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Abstract: It is hypothesized that esophageal precancerous lesions (EPLs) have a surge requirement
for coenzyme I (NAD). The purpose of this study is to clarify the key control points of NAD synthesis
in developing EPL by detecting related markers and the gene polymorphism of NAD synthesis and
metabolism. This case–control study was conducted in Huai’an, China. In total, 100 healthy controls
and 100 EPL cases matched by villages, gender, and age (±2 years) were included. The levels of
plasma niacin and nicotinamide, and the protein concentration of NAMPT, NAPRT, and PARP-1 were
quantitatively analyzed. PARP-1 gene polymorphism was detected to determine if the cases differed
genetically in NAD synthesis. The levels of plasma niacin and nicotinamide and the concentrations of
NAMPT were not related to the risk of EPL, but the over-expressions of NAPRT (p = 0.014, 0.001, and
0.016, respectively) and PARP-1 (p for trend = 0.021) were associated with the increased EPL risk. The
frequency distribution of APRP-1 genotypes was found to not differ between the two groups, while
the EPL group showed an increased frequency of the variant C allele. NAPRT, but not NAMPT, was
found to be responsible for the stress of excess NAD synthesis in EPL. Focusing on the development
of NAPRT inhibitors may be beneficial to prevent and control ESCC.

Keywords: NAD; NAPRT; NAMPT; PARP-1; esophageal precancerous lesions

1. Introduction

Esophageal squamous carcinoma (ESCC) is the most common subtype of esophageal
cancer, cases of which are mainly found in East Asia, especially in China [1]. ESCC develops
from esophageal precancerous lesions (EPLs), which are characterized by the dysplasia of
esophageal mucosal cells. Esophageal cancer is generally not detected until the late stage
because its early symptoms are not obvious, which leads to a poor prognosis and high
mortality, even after treatment [2]. Fortunately, the EPL can be delayed or even reversed
with advisable interventions [3]. Therefore, it is important to investigate the changes in
key compounds in specific biochemical reactions occurring during EPL in vivo for further
effective prevention of ESCC. The role of coenzyme I (NAD, also known as nicotinamide
adenine dinucleotide) is of note.

As a coenzyme in metabolic pathways, NAD acts as an electron acceptor/donor during
redox reactions occurring within cells and provides support for energy production [4]. A
total of three pathways are present for the synthesis of NAD: the de novo pathway, the
Preiss–Handler (PH) pathway, and the salvage pathway. The de novo pathway enzymes
are restricted to some extent because they are mainly expressed in the liver and kidney [5].
Therefore, the latter two pathways are mainly responsible for NAD generation. The PH
pathway begins with niacin, which generates NAD through the key role of the rate-limiting
enzyme nicotinic acid phosphoribosyltransferase (NAPRT) [5–7]. Whereas, in the salvage
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pathway, it is the nicotinamide phosphoribose transferase (NAMPT) that is rate-limiting in
nicotinamide consumption [8].

Due to the space-free growth pattern of cancer cells and the corresponding Warburg
effect, there is a surging demand for higher production of NAD, as well as for substrates
and rate-limiting enzymes in the main synthesis pathway [9,10]. Experiments in vitro
found that NAPRT is overexpressed in esophageal cancer [11,12]. In addition, Takahashi
et al. detected a significant upregulation in NAMPT mRNA expression in the serum of
esophageal cancer patients during the perioperative period [13]. Currently, NAMPT has
received more attention in cancer treatment [14,15]. NAMPT inhibitors have demonstrated
antitumor activity in certain cancer cells, but it is not known whether they can achieve the
same effect in esophageal cancer [15–17].

In addition, NAD also plays a cellular regulatory function as a substrate for other
enzymatic reactions, including that catalyzed by poly ADP-ribose polymerase (PARP),
which is essential for the repair of DNA in cancer cells [18,19]. PARPs use NAD as the
source of ADP-ribose groups to synthesize protein complexes in combination with broken
DNA strands. Activated PARPs, mainly PARP-1, bind to specific proteins through a series
of long-branched ADP-ribose polymers (PARs) to repair DNA and control downstream
reactions to DNA damage [20,21]. Cancer cell DNA damage is frequent, and to maintain
cell survival, higher activity of PARPs is usually relied on [19,22]. The same applies to EPL,
which was found to express abundant DNA damage variants in tissues [23].

However, the activity of PARPs does not only depend on the stock of NAD in vivo.
Zhang et al. found that there is an exchange of valine (Val) to alanine (Ala) in the catalytic
domain of PARP-1 in exon 17. The protein concentration of PARP-1 may be altered as a
result, resulting in an increase in susceptibility to cancer. [24]. Three meta-analyses have
consistently shown that the PARP-1 V762A polymorphism is associated with cancer risk in
Asian populations [21,25,26].

The next-generation sequence analysis of EPL and ESCC tissues revealed a high
similarity in gene mutations and copy-number alterations, proving that the initial ESCC
clone forms early in the EPL stage [23]. Therefore, it is likely that the supply of NAD,
as well as the PARP-1 genetic phenotype, is equally important for EPL. Understanding
the characteristics of NAD synthesis and PARP-1 gene polymorphism in EPL can provide
ideas for the prevention and control of ESCC. To this end, we conducted a matching 1:1
case–control study in Huai’an district, a region with a high prevalence of ESCC in China,
and tested the blood samples of 100 pairs of study subjects.

2. Materials and Methods
2.1. Study Population and Sample Collection

The study population came from The Early Diagnosis and Early Treatment Project
of Esophageal Cancer. The recruitment of subjects has been described in detail in other
studies [27,28].

In total, 100 cases with mild or moderate EPL were randomly selected, and 100 healthy
subjects without esophageal dysplasia from EDETPEC were matched into the control
group. The two groups of subjects were matched according to region, sex, and age
(±2 years). Epidemiological data and dietary circumstances were obtained by surveys and
published [27]. The collection and preservation of the blood samples from 200 subjects
were also described in detail previously [28].

2.2. Laboratory Measurements

The enzyme-linked immunosorbent assay (ELISA) (Nanjing Jin Yibai Biological Tech-
nology Co., Ltd., Nanjing, China) was used to determine the levels of niacin and nicoti-
namide and the activities of related enzymes in plasma samples. Testing was performed in
strict accordance with the recommended procedures from the manufacturer. The OD values
were measured at the wavelength of 450 nm using a microplate reader (Tecan Trading Co.,
Ltd., Shanghai, China).
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The Wizard® Genomic DNA Purification Kit (Promega, Madison, WI, USA) was used
to extract genomic DNA on serum samples. Polymerase chain reaction–restriction fragment
length polymorphism (PCR-RFLP) was used to evaluate PARP-1 V762A gene polymor-
phism with sense primer 5′-TGGCTCAGGACCCATTTGTC-3′ and antisense primer 5′-
GAAGGCCTGACCCTGTTACC-3′. The one showing a band of 449 bp is the wild genotype
TT. The heterozygous TC shows three bands of 449, 312, and 137 bp, while the one with
two bands is the variant genotype CC with 312 and 137 bp, respectively. PCR amplification
was performed with a PCR premix kit (Sangon, Shanghai, China) and an automated blood
cycler (Eppendorf, Hamburg, Germany). The procedure was carried out in strict accordance
with the manufacturer’s recommended PCR conditions. The products were digested at
37 ◦C for 60 min and then digested with restriction endonuclease Eci I (New England
Biolabs, Hitchin, UK) at 65 ◦C for 10 min to identify and cleave the variant sequences. The
digested PCR products were resolved on a 2% agarose gel, stained with ethidium bromide,
and then visualized under UV light (Figure 1).
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Figure 1. RFLP photograph of 2% agarose gel electrophoresis representing NAPRT V762A polymor-
phism. Lane 3 was characterized by a single 449 bp representing wild genotype TT; lanes 1, 2, 4, and
6 were characterized by 449, 312, and 137 bp representing heterozygote TC; lane 5 was characterized
by 312 and 137 bp representing variant genotype CC; lane M represents the DNA marker.

2.3. Statistical Analysis

The appropriate two independent sample t-tests and Wilcoxon rank-sum tests were
conducted to estimate differences in the general characteristics; plasma niacin levels; plasma
niacinamide levels; and levels of enzymatic activity of NAMPT, NAPRT, and PARP-1
between healthy controls and EPL cases. For further analysis, the NAD-related continuous
variables were divided into quartiles (Q1, Q2, Q3, Q4) according to the range of measured
values. Univariate logistic regression was performed on the 18 variables related to the
general characteristics and the diet of the subjects in order to avoid the influence of the
correlations between the variables on the subsequent results and thus increase the reliability.
p values < 0.10 (two-tailed) were considered to have statistical significance. Conditional
logistic regression was used to assess the association between NAD-related enzymes and
EPL risk, adjusting for eating speed, liquor drinking, and fresh fruit. The median of each
group divided by quartiles for each variable was regarded as a continuous variable, and
a linear trend test was performed. A p value < 0.05 (two-tailed) is a sign of statistical
significance. The chi-square test was used to evaluate the association between PARP-
1V762A gene polymorphism and EPL risk. GraphPad Prism version 8.0 was used as a
graphing tool, and SPSS version 24.0 was used for statistical analysis.
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3. Results
3.1. General Characteristics of the Subjects

There were 100 EPL cases (48% female, 64.45 ± 5.34 years old) and 100 matched
healthy controls (48% female, 64.38 ± 5.09 years old) in the present study. No statistical dif-
ference was found in terms of body mass index (BMI) (cases: 23.72 ± 3.21 kg/m2, controls:
23.75 ± 3.32 kg/m2) and waist–hip ratio (WHR) (cases: 0.90 ± 0.05, controls: 0.89 ± 0.05)
between the two groups. The basic information about smoking and drinking of the subjects
has been previously neatened [28].

3.2. Relevant Variables for NAD of the Subjects

The plasma niacin level; the plasma nicotinamide level; and the concentrations of
related protease NAMPT, NAPRT, and PARP-1 in healthy controls and EPL cases are shown
in Table 1. The concentrations of NAPRT (p < 0.001) and PARP-1 (p = 0.001) in EPL cases
were significantly lower than those in healthy controls. However, no significant difference
was found in the level of plasma niacin, nicotinamide, or the concentration of NAMPT
(p = 0.951, 0.732, and 0.767, respectively).

Table 1. Comparison of NAD-related variables between two groups.

Median (25th–75th) EPL Controls p Value

Niacin (nmol/L) 34.209 (30.238, 38.756) 32.488 (29.245, 41.422) 0.951
Nicotinamide (ng/mL) 0.613 (0.351, 1.042) 0.586 (0.371, 1.040) 0.732

NAPRT (pg/mL) 194.117 (152.068, 237.732) 146.972 (115.463, 219.051) <0.001 *
NAMPT (pg/mL) 164.658 (142.565, 188.002) 160.528 (137.922, 190.628) 0.767
PARP-1 (pg/mL) 879.598 (669.161, 1294.424) 709.649 (431.848, 979.108) 0.001 *

* The difference was considered statistically significant (p < 0.05).

3.3. Association between Relevant Variables for NAD and Risk of EPL

Within this study, univariate logistic regression on 18 related variables was performed.
According to their data characteristics, we adjusted the variables as either continuous
(age), binary (gender, smoking, passive smoking, liquor drinking, a history of digestive
disease, and a family history of cancer or ESCC), or multi-categorical (BMI, WHR, character,
education, income, eating speed, fresh vegetables, fresh fruits, fried food, and hot food)
variables. As shown in Figure 2, a total of three related variables were associated with the
EPL risk, including drinking (p = 0.059), eating speed (p = 0.055), and fresh fruits (p = 0.021).
Liquor drinking and faster eating speed were found to increase the EPL risk, while the
intake of fresh fruit was negatively associated with the EPL risk. Several fruits that were
consumed more frequently by the subjects were analyzed in our study, including citrus,
orange, strawberry, pineapple, banana, and hawthorn.

As shown in Table 2, the levels of plasma niacin (p for trend = 0.632) and nicotinamide
(p for trend = 0.804), and the concentration of NAMPT (p for trend = 0.641) showed no
significant association with EPL risk after model adjustment. However, compared with the
first quartile, the other three quartiles of NAPRT were positively associated with EPL risk
(p = 0.014, 0.001, and 0.016, respectively). In addition, we found a positive linear relationship
between the concentration of PARP-1 and EPL risk (p for trend = 0.021). Further analysis
after gender differentiation revealed that this association could only be found in male
subjects (Table 3).
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Table 2. ORs (95% CIs) of relevant variables for NAD with EPL.

Q1 Q2 Q3 Q4 p for Trend
OR (95%CI) OR (95%CI) OR (95%CI) OR (95%CI)

Niacin (nmol/L) 21.335–29.522 29.522–33.858 33.858–40.162 40.162–395.435
EPL cases (%) 46.94 42.86 69.39 40.82

crude model 1 0.913 (0.505–1.650) 1.478 (0.871–2.509) 0.870 (0.478–1.583) 0.642
adjusted model 1 0.970 (0.534–1.763) 1.341 (0.780–2.304) 0.886 (0.484–1.620) 0.632

Nicotinamide
(ng/mL) 0.070–0.362 0.362–0.591 0.591–1.039 1.039–37.700

EPL cases (%) 52.00 46.00 52.00 50.00
crude model 1 0.885 (0.505–1.550) 1.000 (0.581–1.722) 0.962 (0.555–1.665) 0.999
adjusted model 1 1.063 (0.597–1.894) 1.071 (0.615–1.866) 1.090 (0.615–1.931) 0.804

NAMPT (pg/mL) 65.119–141.113 141.113–161.586 161.586–188.603 188.603–776.568
EPL cases (%) 42.86 52.08 57.14 47.92

crude model 1 1.215 (0.680–2.171) 1.333 (0.757–2.348) 1.118 (0.619–2.020) 0.819
adjusted model 1 1.221 (0.680–2.190) 1.347 (0.760–2.387) 1.192 (0.655–2.170) 0.641

NAPRT (pg/mL) 44.12–131.20 131.21–171.67 171.68–233.12 233.132065.36
EPL cases (%) 20.41 54.16 73.47 52.08

crude model 1 2.654 (1.280–5.504) * 3.600 (1.787–7.254) * 2.552 (1.226–5.314) * 0.117
adjusted model 1 2.526 (1.208–5.282) * 3.268 (1.597–6.685) * 2.477 (1.187–5.170) * 0.132

PARP-1 (pg/mL) 133.53–537.78 537.79–790.48 790.49–1070.71 1070.71–3099.21
EPL cases (%) 37.50 40.43 56.25 65.96

crude model 1 1.078 (0.566–2.054) 1.500 (0.826–2.723) 1.759 (0.984–3.144) 0.033
adjusted model 1 0.987 (0.510–1.908) 1.376 (0.753–2.517) 1.816 (1.011–3.262) * 0.021 *

* The difference was considered statistically significant (p < 0.05).
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Table 3. ORs (95% CIs) of relevant variables for NAD with EPL in male and female subgroups.

Q1 Q2 Q3 Q4 p for Trend
OR (95%CI) OR (95%CI) OR (95%CI) OR (95%CI)

Male
Niacin (nmol/L)

EPL cases (%) 54.55 38.46 72.00 37.93
Adjusted OR (95%CI) 1 0.728 (0.306–2.610) 1.229 (0.579–2.610) 0.703 (0.301–1.645) 0.483

Nicotinamide (ng/mL)
EPL cases (%) 50.00 44.44 44.44 58.62
Adjusted OR (95%CI) 1 0.927 (0.387–2.220) 0.856 (0.391–1.877) 1.251 (0.614–2.549) 0.454

NAMPT (pg/mL)
EPL cases (%) 48.00 50.00 53.85 44.44
Adjusted OR (95%CI) 1 1.165 (0.513–2.648) 1.106 (0.499–2.451) 1.019 (0.444–2.339) 0.949

NAPRT (pg/mL)
EPL cases (%) 21.74 48.15 81.48 43.48
Adjusted OR (95%CI) 1 2.373 (0.820–0.869) 3.464 (1.287–9.319) * 2.143 (0.723–6.350) 0.401

PARP-1 (pg/mL)
EPL cases (%) 31.25 37.04 76.92 67.65
Adjusted OR (95%CI) 1 1.355 (0.452–4.056) 1.709 (0.600–4.866) 2.619 (0.972–7.062) 0.020 *

Female
Niacin (nmol/L)

EPL cases (%) 40.74 47.83 66.67 45.00
Adjusted OR (95%CI) 1 1.237 (0.515–2.973) 1.411 (0.614–3.240) 1.196 (0.473–3.024) 0.815

Nicotinamide (ng/mL)
EPL cases (%) 55.00 46.88 60.87 38.10
Adjusted OR (95%CI) 1 1.304 (0.496–3.432) 1.503 (0.564–4.010) 1.025 (0.357–2.942) 0.783

NAMPT (pg/mL)
EPL cases (%) 37.50 50.00 60.87 52.38
Adjusted OR (95%CI) 1 1.233 (0.525–2.896) 1.507 (0.630–3.607) 1.312 (0.528–3.260) 0.575

NAPRT (pg/mL)
EPL cases (%) 19.23 61.90 63.64 60.00
Adjusted OR (95%CI) 1 2.373 (0.820–6.869) 3.464 (1.287–9.319) * 2.143 (0.723–6.350) 0.261

PARP-1 (pg/mL)
EPL cases (%) 40.63 45.00 60.87 61.54
Adjusted OR (95%CI) 1 0.880 (0.352–2.203) 1.254 (0.572–2.750) 1.576 (0.646–3.848) 0.278

* The difference was considered statistically significant (p < 0.05).

3.4. The Gene Polymorphism of PARP-1 V762A

The proportions of TT, TC, and CC genotypes were 39%, 19%, and 42% in the EPL
group, and 37%, 14%, and 49% in the control group (Figure 3). No statistical significance
was observed with the genotypes between the two groups (p = 0.506 and 0.548, respectively).
However, compared with control group, the frequency of the C allele was higher in the EPL
group (p < 0.001).
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4. Discussion

Cancer cells require a larger store of NAD than normal cells. Our study found that
NAD is also used more frequently in EPL, as reflected by the over-expression of NAPRT
and PARP-1, and the differential distribution frequency of the C allele in PARP-1 V762A.

Levels of plasma niacin and nicotinamide were not found to be associated with EPL
risk. This may be related to the extensive and complex sources of niacin and nicotinamide
involved in NAD synthesis in vivo. In addition to being ingested in the diet, niacin can
also be converted from nicotinamide in the body. Shats et al. showed that intestinal flora
can convert nicotinamide to niacin via microbial nicotinamidase (PncA), thereby utilizing
the PH pathway to generate NAD [29]. Niacinamide can also be derived from food intake.
In addition, it can be produced in certain reactions wherein NAD is used as a substrate for
consumption [5,30,31]. This is one of the reasons why we did not perform a comparison
of dietary niacin and niacinamide intakes in the subjects. Notably, previous studies have
also failed to reveal the relationship between dietary niacin intake and esophageal cancer.
Results of a case report showed improvement in esophageal histopathology after niacin
supplementation in approximately half of the pellagra patients with acute esophagitis [32].
In addition, an Italian case–control study demonstrated an independent effect of niacin:
niacin consumption was negatively related to the risk of esophageal cancer [33]. However,
there is no shortage of studies negating the correlation between niacin and esophageal
cancer [34,35]. This controversial result may be due to the differential expression of key
enzymes for NAD synthesis, which allows niacin or nicotinamide to be absorbed and
utilized inconsistently with expectations after entering the body from dietary intake.

The over-expression of NAPRT showed a significant positive correlation with the risk
of EPL, which is consistent with our speculation based on studies related to esophageal
cancer [36]. However, NAMPT was not detected to have the same correlation. This may be
due to the ability of niacin to produce NAD more efficiently. In animal tissues, niacin is
considered to be a better precursor of NAD than nicotinamide [37]. A study found that the
addition of niacin, but not nicotinamide, increased NAD levels in cells by nearly double, and
this was strongly correlated with the over-expression of NAPRT [38]. More importantly,
the significant over-expression of NAPRT in EPL patients may be related to the major
pathway of NAD synthesis in esophageal cancer tissues. A recent study by Chowdhry
et al. found that esophageal cancer cells belong to the PH-amplified cell category and are
completely dependent on the PH pathway in maintaining their NAD requirement [12].
This also confirms the rationale that the key enzyme of the salvage pathway, NAMPT, was
not found to be over-expressed in EPL. Furthermore, the possibility that NAD in vivo is
synthesized, bypassing the action of NAMPT in the presence of intestinal flora and PncA,
cannot be ignored [29]. The non-linear relationship between the concentration of NAPRT
and the EPL risk may be attributed to the interference of tryptophan [39]. Although many
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body tissues do not express the complete de novo pathway enzymes, NAD in the liver is
primarily generated from tryptophan and is consumed to produce NAM, which is involved
in the salvage pathway [31]. The role of tryptophan in the non-single pathways increases
the complexity of NAD synthesis, which is likely to be ignored.

Table 3 found that the significant positive association between the concentration of
NAPRT and EPL risk was only reflected in the male subgroup. This may be because men
contribute more to smoking and drinking. A survey in the United States showed that adult
men have a greater demand than women for all tobacco products, including cigarettes,
hookahs, cigars, and e-cigarettes [40]. In addition, several studies have found that men
drink more heavily and more frequently [41–44]. Preliminary studies from our laboratory
in Huai’an District found that excessive smoking, passive smoking and liquor consumption
all contribute to the increased risk of EPL [27]. Of course, the effect of hormones on the
expression of NAPRT cannot be ruled out. On the one hand, androgen receptors were
found to be more present in ESCC tissues and were associated with tumor differentiation,
invasion, and lymph node metastasis [45]. An animal study showed that the highest
incidence of ESCC is in male rats, followed by androgen-injected females [46]. On the
other hand, Matsuoka et al. found that the proliferation of ESCC cell lines is accelerated by
testosterone but inhibited by estradiol [47]. The anti-inflammatory capacity of estrogen and
its regulation of lipid metabolism gives it the potential to delay the onset of esophageal
cancer [48].

The over-expression of NAPRT in the case group demonstrates that EPL mainly en-
sures a large NAD requirement through the PH pathway. The linear positive correlation
between PARP-1 and the EPL risk further fully validates that the surge of NAD is being
fully utilized. Therefore, NAPRT inhibitors may be more functional, targeting the clinical
treatment of EPL than NAMPT inhibitors. 2-Hydroxynicotinic acid (2-HNa), the first iden-
tified NAPRT inhibitor, can effectively silence NAPRT [49]. In recent years, the application
of computer technology has identified chemical molecular formulas that are functionally
similar to 2-HNa, promising the discovery of new NAPRT inhibitors for esophageal cancer
therapy [50,51].

It remains difficult to show that PARP-1 variant genotypes increase susceptibility to
EPL because no significant differences were found in the distribution of PARP-1 genotypes
TT, TC, and CC between the two groups of subjects. However, the study by Hao et al.
found that the PARP-1 variant C allele was associated with an increased risk of ESCC [52].
Our results of the variant C allele also reveal the possibility of its association with EPL risk,
highlighting the possible impact of PARP-1 on ESCC susceptibility. Further studies need to
be conducted to refine our findings.

5. Conclusions

In conclusion, we found that it is the over-expression of NAPRT, but not NAMPT, that
provides the additional support for NAD synthesis in EPL and further ensures the oversup-
ply of PARP-1. Our study is meaningful because it suggests that EPL and esophageal cancer
are consistent in that both may meet the additional demand for NAD synthesis through
the PH pathway. Hence, it may be possible to control the disease at the EPL stage. We
believe that it is necessary to focus on subsequent NAPRT inhibitors research to promote
the prevention and control of ESCC.
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