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Abstract: Glycosaminoglycans (GAGs) are a heterogeneous family of linear polysaccharides which are
composed of a repeating disaccharide unit. They are also linked to core proteins to form proteoglycans
(PGs). GAGs/PGs are major components of the cell surface and the extracellular matrix (ECM),
and they display critical roles in development, normal function, and damage response in the body.
Some properties (such as expression quantity, molecular weight, and sulfation pattern) of GAGs
may be altered under pathological conditions. Due to the close connection between these properties
and the function of GAGs/PGs, the alterations are often associated with enormous changes in the
physiological/pathological status of cells and organs. Therefore, these GAGs/PGs may serve as
marker molecules of disease. This review aimed to investigate the structural alterations and roles
of GAGs/PGs in a range of diseases, such as atherosclerosis, cancer, diabetes, neurodegenerative
disease, and virus infection. It is hoped to provide a reference for disease diagnosis, monitoring,
prognosis, and drug development.

Keywords: glycosaminoglycan; human disease; ECM remodeling; heparan sulfate; chondroitin
sulfate; dermatan sulfate

1. Introduction

Glycosaminoglycan is a kind of unbranched linear anionic polysaccharide composed of
10 to 200 repeating disaccharide units [1]. Each disaccharide unit consists of one hexuronic
acid (except keratan sulfate) and one hexosamine. The hydroxyls and/or acetyls on these
disaccharide units are substituted by sulfate groups to varying degrees. Modification and
isomerization of sugar residues leads to greater molecular diversity of GAGs. According to
the structural characteristics of the disaccharide unit, GAGs can be divided into four classes:
heparin/heparan sulfate (HP/HS), chondroitin/dermatan sulfate (CS/DS), keratan sulfate
(KS), and hyaluronan (HA) [2].

The disaccharide structure of HP/HS isα-L-IdoA/β-D-GlcA (1→4) α-D-GlcNS/GlcNAc
(1→4). HP/HS is typically 2-O-sulfated (2-O-S) at uronic acid residues and N-sulfated
(N-S), 6-O-sulfated (6-O-S), and 3-O-sulfated (3-O-S) at glucosamine (GlcN) residues. Com-
pared with HS, HP has a higher iduronic acid (IdoA) content (>70% in uronic acid) and
sulfate/disaccharide ratio (about 2.3 sulfate groups per disaccharide in HP compared to
0.8 sulfate groups per disaccharide in HS) [3]. HP mainly exists in the intracellular gran-
ules of mast cells, and it possesses significant anticoagulant and other activities, such as
antiviral and antitumor metastasis [4]. HS is in the extracellular matrix (ECM) and plays
an important role in cell growth, immune response, tissue homeostasis, and embryonic
development [5,6]. The disaccharide structure of CS/DS isβ-D-GlcA/α-L-IdoA (1→3)
β-D-GalNAc (1→4). The 4-O, 6-O positions on GalNAc and 2-O position on Glc/IdoA can
be sulfated. In addition to playing a structural role in organs and tissues (e.g., skin and
cartilage), CS/DS was, in recent years, found to be involved in important biological pro-
cesses [7,8] such as tumorigenesis and metastasis [9], nervous system development [10,11],
and immune regulation [12]. KS differs from HS and CS/DS in that it takesβ-D-Gal (1→4)
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β-D-GlcNAc (1→3) as a disaccharide unit with 6-O-S at galactose and glucosamine [13].
KS is widely distributed in the body, such as in the eyes, brain, cartilage, and epithelial
tissue. Therefore, KS has multiple physiological functions and plays an important role in
the regulation of neuronal charge and ion gradients [14], cell adhesion, proliferation, and
differentiation [15]. HA is the only nonsulfated polysaccharide in the GAG family, with
a repeating disaccharide unit ofβ-D-GlcA (1→3) β-D-GlcNAc (1→4). HA is the largest-
molecular-weight GAG (from 105 Da to 107 Da) and is abundant in connective tissues, such
as synovial and vitreous fluid. HA not only provides compressive strength, lubricity, and
hydration in the ECM, but also modulates cell adhesion metastasis, inflammation, and
tissue homeostasis [16].

Most GAGs usually do not exist alone in vivo. In addition to HA, GAGs are linked
to core proteins to form N-linked/O-linked proteoglycans (PGs) [17]. For example, HS
and CS/DS chains are linked to the serine of core proteins via a tetrasaccharide unit of
GlcA (1→3) β-Gal (1→3) β-Gal (1→4) β-Xyl (1→4). In fact, they are products of post-
translational modifications (glycosylation) of proteins. PGs are widely present on the
cell surface, extracellular matrix (ECM), and basement membrane (BMs) (Figure 1). They
participate in various life activities. GAGs/PGs are considered to be the most complex
and informative biomolecules in organisms due to the differences in glycosidic bond types,
polymerization, sulfation patterns, monosaccharide types, and core proteins [18]. Therefore,
GAGs/PGs are indispensable for exerting the normal physiological functions of cells. They
not only act as traditional supporting structures, but also interact with many extracellular
signaling molecules, binding proteins, and enzymes to participate in different biological
processes [17,19–21].
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GalNAc6S), etc. (Used with permission of Royal Society of Chemistry from ref. [1]; permission con-
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It is well known that the structure and distribution of GAG/PGs are different in
various cells/tissues because they are affected by tissue-specific expression, activity level,
and specificity of biosynthetic and degradative enzymes [22–24]. The decoration patterns of
GAG chains influence and determine their specific interactions with natural protein ligands.
This also reflects the physiological or pathological state of cells or tissue to some extent. In
this review, we focus on the structural alterations and functions of GAGs/PGs in major
human diseases (atherosclerosis, cancer, diabetes, neurodegenerative disease, and virus
infections), hoping to provide a reference for disease diagnosis, monitoring, prognosis, and
drug development.

2. GAGs in Atherosclerosis

Cardiovascular disease (CVD) is the leading cause of death in many countries [25].
CVD can be caused by many factors, such as genetics, diseases (e.g., diabetes [26,27]), and
an unhealthy lifestyle (e.g., alcoholism and smoking). In addition, oxidative stress [28] and
inflammation [29,30] are thought to be involved in the pathogenesis of CVD. Atherosclerosis
is the most prevalent and clinically significant CVD, and it is closely related to other diseases,
such as retinopathy, neuropathy, and nephropathy [31–33]. Human atherosclerosis develops
in different stages, usually including intimal hyperplasia and lipid accumulation, foam cell
formation, plaque formation and growth, plaque rupture, and thrombosis [34]. GAGs/PGs
are the main components of the ECM in vascular wall cells, such as endothelial cells,
smooth muscle cells (SMCs), and adventitial fibroblasts. Therefore, GAGs/PGs play a
crucial role in regulating vascular permeability and maintaining homeostasis of the vascular
environment [35,36].

CS and DS are the major GAG components of arterial vessels. The most abundant
CSPG in the vascular ECM is versican [37,38]. DSPGs mainly include decorin and bigly-
can, which belong to the small leucine-rich repeat family. GAG chains of CS/DSPGs
perform important functions in binding to lipoproteins and regulating elastin synthesis [39].
Moreover, CS/DSPGs have been found to be significantly elevated in early atherosclerotic
lesions. They can promote lipid retention and accumulation, which is considered to be
the initial factor in the development of atherosclerosis [40,41]. For instance, versican and
biglycan strongly bind both native LDL and OxLDL [42]. Decorin binding collagen type I
can promote LDL binding and enhance lipoprotein accumulation in the vascular wall [43].
Moreover, LDL–GAG complexes can be internalized by macrophages and SMCs [12,44]
together with proliferation and migration of SMCs. This leads to intracellular lipid accu-
mulation, foam cell formation, and intimal hyperplasia, which are considered hallmarks of
early atherosclerosis [45]. In addition, CS chains can interact with elastin-binding protein
(EBP) on the cell surface, inhibit the assembly of elastic fibers, and increase the rigidity
of the vascular wall [46]. The CS/DS chain length, charge density, and sulfation pattern
influences CS/DSPG binding to lipoproteins [47]. A study showed that the domains of
6-O-S or 4-O-S galactosamine (GalN) underlie CS/DS binding to lipoproteins [48]. The
content of CS containing 4-O-S or 6-O-S in the aorta is 30% higher than in other arteries,
which binds lipoproteins more tightly [49]. Theocharis et al. demonstrated an increase in
both total CS content and the ratio of 6-O-S/4-O-S disaccharides in type II atherosclerosis
arteries. This also denotes an increase in the CS/DS ratio, since CS and DS are the main
providers of 6-O-S disaccharides and 4-O-S disaccharides, respectively [50]. In addition,
transforming growth factor (TGF-β) in atherosclerotic vessels prolongs CS chains in arterial
smooth muscle cells (ASMCs), thereby increasing versican binding to LDL [51]. Therefore,
CS/DS can promote the development of atherosclerosis under pathological conditions.

The major HSPG in vascular endothelial cells and SMCs is perlecan [52]. Earlier
studies showed that vascular HSPG levels are decreased and negatively correlated with
cholesterol levels in atherosclerosis patients [53–55]. Thus, HSPG shows the opposite
trend to CS/DSPGs in atherosclerosis. The reduction in HSPG could increase the binding
of lipoprotein A to the ECM in endothelial cells, which may be related to the fact that
OxLDL encourages endothelial cells to produce more heparinase [56]. Heparanase leads
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to abnormal HS degradation, which, in turn, results in increasing vascular endothelial
permeability and SMC migration. This suggests that rising HSPG synthesis may protect
against atherosclerosis [57]. Moreover, as mentioned earlier, large numbers of macrophages
are recruited in atherosclerotic lesions. HSPG in macrophage ECM has also been impli-
cated in atherogenesis. Asplund et al. found that HS depletion on the surface of human
macrophages (HMDM) under hypoxia enhanced cell motility and accelerated plaque
formation [58].

Deposition of lipids in the vascular wall promotes proliferation and migration of SMCs,
where HA appears to play a major role [59]. HA in the arterial wall is mainly produced by
SMCs, and synthesis increases in atherosclerosis [60]. A study showed that HA accumula-
tion could promote SMC metastasis via ERK1/2 modulation of the CD44 signaling pathway,
resulting in intimal hyperplasia [61]. HA also binds to LDL and is more readily internalized
by macrophages than native LDL [62]. Low-molecular-weight hyaluronic acid (LMW-HA)
is considered to induce inflammation in vivo, whereas high-molecular-weight HA (HMW-
HA) does not [63,64]. Tabata et al. found that LMW-HA, which is abundantly produced
in atherosclerotic lesions, participates in the inflammatory mechanism of atherosclerotic
plaque formation by promoting monocyte migration and foam macrophage differentiation
through binding to CD44 [65]. In addition, HA can interact with versican to remodel the
ECM of diseased SMCs and promote the proliferation and migration of SMCs [44]. In short,
LDL internalization impels macrophages to release more cytokines and growth factors,
which changes the behavior of SMCs. Meanwhile, overexpression of HA and its receptor
CD44 further aggravated cell migration and intimal hyperplasia.

In the process of atherosclerosis, the content of total CS and 6-O-S of CS are increased,
enhancing binding to lipids, and LDL-GAG complexes can be internalized by macrophages
and SMCs, promoting the formation of sclerotic plaques. In addition, HS depletion in
the ECM at the lesion resulted in increased vascular endothelial permeability, promoting
inflammatory cell infiltration and cell migration. The synthesis of LMW-HA is increased,
which is involved in the inflammatory mechanism of atherosclerotic plaque formation. In
conclusion, GAGs/PGs participate in ECM remodeling and play multiple roles in regulating
immune adhesion, as well as promoting lipid accumulation, intimal hyperplasia, and
thrombosis. Therefore, vascular GAGs/PGs have potential as a target for the prevention
of atherosclerosis.

3. GAGs in Cancers

Cancer is the second leading cause of death worldwide [66,67]. Cancer possesses
biological characteristics, such as uncontrolled cell differentiation and proliferation, inva-
sion, and metastasis. Its occurrence is a multifactorial and multistep complex process [68].
Cancer is defined as many types, such as liver, lung, breast, and ovarian cancer, depending
on where the cancer is located. During cancer development, growth, metastasis, and inva-
sion require specific interactions between tumor cells and the tumor microenvironment
(TME) [69–71]. GAGs/PGs, as the critical effectors of the cell surface and TME, are involved
in tumor growth and metastasis through interacting with growth factors, growth factor
receptors, and cytokines [69,72–74]. Importantly, GAGs/PGs play a vital role in cancer
regulation in terms of types, molecular weight, distribution, and fine modification. Thus,
GAGs/PGs can become potential targets for anticancer therapy [75,76].

HSPG (mainly perlecans, syndecans, and glypicans) are considered central molecules
regulating cell behavior and cancer progression [77]. HSPGs are differentially expressed in
diverse cancers. For example, in breast cancer, perlecan was absent in epithelial cell BM,
while being markedly upregulated in stroma. Furthermore, plasma perlecan level was
significantly higher in estrogen receptor (ER)+ patients than ER− patients [78]. Perlecan
expression is increased in invasive and metastatic prostate cancer cells [79]. Syndecan-
2 was significantly increased in well-differentiated neuroendocrine tumors (NETs) and
significantly decreased in poorly differentiated NETs. Glypican-5 was overexpressed in
high-grade tumors with epithelial differentiation, but not in tumors with neuroendocrine
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phenotype [80]. Indeed, the sulfation pattern of GAG chains is also strongly related to
cancer type and differentiated degree [81–86]. For instance, Weyers et al. examined changes
in the GAGs of fatal and nonfatal breast cancer tissues. The GAG length increased by
approximately 15% in tumor tissue compared to normal tissue. Both the 6-O-S CS and the
total sulfation of HS increased. Compared to nonfatal breast cancers, the sulfation degree
of HS, particularly 6-O-S, was decreased in fatal breast cancers, whereas the proportion of
non-sulfated disaccharides was increased [87]. In addition, the expression profile of HS in
cancer and its role in cancer regulation have been detailed in a recent review [88].

Many studies have indicated that N-S, 2-O-S, and 6-O-S of HS play an important
regulatory role in tumor metastasis and invasion, especially 6-O-S [89]. For example,
fibroblast growth factor/fibroblast growth factor receptor (FGF/FGFR) promotes cardio-
vascular generation and endothelial cell repair, playing a key role in the regulation of
lesion metabolism [90] (Figure 2). Therefore, FGF/FGFR is widely regarded as a potential
target for antitumor therapy [91,92]. HS promotes cell signal transduction by binding
to FGF2/FGFRs to form ternary complexes [93,94]. In this process, HS binding to FGF2
requires the N-S of GlcN and 2-O-S of IdoA [95]. In addition to N-S and 2-O-S, HS requires
6-O-S of GlcN to bind to FGFR. Similarly, IdoA with 2-O-S and GlcN with 6-O-S and N-S are
also essential for binding HS to FGF1 [96]. Specific sequences for HS binding to FGF family
proteins were further identified by Kreuger et al. They found that HS octasaccharides
binding to FGF1 contained an IdoA (2S)–GlcNS (6S)–IdoA (2S) trisaccharide sequence, and
HS binding to FGF2 contained an IdoA (2S)–GlcNS–IdoA (2S) trisaccharide sequence [97].
Schultz et al. determined the fine structure of HS binding to FGF12–FGFR1c2 from chem-
ically enzymatically synthesized HS octasaccharide, and they pointed out that the N-S
of the nonreducing terminal residue is essential for binding [98]. In addition, HS on the
tumor cells surface showed a stronger affinity for NT4 (a tetrapeptide) compared with other
GAGs [99,100]. NT4 can target cell lines of different human cancers; therefore, it may serve
as a carrier for the delivery of anticancer drugs or tumor imaging tracers [101–105]. More
importantly, NT4 may inhibit the migration of pancreatic cancer cells, as well as the growth
factor-induced invasion of breast cancer cells, by binding to HS [99,106]. Brunetti et al.
demonstrated the decisive role of sulfate groups on HS for binding to NT4 and determined
that possible binding sequences include repeated disaccharide units of uronic acid with
2-O-S and GlcN with 6-O-S and N-S [107]. Interestingly, Liu et al. treated tumor cells
with heparinases I and III, respectively. They demonstrated that HS on the cell surface has
specific sequences for both tumor activation and inhibitory activity [108]. It was proven that
the tumor metabolic regulatory effect of HS is closely linked to its specific sulfation patterns.

CS/DS is equally important during tumor cell proliferation, migration, adhesion,
and invasion [109]. In some cancer tissues, the CS content is increased [110–114]. For
example, glioblastoma multiforme (GBM) tumors with increased CSPG content accounted
for 65% of the total number of samples through clinical studies by Tsidulko et al. [115].
CSPG, such as versican, is highly expressed in breast cancer, which is associated with an
unfavorable prognosis [116]. For a few cases, such as invasive gliomas, several studies have
shown that the GAG chain of CS/DSPGs in the tumor ECM is severely absent [117–121].
Abnormal glycosylation may be associated with isomeric conversion and lyase activity
of CSPGs [120–123]. The change of DS depends on cancer type. DS levels are elevated
in liver cancer [124], lung cancer [125], gastric cancer [126], pancreatic cancer [127], and
colorectal cancer [113]. Although the content and distribution of CS/DS are heterogeneous
in tumor tissues, several studies have shown that 6-O-S and non-sulfated disaccharide
levels are increased in some tumors, while 4-O-S disaccharide levels are decreased [128,129].
For example, increased CS content is observed in pancreatic cancer, characterized by a
significantly enhanced expression of 6-O-S and non-sulfated disaccharide units [127,130].
Prostate cancer has elevated 4-O-S CS content in the ECM, which may be due to inhib-
ited androgen receptor (AR) signaling, thus resulting in increased 4-O-sulfotransferase
CHST11 expression [131]. CS testing of human gastric cancer tissues revealed a 10-fold
increase in 6-O-S and non-disaccharide units, while 4S disaccharides were correspondingly
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decreased [132]. In addition, CS with 4, 6-O-S (CS-E) is increased in a variety of cancers.
A high expression of CS-E in the ECM of ovarian adenocarcinoma enhances vascular en-
dothelial growth factor (VEGF) mediation [133]. The proportion of ∆4.5HexA-GalNAc-4,
6-O-disulfate was higher in highly metastatic lung cancer cell lines than in low metastatic
cell lines [134]. The results suggest complex changes in the sulfuryl modification of CS/DS
during carcinogenesis. A possible reason is that, on the one hand, aberrant expression of
the PG core protein leads to changes in the type and structure of the linked GAG chain [135].
On the other hand, CS/DS synthesis or modification is mediated by abnormalities in en-
zyme activity or levels [136–138]. However, the reduction in DS in tumor tissue may be
more conducive to cancer development and metastasis. Therefore, it has been suggested
that DS has antitumor activity. For instance, DS/DSPG has an inhibitory effect on the
proliferation and migration of certain osteosarcoma and melanoma cell lines [139–141].
However, there seems to be controversy regarding the role of DS in cancer. DS was found
to promote proliferation of esophageal squamous cells [142]. Therefore, the role of DS in
cancer needs further investigation.
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Figure 2. Schematic diagram of the ternary complex of FGF/HS/FGFR and the key sites for HS
binding. (a) FGFR comprises extracellular Ig-like domains, intracellular tyrosine kinase domains,
and transmembrane domain. Ig-like domains bind FGF with the assistance of HS to form ternary
complex; (b) HS binding to FGF2 requires 2-O-S of IdoA and N-S of GlcN; HS binding to FGF1 and
FGFR requires 2-O-S of IdoA and 6-O-S, N-S of GlcN; the N-S of the nonreducing terminal residue
is also necessary for HS binding to FGF/FGFR. The increased expression of HS in most tumor cells
enhances FGF/FGFR signal transduction, which is beneficial to tumor cell growth and angiogenesis.
(The data of the HS sequence is cited from reference [96–99]).

HA has the dual properties of tumor promotion and tumor inhibition. LMW-HA
predominates in normal tissues and is essential for maintaining tissue homeostasis. Studies
have shown that HA content increases in many types of human cancers [143–145]. More-
over, HA molecular weight decreases in the TME [146–148]. LMW-HA stimulates the
expression of chemokines and growth factors, as well as promotes tumor cell adhesion
and migration [149,150]. The role of LMW-HA in cancer is associated with HA receptors
(e.g., CD44, and HA-mediated mobility receptor (RHAMM)) [151,152]. In addition, HA has
been reported to be degraded by hyaluronidase into smaller oligosaccharide fragments,
inducing the division of CD44, thereby enhancing tumor cell viability in breast, ovarian,
and glial tumors, and colon cancers [153,154].

For other GAGs, Yukinari et al. found that highly sulfated KS was overexpressed in
malignant astrocytic tumors using histochemistry [155].
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In short, GAGs/PGs are critical regulators for cancer cell proliferation and metastasis.
Although changes in GAGs/PGs vary widely in different types and stages of cancer, overall
HS expression is upregulated in cancer cells relative to normal cells. As important signaling
molecules on the cell surface, HS overexpression increases the communication between
cancer cells and the external environment, which supports the characteristics of cancer
cells that are prone to proliferation and metastasis. During this period, N-S, 2-O-S, 6-O-S of
HS play an important regulatory role. CS/CSPGs are also upregulated in some tumors,
and at the same time, they are accompanied by increased 6-O-S levels and decreased 4-O-S
levels. DS/DSPG is detected in some tumors, which suggests that DS may have antitumor
activity. LMW-HA increases in many types of cancer and promotes tumor cell adhesion
and migration. Thus, GAGs/PGs play a crucial role in tumor cell activity. In addition,
GAGs perform their functions by interacting with proteins in the body. Therefore, the
development of some GAGs analogues to inhibit their interactions may become another
approach for cancer treatment [156].

4. GAGs in Diabetes Mellitus

Diabetes mellitus (diabetes, DM) is a metabolic disorder caused by decreased insulin
levels due to autoimmune β-cell destruction (T1D) and/or insulin resistance (T2D) [127,157].
Diabetes is one of the fastest-growing diseases, with approximately 415 million patients
worldwide in 2015, and this number is expected to grow to 693 million by 2045 [157,158].
The development of diabetes can cause systemic diseases, such as cardiovascular disease,
diabetic nephropathy, retinopathy, and neuropathy. The ECM of various tissues or organs
acts as the first line of defense against pathological factors, and ECM remodeling plays a
crucial part in the development of diabetes and complications [159].

In normal pancreatic β-cells, high levels of HSPG are necessary for cell survival. In nor-
mal metabolism, HSPG can not only prevent the invasion of immune cells and prevent the
degradation by heparanase, but also act as a nonenzymatic antioxidant that can scavenge
ROS in a timely manner and avoid oxidative damage to cells [160,161]. In studies of T1D,
HSPGs such as Col18 and syndecan-1 were found to be highly expressed in normal human
islets. Importantly, highly sulfated HS was specifically expressed in normal human β-cells,
while highly sulfated HS was expressed in α-cells [162]. Further studies revealed that HS in
β-cells largely contain 2-O-S, 6-O-S, and N-S, whereas in α cells, HS contains N-acetyl, N-S,
and 2-O-S, with fewer 6-O-S. Moreover, HS mediates cell activity through FGF/FGFRs [163]
(the effect of HS on the FGF/FGFR signaling pathway was presented in the Section 3).
When β-cell dysfunction occurs, it is often accompanied by inflammation such as pancreati-
tis; leukocytes infiltrate islet cells, release heparanase to degrade HSPG, gradually reduce
islet HS, and injure β-cells [160,164,165]. Low-sulfated HS decreases β-cell proliferation
and viability by mediating FGF/FGFR signaling [163]. At the same time, the decrease in
the content of highly sulfated HS renders β-cells highly susceptible to oxidant-mediated
damage, while high levels of endogenous ROS can depolymerize HS [166,167]. In addition,
for HSPG alterations in T2D, Simeonovic et al. proposed the “ER stress” model: β-cell
endoplasmic reticulum (ER) homeostasis is disrupted during the pathological process of
T2D, resulting in ER luminal misfolded protein accumulation and ER stress [168,169]. ER
stress initiates the unfolded protein response (UPR), which alleviates stress by increas-
ing chaperones for protein folding and decreasing normal protein synthesis [170]. This
impaired HSPG core protein synthesis further hinders HS synthesis. HS acts as a nonen-
zymatic antioxidant in β-cells, and its lower expression increases intracellular ROS and
promotes oxidative stress, ultimately leading to the apoptosis of β-cells [171,172]. Thus, a
high expression of highly sulfated HS is a hallmark of healthy β-cells. Alternatively, β-cells
are metabolically disturbed under pathological conditions, and islet amyloid polypeptide
(IAPP) undergoes misfolded aggregation, resulting in deposition. IAPP is a hormonal
peptide implicated in T2D pathogenesis and progression [173]. GAGs were found to be
involved in the deposition of IAPP within or around pancreatic β-cells [174]. Castillo et al.
investigated the interaction of different sulfated GAGs, including perlecan, with amyloid
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in vitro and found that GAG sulfation patterns affected amyloid fibril formation. The order
of impact was heparin > N-desulfated acetylated heparin > fully desulfated N-sulfated
heparin > fully desulfated N-acetylated heparin [175]. Recent studies have shown that
PGs on the surface of islet cells, especially HS/HSPGs, are able to promote islet amyloid
deposition and IAPP-induced cytotoxicity, thereby accelerating T1D progression [176,177].
Nevertheless, there is little information on other GAGs involved in islet cell lesions. Only
a few reports mentioned that HA levels were significantly elevated in immune cells both
inside and outside islet cells and at inflammatory sites in T1D [178,179].

Diabetic nephropathy (DN) is one of the most important complications of diabetes and
is characterized by proteinuria [180]. Earlier studies have shown that reduced HS levels
in diabetic glomerular basement membranes (GBM) are associated with proteinuria [181].
The altered HS sulfation pattern of GBM in diabetic nephropathy may be due to increased
heparanase levels [182] or altered sulfatase regulation, and it has been demonstrated that
6-O-S of HS plays an important role in maintaining the glomerular filtration barrier [183]. In
another study, HS was found to have less N-S in the GBM of diabetic rats compared to the
normal group [184]. Paradoxically, however, some researchers have demonstrated that the
structure of glomerular HS is not affected in diabetic rat models [185,186]. Compared with
HS, CS/DS alterations were more significant in the kidney. In diabetic rats, renal CS/DS
content decreased, accompanied by a decrease in the degree of sulfation, particularly 4,
6-O-sulfated GalN content [187]. Another study described CS alterations in the kidney
in more detail. Reine et al. found that 4-O-disaccharide sulfate significantly decreased
from 65% to 40%, whereas 6-O-S disaccharide decreased from 11% to 6% and non-sulfated
disaccharide increased from 21.5% to 51% in the renal cortex of diabetic db/db mice [186].
Alterations in CS/DS structure in the kidney of patients with DN have an impact on
the composition and function of the ECM in which it is located. Glomerular filtration
of urine is also compromised. A study from diabetic patients with T2D found that the
contents of total GAGs, CS/DS, and HS in urine were significantly higher than those in
healthy subjects [188]. Through quantitative analysis, it was found that 6-O-S and the
6-O-S/4-O-S ratio in the urine of diabetic patients with microalbuminuria were significantly
increased compared with the healthy group [189]. In addition, CS/DS in erythrocytes was
investigated in a diabetic rat model by Srikanth et al. They found a twofold increase in
CS/DS content, mainly consisting of 4-O-S disaccharide units and a small number of non-
sulfated disaccharides [190]. This suggests that the level of GAG in urine and blood or the
ratio between them has the potential to be a diagnostic indicator of diabetes. However, the
alteration of GAGs was mainly detected in advanced diabetic nephropathy, the elevation
of GAG levels in urine/serum in the early stage of the disease is not very clear.

Diabetes begins with islet cell dysfunction, but persistent hyperglycemia causes a
variety of complications. The ECM remodeling exhibited by various complications is also
different. Therefore, finding a link between these GAG alterations is expected to provide
useful information for the treatment of diabetes and its complications.

5. GAGs in Neurodegenerative Disease

Neurodegenerative disease is a type of disease caused by the degenerative loss of neu-
rons in the brain and spinal cord. Its occurrence may be multifactorial (including genetics,
oxidative stress, neuroinflammation, mitochondrial damage, and abnormal protein fold-
ing) [191], but its pathogenesis has not yet been determined [192,193]. Neurodegenerative
diseases are classified according to pathological features, mainly including Alzheimer’s
disease (AD) and Parkinson’s disease (PD), Huntington’s chorea, and amyotrophic lateral
sclerosis. Protein misfolding and aggregation is one of the features of neurodegenerative
diseases, such as β-amyloid (Aβ) and phosphorylated tau in AD, and α-synuclein (α-syn)
aggregation and fibrogenesis in PD [194,195]. Neuronal cells are the main site of lesions
in this kind of disease. Perineuronal nets (PNNs) are specialized extracellular matrices of
neurons. They are mainly composed of CSPGs and HA, and they play an important part in
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the normal function of the central nervous system [196–198]. At the same time, changes in
PNN composition also reflect a variety of neuropathological states [199].

The most abundant PG found in the nervous system is CSPG [200], and its sulfation
pattern is thought to be directly linked to pathological development [196,201]. PGs in
most neuronal PNNs mainly contain versicans, aggreicans, neuroicans, and brevicans [199].
It has been shown that CS-C (6-O-S) has the highest proportion in the early stages of
brain development and is gradually replaced by CS-A (4-O-S) as the brain develops and
matures [202]. This change illustrates the important role of CS-A in stabilizing PNNs and
limiting neuronal plasticity [203,204]. However, this state shifts in AD. A recent study
showed that CS quantification in prefrontal neocortical (middle frontal gyrus) samples
from AD patients showed an increased CS-C and CS-E content and decreased non-sulfated
CS disaccharides, but total GAG levels did not change [201]. In addition, a few reports have
shown that CSPGs are also involved in the formation of amyloid precipitation [205,206].
Early studies certified that 4-O-S and 6-O-S CS are found in neurofibrillary tangles (NFTs)
of AD patients, while only 4-O-S CS is found in senile plaques (SPs) [207]. In addition, in
multiple sclerosis (MS), inflammatory cell infiltration, demyelination, and axonal injury
result in sclerosing lesions in the white matter [208]. Studies have shown that CS/DSPGs are
the main PG components of plaques [209]. It was found that CSPGs (versican, neurocan, and
aggrecan) and DSPGs were mainly located at the edge of active plaques, while the content
of CSPGs in the active center of MS plaques was significantly decreased, possibly due to
the internalization of PGs in PNNs by their foam macrophages together with myelin [208].
Moreover, increased CSPG content at the plaque edge can inhibit oligodendrocyte precursor
cells (OPCs) [210–213], which are essential for reconstructing myelin sheaths and protecting
neurons. Further studies showed that the CS chain of CSPG exerts its inhibitory effect on
OPCs mainly through 4-O-S and 6-O-S disaccharide units [214].

Although HS is less abundant in central neurons, it is the most studied PG in neu-
rodegenerative diseases. HS has been demonstrated to be involved in abnormal protein
accumulation within and around neurons, such as amyloid plaques and neurofibrillary
tangles [197,206,215]. Extracellular Aβ plaques and intracellular NFTs are neurotoxic in
AD, ultimately leading to neuronal loss [216]. In the brains of AD patients, PGs were more
abundant in areas with amyloid plaques and neurofibrillary tangles. For example, relative
to healthy individuals, the total PGs increased 1.6-fold in the AD hippocampus and 3.4-fold
in the superior frontal gyrus (superior gyrus frontalis). Among them, HSPGs increased the
most [217]. As described earlier, GAGs promote amyloid fibril formation, as determined by
the chain type and sulfation pattern [175]. Staining of occipital neocortical and hippocam-
pal tissue from AD patients revealed that fibrillar Aβ plaques and nonfibrillar Aβ plaques
contained high levels of N-sulfated HS, while N-sulfation was very low in nonfibrillar Aβ

plaques [218]. Lindahl et al. identified critical sites for the binding of heparin sulfate to
Aβ fibrils containing 2-O-S IdoA and N-S from the human cerebral cortex, whereas the
binding of Aβ monomers requires 6-O-S on GlcN residues [219]. The sequence of heparin
oligosaccharides interacting with Aβ was determined using 2D NMR and molecular simu-
lation docking techniques by Zhou et al. [220]. They found that the binding motif of HS
is HexA–GlcNS–IdoA2S–GlcNS6S; IdoA and 6-O-S are required for binding [220]. This is
consistent with previous findings. At the same time, they also identified the amino acid
sequence of the Aβ-binding site as V12HHQKL17 using hydrogen–deuterium exchange
mass spectrometry (HDX-MS) [220]. Coincidentally, the HS sequence profiles identified in
the above studies are identical to FGF-2-binding sites [219]. Thus, the binding of HS to Aβ

fibrils may competitively inhibit FGF2-mediated neuroprotection. In addition, GAGs can
interact with tau protein, stabilize tau conformation, and promote its phosphorylation [221].
A recent study demonstrated that 3-O-S in HS enhances HS and tau binding and promotes
tau transport across membranes [203]. Thus, tau is one of proteins that recognizes 3-O-S of
HS. α-Synuclein (α-syn) is a major pathogenic protein in PD and a major component of LBs.
HS interacts with α-syn and influences α-syn fibril conformation choice. Liu et al. found
that HSPG (agrin) accelerated the formation of α-syn fibrils and induced α-syn protein
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β-sheets in an HS-dependent manner, enhancing the insolubility of α-syn [222]. A recent
study determined the atomic structure of α-syn fibrils formed by heparin involvement and
discovered a novel folding mode of α-syn, the “Z” fold [223]. These results indicate that
sulfated GAGs play a crucial role in protein aggregation. Furthermore, Ishe et al. confirmed
that, in neuronal cells, internalization of α-syn aggregates strongly depends on the cell
surface HS and is associated with their total sulfation level [224]. These results indicate
that HS acts on α-syn similarly to Aβ. In addition to HS playing an important role in PD
progression, the presence of CS (4-O-S and 6-O-S) with different degrees of sulfation in LBs
was reported by DeWitt et al. [225].

At present, the pathogenesis of most neurodegenerative diseases is still unclear. How-
ever, it is certain that GAGs are indeed involved in the development and progression of
the disease. Therefore, an in-depth study of GAGs is an important aspect of mechanistic
studies of neurodegenerative diseases.

6. GAGs in Virus Infection

Viruses are the main pathogens threatening human health, and they are characterized
by species diversity, strong infectivity, diverse transmission routes, and easy variation.
The worldwide spread of COVID-19 disease caused by severe acute respiratory syndrome-
associated coronavirus 2 (SARS-CoV-2) in recent years is a living example. Furthermore,
Ebola virus, HIV virus, SARS virus, and hantavirus have a high mortality. A common
feature of viruses infecting humans is that they enter host cells by binding to cell-surface
receptors. GAGs in the ECM have been found to play an important role in regulating
immune defense and pathogenic mechanisms [226–228]. For instance, when SARS-CoV-2
infects host cells, HS acts as a cofactor involved in the interaction between the SARS-
CoV-2 spike glycoprotein receptor-binding domain (RBD) and angiotensin-converting
enzyme 2 (ACE2) [229–231]. In addition, dengue virus (DENV) [232,233], hepatitis C
virus (HCV) [234], herpes simplex virus [235,236], human papillomavirus (HPV) [237], ar-
boviruses [238], respiratory syncytial virus (RSV) [239], and monkeypox virus (MPXV) [240]
have all been found to invade host cells by binding HS and/or CS/DS in the ECM through
receptor proteins. Specific sulfation patterns of GAGs are critical for viral adsorption and
invasion. For example, DENV-secreted NS1 protein accumulates on infected cell mem-
branes and interacts with HS and CS-E on the cell surface, ultimately leading to selective
vascular leak syndrome [232]. Kim et al. found that N-S, 2-O-S, and 6-O-S in HS and
6-O-S, 2-O-S, 3-O-S, and N-S in HP were critical for competitive binding to SARS-CoV-2
spike protein [241]. The amino-acid sequences of spike protein trimer-binding sites to
GAGs are YRLFRKS, PRRARS, and SKPSKRS. Thus, HS is a potential competitive inhibitor
against SARS-CoV-2 infection [241]. In parallel, Tiwari et al. confirmed that the presence of
3-O-S in HS contributes to the recognition and binding of SARS-CoV-2 spikes in vitro [242].
This idea was confirmed in another report, where 3-O-sulfotransferase 3B overexpression
and glycocalyx sulfation degree were too low to promote SARS-CoV-2 infection under
pathological conditions [243]. However, there are few reports on the alterations of GAGs
in virus infection in vivo [244]. In brief, GAGs in cellular ECM execute critical roles in
regulating viral adhesion and invasion.

7. GAGs in Other Diseases

GAGs/PGs, as the main component of ECM, are involved in the development and
progression of almost all human diseases. Pulmonary diseases have a high morbidity and
mortality, such as pulmonary fibrosis, asthma, and chronic obstructive pulmonary disease
(COPD) [245,246]. In idiopathic pulmonary fibrosis, CS/DS, HA, and the CS/DS ratio
increased significantly. CS/DS increased in 4-O-S, 6-O-S, and 2-O-S disaccharide units and
decreased in non-sulfated disaccharides, resulting in significant increases in sulfated levels.
Similarly, significant increases were observed in N-S, 2-O-S, and 6-O-S disaccharides of
HS, particularly the UA2S–GlcNS6S unit [247]. In addition, significant increases in PG
(versican, biglycan, and decorin) content at the lesion were observed in biopsy specimens
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from asthma cases [248]. In COPD, although HS increased significantly, its sulfation pattern
was related to the COPD stage, while CS/DS did not change significantly. The 2-O-S and
N-S of HS increased during the fourth phase of COPD, while 6-O-S did not change [249].
GAG expression is elevated in cystic fibrosis [250]. Moreover, abnormal sulfation of GAG
can be found in bronchial epithelial cells of patients [251]. Kim et al. investigated CS
expression in lupus erythematosus (LE) and dermatomyositis (DM) [252]. Expression of
4-O-S CS was found to be increased only in discoid lupus erythematosus (DLE) and DM,
whereas 6-O-S CS was found to be significantly increased in dermal endothelium with
DM [252].

Kidney stones are a common urinary disorder. Due to metabolic abnormalities, crystals
such as uric acid and calcium oxalate (CaOx) accumulate in the renal pelvis or calyces of
patients’ urine, resulting in stone formation. It has been found that the type and content of
GAGs in urine may be closely related to the formation process of renal calculi [253–255].
Some earlier studies demonstrated that CS and HS inhibited the formation of kidney stones,
while HA promoted stone formation and growth [256–258]. Dissayabutra et al. tested
GAGs in urine from familial urolithiasis cases and found that total sulfated GAGs, CS,
and HS contents in urine were all decreased, while HA content was increased, and the
proportion of HS in total sulfated GAGs was increased [259]. Jappie et al. detected urine
from healthy white and black South Africans. Blacks were found to have higher CS levels in
urine than whites (kidney stones were significantly more prevalent in whites than blacks in
South Africans), suggesting that higher CS levels may inhibit kidney stone formation [260].
These findings are consistent with previous conclusions. However, a recent study found
that HA inhibited aggregation of CaOx crystals in artificial urine, but did not have any
effect on the crystalline properties of CaOx in real urine. In addition, it has been pointed
out that the regulation of nucleation and growth of crystals in urine is the result of the
combined action of various GAGs [261].

In human diseases, inflammation is deemed to be the “source of all diseases”. The
human body is an organic system, and there are tied connections between various diseases.
A normal inflammatory response is beneficial for the human body, but chronic inflammation
is a common pathological basis for various diseases and may be an important factor in the
increased morbidity and mortality of most diseases. For example, many cancers develop in
the presence of chronic inflammation; cancer metastasis is also akin to an inflammatory
response, and even many inflammatory cells participate in and assist in the metastasis of
cancer cells. Changes in the inflammatory response, from short to long term, can lead to the
collapse of immune tolerance and lead to major alterations in the physiology of all tissues
and organs, as well as normal cells. This increases the risk of noncommunicable diseases in
humans. The ECM remodeling involved in inflammation, particularly the alterations and
roles of HS, CS, and HA, were extensively discussed in several recent articles [262–265].

8. Prospects and Challenges

GAGs/PGs are the most complex biological macromolecules in the human body, and
their role in cellular life processes is justifiable. Various GAGs function in vivo by interact-
ing with proteins via ionic, hydrogen, and hydrophobic bonds [3,266]. The structural basis
for these interactions is a specific sulfation sequence in the GAGs’ sugar chain. Because
GAG biosynthesis is a non-template-driven process, their structures are stochastic and
variable. GAGs also display structural alterations during pathology (the alterations of
GAGs in different diseases are summarized in Table 1). Thus, complex sugar chains also
have huge information density and extensive structural and functional heterogeneity. Over
the last few decades, numerous studies were conducted on the structure and function of
GAG sugar chains, as well as related regulatory enzymes, and their changes in time and
space were identified, thus providing substantial theoretical support for the elucidation of
disease mechanisms and the exploration of therapeutic targets.
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Table 1. Alterations or roles of GAGs/PGs in different diseases.

Pathology Types Study Objects
(Cells/Tissues) GAGs/PGs Alterations References

Atherosclerotic type II Aorta
Both the total CS content and the ratio of

6-O-S/4-O-S disaccharides in type II
atherosclerosis arteries were increased

[50]

Atherosclerosis Arterial smooth muscle cells
TGF-β prolongs CS chains in arterial smooth
muscle cells and increases versican binding

to LDL.
[51]

Atherosclerosis
(symptomatic

carotid stenosis)
Iliac arteries The expression of perlecan gene decreased while

versican gene remained unchanged. [53]

Atherosclerosis and
vascularrestenosis Macrophages

Syndecan-1 protein level in macrophages was
significantly decreased under hypoxia condition,
and mRNA expression of key enzymes involved

in HS biosynthesis in hypoxia cells was
decreased. In addition, hypoxia also reduced the

relative content of HS.

[58]

Atherosclerosis and
vascularrestenosis Aortic smooth muscle cells

HA and HA synthase are increased in senescent
cells. HA accumulation promotes SMC

metastasis via ERK1/2 modulation of the CD44
signaling pathway, resulting in

intimal hyperplasia.

[61]

Atherosclerosis Macrophages

LMW-HA induces macrophage/foam cell
production and promotes atherosclerosis via the

PKC pathway. LMW-HA also amplifies the
migration of monocytes to inflammatory

atherosclerotic plaques.

[65]

Breast cancer Tumor tissue and plasma

Perlecan is absent in epithelial cell basement
membrane while markedly upregulated in

stroma. Furthermore, plasma perlecan level was
significantly higher in estrogen receptor (ER)+

patients than ER- patients.

[78]

Prostate cancer Perlecan expression is increased, which can the
regulate sonic hedgehog signaling path. [79]

Neuroendocrine
tumors (NETs) Tumor tissue

Syndecan-2 is significantly increased in
well-differentiated NETs and significantly
decreased in poorly differentiated NETs.

Glypican-5 was overexpressed in high-grade
tumors with epithelial differentiation, but not in

tumors with neuroendocrine phenotype.

[80]

Breast cancer Tumor tissue

The GAG length increased by approximately
15% in tumor tissue compared to normal tissue.
Both the 6-O-S CS and the total sulfation of HS
increased. Compared to nonfatal breast cancers,

the sulfation degree of HS, particularly 6-O-S,
was decreased in fatal breast cancers, whereas
the proportion of non-sulfated disaccharides

was increased.

[87]

Glioblastoma
multiforme (GBM) Tumor tissue

60–65% of GBM tumor samples showed
increased levels of CS. A 1.5-fold increase in

decorin, a 3-fold increase in biglycan and a 2-fold
increase in serglycin. Only decorin levels were
negatively associated with overall survival in

GBM patients.

[115]
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Table 1. Cont.

Pathology Types Study Objects
(Cells/Tissues) GAGs/PGs Alterations References

Pancreatic carcinoma Tumor tissue

The total GAG level was increased by 4 times,
HA increased 12 times, CS increased 22 times,

DS increased 1.5 times. A significant increase in
non-sulfate and 6-sulfate disaccharides of CS.

[127]

Pancreatic carcinoma Tumor tissue

There are 27-fold and 7-fold increases in versican
and decorin, respectively, compared with normal

pancreases. The expression of 6-O-S and
non-sulfated disaccharide units are enhanced.

[130]

Prostate cancer Tumor tissue

Prostate cancer has an elevated 4-O-S CS content
in the ECM, which may be due to inhibited

androgen receptor (AR) signaling, thus resulting
in increased 4-O-sulfotransferase

CHST11 expression.

[131]

Gastric cancer Tumor tissue
CS has a 10-fold increase in 6-O-S and
non-disaccharide units, while 4-O-S

disaccharides were correspondingly decreased.
[132]

Ovarian adenocarcinoma Tumor tissue
High expression of CS-E in the ECM of ovarian
adenocarcinoma enhances vascular endothelial

growth factor (VEGF) mediation.
[133]

Lung cancer Lewis lung carcinoma cells

The proportion of ∆4.5HexA-GalNAc-4,
6-O-disulfate was higher in highly metastatic
lung cancer cell lines than in low metastatic

cell lines.

[134]

Breast cancer Tumor tissue
HA was significantly increased in 143 tumor
tissue samples, indicating that HA is directly

involved in breast cancer metastasis.
[143]

Breast cancer Breast tumor cells
(MDA-MB-231 cells)

LMW-HA activates actin filament-associated
protein (AFAP-110) to bind to F-actin, resulting

in nuclear translocation of
myeloiddifferentiation factor (MyD88)/NF-xB
and enhanced expression of pro-inflammatory
cytokines IL-1β and IL-8. AFAP-110 binding

with F-actin also promoted tumor cell metastasis.

[149]

Diabetes mellitus 1
type (T1D) Pancreas HSPGs such as Col18 and syndecan-1 showed

significant loss in T1D human islets. [162]

Diabetes mellitus

GAG (including perlecan) sulfation patterns
affected amyloid fibril formation. The order of
impact was heparin > N-desulfated acetylated

heparin > fully desulfated N-sulfated
heparin > fully desulfated N-acetylated heparin.

[175]

Diabetic nephropathy Glomerulus

Heparin sulfate 6-O-S plays an important role in
extracellular matrix remodeling. Regulation of
VEGFA and FGF2 signaling was achieved by

increasing the expression of 6-O-endosulfatases
Sulf1 and Sulf2 by the transcription factor Wilms’

Tumor 1 (WT1).

[183]

Diabetic nephropathy Kidneys of rats HS has less N-S in the GBM of diabetic rats
compared to the normal group. [184]

Diabetic nephropathy Kidneys of rats
Renal CS/DS content decreased, accompanied

by a decrease in the degree of sulfation,
particularly 4, 6-O-sulfated GalN content.

[187]
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Table 1. Cont.

Pathology Types Study Objects
(Cells/Tissues) GAGs/PGs Alterations References

Diabetic nephropathy Renal cortex of diabetic
db/db mice

4-O-disaccharide sulfate significantly decreased
from 65% to 40%, whereas 6-O-S disaccharide
decreased from 11% to 6% and non-sulfated

disaccharide increased from 21.5% to 51% in the
renal cortex of diabetic db/db mice.

[186]

T2D Urine
The contents of total GAGs, CS/DS, and HS in
urine were significantly higher than those in

healthy subjects.
[188]

Diabetes mellitus Urine

6-O-S and the 6-O-S/4-O-S ratio in the urine of
diabetic patients with microalbuminuria were

significantly increased compared with the
healthy group.

[189]

Alzheimer’s disease (AD) Brain
4-O-S and 6-O-S CS are found in neurofibrillary
tangles (NFTs) of AD patients, while only 4-O-S

CS is found in senile plaques (SPs).
[207]

Multiple sclerosis White matter

CSPGs (versican, neurocan, and aggrecan) and
DSPGs were mainly located at the edge of active
plaques, while the content of CSPGs in the active
center of MS plaques was significantly decreased,

possibly due to the internalization of PGs in
PNNs by their foam macrophages together

with myelin.

[208]

AD Brain

PGs were more abundant in areas with amyloid
plaques and neurofibrillary tangles. For example,

relative to healthy individuals, the total PGs
increased 1.6-fold in the AD hippocampus and
3.4-fold in the superior frontal gyrus (superior

gyrus frontalis). Among them, HSPGs increased
the most.

[217]

AD Occipital neocortical and
hippocampal tissue

Fibrillar Aβ plaques and nonfibrillar Aβ plaques
contained high levels of N-sulfated HS, while

N-sulfation was very low in nonfibrillar
Aβ plaques.

[218]

AD Cerebral cortex

The critical sites for binding of heparin sulfate to
β-amyloid (Aβ) fibrils contain 2-O-S IdoA and
N-S from the human cerebral cortex, whereas
binding of Aβ monomers requires 6-O-S on

GlcN residues.

[219]

Parkinson’s disease (PD) Neuronal cells
The internalization of α-syn aggregates strongly
depends on the cell surface HS and is associated

with their total sulfation level.
[224]

COVID-19 infection

N-S, 2-O-S, and 6-O-S in HS and 6-O-S, 2-O-S,
3-O-S, and N-S in HP were critical for
competitive binding to SARS-CoV-2

spike protein.

[241]

COVID-19 infection
The presence of 3-O-S in HS contributes to the
recognition and binding of SARS-CoV-2 spikes

in vitro.
[242]

COVID-19 infection

3-O-sulfotransferase 3B overexpression and
glycocalyx sulfation degree were too low to

promote SARS-CoV-2 infection under
pathological conditions.

[243]
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Table 1. Cont.

Pathology Types Study Objects
(Cells/Tissues) GAGs/PGs Alterations References

Idiopathic
pulmonary fibrosis Lung

CS/DS, HA, and the CS/DS ratio increased
significantly. CS/DS increases in 4-O-S, 6-O-S,
and 2-O-S disaccharide units and decreases in

non-sulfated disaccharides, resulting in
significant increases in sulfated levels. Similarly,
significant increases were observed in NS, 2-O-S,
and 6-O-S disaccharides of HS, particularly the

UA2S–GlcNS6S unit.

[247]

Asthma Endobronchial
biopsy specimens

Significant increases in PG (versican, biglycan,
and decorin) content at the lesion were observed

in biopsy specimens from asthma cases.
[248]

Chronic obstructive
pulmonary disease Lung

HS increased significantly, and its sulfation
pattern was related to the COPD stage, while

CS/DS did not change significantly. The 2-O-S
and NS of HS increased during the fourth phase

of COPD, while 6-O-S did not change.

[249]

Cystic fibrosis Lung
GAG expression is elevated in cystic fibrosis and

abnormal sulfation of GAG can be found in
bronchial epithelial cells of patients.

[250,251]

Familial urolithiasis Urine

The total sulfated GAG, CS, and HS contents in
urine all decreased, while the HA content was

increased, and the proportion of HS in total
sulfated GAGs was increased.

[259]

Kidney stones Urine

Black South Africans were found to have higher
CS levels in urine than whites (kidney stones

were significantly more prevalent in whites than
blacks in South Africans), suggesting that higher

CS levels may inhibit kidney stone formation.

[260]

However, there are still great challenges for the study of GAGs in human diseases.
On the one hand, it has been debated whether the binding of GAG sequences to proteins
is specific. However, there is increasing evidence that proteins are highly selective for
GAG sequences. In addition to the examples listed here, classical binding of heparin
pentasaccharides to antithrombin III has been demonstrated. However, most studies on
GAG chains binding to proteins were performed in vitro; hence, whether they can truly
reflect in vivo behavior needs further investigation. On the other hand, due to the high
heterogeneity of the GAG molecular structure, the current structural analysis of GAG
chains lags behind that of other biomacromolecules (proteins and DNA). Despite the
rapid development of modern analytical techniques, determination of the fine structure
of GAGs remains a challenging task [2]. This has caused great hindrance to in-depth
studies of the structure–function relationship of endogenous GAGs in physiological or
pathological conditions.

At present, GAGs have become another “life code” to be deciphered after nucleic acids
and proteins, and the elucidation of the relationship between GAG structure and function
is of great significance for the prevention of human diseases and the implementation of
precision medicine.
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