Skip to main content
. 2022 Nov 19;23(22):14398. doi: 10.3390/ijms232214398
Algorithm 1 NetSCCA: Network constrained sparse common component analysis.
1: Compute jaccard similarity: W.
2: For q target genes, compute the regulator effect matrices as R for =1,,q and
    G==1qRTR.
3: For the square root of G (i.e., QTQ=G), compute sparse common loadings of q
    regulator effect matrices R,=1,,q.
        3.1: Start A at V=[V1,V2,,VK], which is the loading matrix from ordinary PCA of Q.
        3.2: Given a fixed A=[a1,a2,,aK], solving the following problem,
              θ^kargminθk{zkQθk2}+λ1θk1+λ2j<s(θj,kθs,k)2Wj,sk=1,2,,K,
        where zk=Qak. Update Θ^=[θ^1,θ^2,,θ^K].
        3.3: For a fixed Θ^, perform the singular value decomposition of QTQΘ^=UΓVT and
        update A^=UVT (see Zou et al. [25]).
        3.4: Repeat Steps 3.2–3.3, until convergence.
4: Sparse common loading is given by θ^kθ^k for k=1,,K.