. 7  Correlation between GRmax values obtained from experiments A and B. Panc 04.03 treated with (A) JNJ-7706621 and (D) PP1, DU 145 treated 
with (B) AZD6482 and (E) XMD8–92, and HCC70 treated with (C) GW2580 and (F) PI-103. The size of each blue circle corresponds to the drug 
concentration. Each plot is divided into quadrants, which are labeled I-IV in A 
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with a mean ± standard deviation effective concentration 
of 1.8 ± 3.3 μm. Therefore, most drugs predicted by Can-
cerOmicsNet as effective against target cancer cell lines 
not only exhibit the desired anticancer activity, but also 
tend to be effective at lower concentrations compared to 
those publicly available in a large database of anticancer 
agents tested against various tumors.

Discussion
CancerOmicsNet is a recently developed system utilizing 
the AI technology to guide precision oncology. Bench-
marked against a large dataset of anticancer therapies 
comprising multitargeted kinase inhibitors and a wide 
variety of tumor types, it was previously demonstrated 
to outperform many other approaches, including deep 
learning methods, graph kernel models, molecular dock-
ing, and drug binding pocket matching [60]. In this com-
munication, the performance of CancerOmicsNet is also 
compared to data-driven therapeutic discovery utilizing a 
popular concept of “signature reversion” that aims at mol-
ecules able to reverse disease-specific gene expression 
patterns [105]. Despite many examples of the successful 
application of GS-based methods reported to date, sali-
ent issues with this methodology remain unsolved [106].

For instance, the expression of landmark genes care-
fully selected by the LINCS consortium may not neces-
sarily reflect the mechanism of action of therapeutic 
candidates [107]. We also noticed this problem when 
analyzing disease and drug-perturbed gene expression 
profiles for two representative therapies in our dataset, 

dasatinib-breast adenocarcinoma and ruxolitinib-skin 
melanoma. Even though both therapies are effective, no 
clear indication of the ability of these drugs to reverse 
disease expression patterns was observed. Further, we 
found that the approach utilizing the gene expression 
analysis yields a high precision at a low recall. While the 
identified molecules tend to be effective, most treatments 
in the dataset are undetected. Much of the success in GS-
based therapeutic discovery seems to be strongly contin-
gent on the manual curation of a set of signature genes 
for a specific medical condition [108]. Indeed, including 
gene-disease association scores for breast adenocarci-
noma more plausibly described the efficacy of dasatinib 
in the context of signature reversion.

In general, methods employing the AI technology pre-
dict cellular responses to pharmacotherapy with a better 
accuracy. In our benchmarking calculations, using Can-
cerOmicsNet yields more robust discrimination between 
effective and ineffective anticancer treatments compared 
to the GS-based approach. This improved performance 
of machine learning can be attributed to the utilization 
of multiple biomedical data, including PPI networks, 
gene expression patterns, gene-disease associations, 
and kinase inhibitor profiling. In addition, employing 
deep learning enables CancerOmicsNet to automatically 
extract meaningful features in order to effectively learn 
complex patterns present in these data. Interestingly, 
since deep learning models are not explicitly instructed 
which patterns to look for in the data, they may pick up 
on associations among multiple variables that are not 
easily perceptible. We expect that integrating more bio-
logical data will further increase the accuracy of antican-
cer treatment prediction.

The promise of CancerOmicsNet in precision oncol-
ogy is comprehensively investigated by evaluating its 
ability to generalize to “unseen” data comprising 288 
kinase inhibitors with no growth rate inhibition values 
in LINCS. None of these molecules has been used to 
train the deep learning model, hence the term “unseen” 
data. The effect of these drugs on the growth of sev-
eral cell lines predicted by CancerOmicsNet was first 
validated against the biomedical literature. Encourag-
ingly, those inhibitors assigned high probabilities to 
reduce the proliferation of certain cell lines have been 
reported to exhibit the predicted anticancer activities 
in independent studies. Finally, six compounds were 
validated experimentally in live-cell time course assays 
against breast, pancreatic, and prostate cancer cell 
lines. The tested molecules exhibited dose-dependent 
antiproliferative activities with negative GRmax values 
in most concentrations. In particular, pan-CDK inhibi-
tor JNJ-7706621 and Src inhibitor PP1 were the most 
potent against the pancreatic cancer cell line Panc 

Fig. 8  Analysis of the effective drug concentration. Drug 
concentrations resulting in negative GRmax values are considered 
effective. The distribution of concentrations across the LINCS-3549 
growth rate inhibition dataset is compared to those measured 
experimentally for CancerOmicsNet predictions
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04.03. Validation experiments repeated after 1 week 
yielded consistent results. It is also noteworthy that, 
on average, anticancer drugs predicted by CancerO-
micsNet were found effective in lower concentrations 
than active molecules in the LINCS database. We note 
that antiproliferative properties can be predicted for 
any compound that has been profiled against a panel 
of human kinases with respect to its inhibitory potency 
and selectivity.

Similar to other methods to predict therapeutic effects, 
CancerOmicsNet has several limitations. One obvious 
complication is the selection of drug efficacy measure, 
such as GR50, GRmax, and IC50. These measures often 
depend on the experimental setup with respect to drug 
concentrations and the duration of measurements [107]. 
For instance, some molecules may work better in higher 
concentrations and after a longer time than the specific 
range of concentration and duration selected for the 
experiment. Further, GR values are calculated based on 
cell count differences between the future time stamp and 
the previous time stamp, with an underlying assumption 
that cancer cells in the control group proliferate contin-
uously. This can be problematic for some cell lines that 
may be difficult to grow under conditions selected for the 
experiment. Other issue arises from the cancer heteroge-
neity, which can result in different drug efficacies meas-
ured for the same tumor types [109].

Future directions in the development of CancerOmic-
sNet include the integration of other large-scale cancer 
data, such as the single nucleotide polymorphism and the 
mutation information, which would facilitate a more per-
sonalized selection of anticancer therapies based on the 
tumor genetic makeup. Moreover, utilizing data related 
to the molecular mechanisms of metastatic cells govern-
ing their mobility and plasticity would allow for the pre-
diction of other therapeutic effects, such as the inhibition 
of cancer cell viability, migration, and invasion ability. We 
also plan to conduct a pharmacophore analysis of mol-
ecules exhibiting antiproliferative activities and expand 
the repertoire of therapeutics outside the range of kinase 
inhibitors. Including other drug classes will make it pos-
sible to extend CancerOmicsNet to predict effective com-
binations of molecules having different mechanisms of 
action. Synergistic effects are generally highly beneficial 
allowing the use of lower doses of the combination con-
stituents often leading to significantly reduced adverse 
reactions [110]. Overall, the results of comprehensive 
benchmarking calculations, experimentally validated 
predictions, and numerous opportunities for further 
improvements and extensions make CancerOmicsNet a 
promising AI-based platform to guide precision oncology 
with a broad range of applications involving a variety of 
cancer types and therapeutics.
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