Skip to main content
. 2022 Nov 17;22(22):8891. doi: 10.3390/s22228891
Algorithm 1 Wind turbine derated power operation data outlier detection
Require: the sample set of turbine output power and nacelle wind speed pair {(x(1),y(1)),,(x(m),y(m))}, discretized wind speed interval number J=50, wind turbine theoretical power curve function P=f(v), probability threshold θ.
1. Initialize the model parameters to obtain the optimal power level number K and the initial values of the mixed probability model parameters α(0),σ(0),ψ(0),ϕ(0).
2. While α,σ,ψ,ϕ have no convergence. Do
3.    E-step: For each sample i and the derated power k,
     calculate wk(i)=pX|YZ(x(i)|y(i),k;α,σ)pY(y(i);ψ)pZ(k;ϕ)k=1KpX|YZ(x(i)|y(i),k;α,σ)pY(y(i);ψ)pZ(k;ϕ).
4.    M-step: Update parameters
5.        αq=i=1mwq(i)x(i)f(y(i))i=1mwq(i)f2(y(i))
6.        σpq2=i=1mwq(i)I(y(i)Vp)(x(i)αqf(y(i))2i=1mwq(i)I(y(i)Vp)
7.        ϕq=1mi=1mwq(i)
8.        ψp=i=1mk=1KI(y(i)Vp)wk(i)m
9. End while.
10. Calculate the posterior probability pZ|XY(k|x(i),y(i)) of each sample i under each derated power state k according to iterative parameters.
11. Calculate the derated power level c(i)=argmaxk pZ|XY(k|x(i),y(i)) to which the sample i belongs.
12. For each derated power k, the sample set whose posterior probability is lower than the threshold {(x(i),y(i))|c(i)=k,pZ|XY(k|x(i),y(i))<θ} is marked as outlier data.