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Abstract: Premature senescence of leaves causes a reduced yield and quality of rice by affecting plant
growth and development. The regulatory mechanisms underlying early leaf senescence are still
unclear. The Leaf senescence 1 (LS1) gene encodes a C2H2-type zinc finger protein that is localized to
both the nucleus and cytoplasm. In this study, we constructed a rice mutant named leaf senescence 1
(ls1) with a premature leaf senescence phenotype using CRISPR/Cas9-mediated editing of the LS1
gene. The ls1 mutants exhibited premature leaf senescence and reduced chlorophyll content. The
expression levels of LS1 were higher in mature or senescent leaves than that in young leaves. The
contents of reactive oxygen species (ROS), malondialdehyde (MDA), and superoxide dismutase
(SOD) were significantly increased and catalase (CAT) activity was remarkably reduced in the ls1
plants. Furthermore, a faster decrease in pigment content was detected in mutants than that in WT
upon induction of complete darkness. TUNEL and staining experiments indicated severe DNA
degradation and programmed cell death in the ls1 mutants, which suggested that excessive ROS
may lead to leaf senescence and cell death in ls1 plants. Additionally, an RT-qPCR analysis revealed
that most senescence-associated and ROS-scavenging genes were upregulated in the ls1 mutants
compared with the WT. Collectively, our findings revealed that LS1 might regulate leaf development
and function, and that disruption of LS1 function promotes ROS accumulation and accelerates leaf
senescence and cell death in rice.

Keywords: leaf senescence; ROS; cell death; LS1; rice

1. Introduction

Rice (Oryza sativa L.) is an important crop and one of the major food sources worldwide.
It is the staple food for over half of the world’s population [1]. Leaves are the main organ of
photosynthesis in plants. Early senescence of rice leaves affects photosynthesis and organic
matter accumulation, ultimately leading to a significant decline in the yield and quality [2].
Leaf senescence is a highly complex and delicate process that is controlled by a precise
molecular regulatory network [3,4]. Any disruption in the processes of this molecular
regulatory network can lead to abnormal leaf senescence, which results in fluctuations in
crop yields [4,5]. Leaf senescence is a normal physiological process in plants that occurs at
a certain stage of their life cycle; it is accompanied by an orderly progression of some physi-
ological and biochemical reactions and a redistribution of photosynthetic products [3,4,6].
However, the premature senescence of leaves is associated with the changes in intracellular
physiological and biochemical features; this includes synthesis, degradation, and trans-
portation of various proteins; degradation of macromolecules [4,7,8]; severe degradation of
chloroplasts [8]; peroxidation of membrane lipids; and DNA damage [7,9]. Therefore, it is

Int. J. Mol. Sci. 2022, 23, 14464. https://doi.org/10.3390/ijms232214464 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms232214464
https://doi.org/10.3390/ijms232214464
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0003-1786-1950
https://orcid.org/0000-0002-5278-7824
https://doi.org/10.3390/ijms232214464
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms232214464?type=check_update&version=1


Int. J. Mol. Sci. 2022, 23, 14464 2 of 18

critical to understand the mechanism underlying premature leaf senescence for molecular
breeding of crops.

Leaf senescence is a characteristic that is often induced by various internal factors
(phytohormones, reproduction, reactive oxygen species (ROS), and some signal molecules),
external or environmental factors (weak light or darkness, ozone, UV-B, and nutrient
limitation), and biotic and abiotic stresses (mainly high or low temperatures, water, high
salinity, oxidation, and pathogen attacks) [3,10–13]. Simultaneously, leaf senescence is
accompanied by programmed cell death (PCD) caused by excessive ROS [14–16]. PCD is
an essential process that determines plant growth and development and plays a critical role
in the self-destruction of damaged cells [17,18]. In plants, organized destruction of cells is
very important for the removal of infected and damaged cells and formation of specific
organs [19,20]. Plants have evolved various protective mechanisms for disease resistance
to prevent serious damage from pathogen attacks; the most common mechanism is the
hypersensitivity response, which triggers rapid PCD to avoid further invasion in host plant
tissues [10,21,22].

ROS are important signaling molecules that play an important role in cellular signaling
pathways in response to diverse abiotic and biotic stresses [23]. In plants, ROS exist in
different forms in many organelles such as chloroplasts, mitochondria, cytoplasm, and
peroxisomes [24]. Many studies have reported that a high ROS content is a typical character-
istic of senescent leaves; it is usually used as an index of successful leaf senescence, which
was confirmed in Arabidopsis [25,26], wheat [27], and rice [16,28]. Excess accumulation of
ROS such as superoxide anion (O2−) and hydrogen peroxide (H2O2) leads to an imbalanced
redox state in cells and causes severe oxidative damage to intracellular substances [9,29,30].
To prevent excess ROS accumulation in cells, plants have developed an antioxidant defense
system that includes ROS-scavenging enzymes: mainly ascorbate peroxidase (APX), super-
oxide dismutase (SOD), catalase (CAT), and peroxidase (POD) [30,31]. Moreover, various
studies have reported that these ROS-scavenging enzymes are involved in the regulation of
stress responses in plants [32–34].

Changes in leaf color or wilting are the most easily observed phenotypes in leaf
senescence [35]. In recent decades, various types of mutants and several genes related to
leaf senescence have been identified and characterized in plants [28,36–39]. In rice, cloned
and functionally elucidated genes related to leaf senescence include transcription factors
(TFs) such as the MYB/MYC and WRKY/NAC (NAM, ATAF1/2, and CUC2) TF families,
zinc finger proteins (ZFPs), proteases, kinases, lipases, and ribonucleases [40–44]. Among
these genes, OsNAC2 (a rice NAC TF) participates in leaf senescence by activating the
transcriptional levels of ABA biosynthetic genes (OsZEP1 and OsNCED3) and inhibiting
that of the ABA catabolic gene (OsABA8ox1) [40]. Moreover, OsNAC2 promotes the
expression of chlorophyll-degrading genes (OsSGR and OsNYC3), which accelerates the
degradation of chlorophyll [40]. OsWRKY42 (a WRKY TF) induces leaf senescence by
repressing the mRNA levels of OsMT1d, a ROS-scavenging gene [42]. OsMYC2, a positive
regulator of leaf senescence, activates the expression of some senescence-associated genes
(SAGs) by selectively binding to their promoters [44]. Conversely, the MYB TF OsMYB102
represses the expression of SAGs and reduces ABA accumulation and ABA signaling
responses, thereby delaying leaf senescence in rice [41]. OsTZF1, a CCCH-tandem type of
ZFPs, delays leaf senescence by regulating stress-related genes such as RD22, YSL6, akin-β,
and AOS [43]. In summary, various proteins, TFs, and other factors regulate leaf senescence
via various pathways and constitute a highly complex molecular regulatory network.

Zinc finger proteins (ZFPs) constitute a large and diverse protein family in plants.
Most of the ZFPs exhibit similar functions as TFs and are considered a special class of
TFs [45]. They are involved in many processes of plant growth, development, and response
to stresses. They play important roles in the functioning of cellular regulatory networks,
including transcriptional regulation, DNA and RNA binding, and protein–protein in-
teractions [46–48]. ZFPs contain one or more conserved zinc finger (ZnF) domains that
are composed of relatively small protein motifs containing multiple finger-like protru-
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sions [47,48]. Over the years, several ZFP genes related to leaf senescence have been cloned
in rice, such as OsDOS [49], OsTZF1 [43], OsGATA12 [50], and OsDOF24 [51]. In this
study, we characterized rice leaf senescence 1 (ls1) mutants via a CRISPR/Cas9-mediated
approach. LS1 encodes a C2H2-type ZFP that was previously identified as stress response
ZFP 1 (SRZ1) [52]. However, its function remains unclear. The ls1 mutants exhibited leaf
senescence, brown lesions on the upper and middle parts of flag leaves, a dwarf phenotype,
and PCD. Further, we measured the ROS content and reported higher levels of H2O2 in ls1
plants than in the wild type (WT) R893. Real-time quantitative PCR (RT-qPCR) analysis
showed that several SAGs and ROS-associated genes were significantly upregulated in
ls1 plants. Furthermore, the induction of darkness accelerated the senescence of ls1 leaves
compared with WT leaves. Our findings revealed that LS1 regulated leaf senescence and
cell death through ROS metabolism in rice.

2. Results
2.1. Phylogenetic Tree and Expression Pattern Analysis

To investigate the subcellular localization of LS1 protein, we constructed a fusion ex-
pression plasmid of LS1-GFP and co-expressed it in rice protoplasts with the nuclear protein
marker Ghd7-CFP. In protoplasts, the fusion protein LS1-GFP was predominantly observed
in the nucleus and cytoplasm. The signals of LS1-GFP were co-localized with Ghd7-CFP,
whereas GFP alone exhibited ubiquitous distribution throughout the cell (Figure 1A). These
results revealed that LS1 is a nuclear- and cytoplasmic-localized protein.

According to the annotations of The Molecular Breeding Knowledgebase (http://
mbkbase.org, accessed on 12 May 2020), the transcript of LS1 was predicted to encode
166 amino acids. Moreover, to verify this prediction, we obtained the coding sequence of the
LS1 gene from the rice cultivar R893 (WT) using PCR and sequenced it. The sequencing data
indicated that the length of the full-length CDS of the LS1 gene was 501 bp and encoded
a protein of 166 amino acids. Furthermore, using LS1 as the query in the NCBI database,
11 homologs were selected from various plant species (Figure 1B). The phylogenetic analysis
indicated that LS1 and its homologs formed two distinct categories: one larger clade
contained nine members, whereas the other clade had only three homologous proteins.
Interestingly, the members of the larger branch were all from monocots, while the three
homologs of other branch belonged to dicotyledonous plants (Figure 1B). These results
suggested that LS1 had a closer relationship with other homologs from monocotyledonous
plants such as Zizania palustris, Sorghum bicolor, or Zea mays than Arabidopsis thaliana,
Glycine max, or Gossypium.

To characterize the sequence of all LS1 homologs, a sequence alignment and domain
analysis were performed. The results revealed that LS1 and these homologs contained
three highly conserved ZnF domains in tandem (I, II, and III; Figure 1C). In addition,
LS1 shared higher amino acid sequence identity with proteins in monocot species such
as Panicum virgatum (XP_039788691.1, 91.57%), Setaria italica (XP_004951522.1, 91.57%),
Dichanthelium oligosanthes (OEL25621.1, 90.85%), Sorghum bicolor (KAG0532253.1, 89.76%),
Zizania palustris (KAG8070361.1, 89.16%), Miscanthus lutarioriparius (CAD6251478.1, 89.76%),
Triticum dicoccoides (XP_037453455.1, 78.21%), and Zea mays (NP_001132718.1, 79.52%)
(Supplementary Table S3). LS1 displayed a high sequence similarity with its homologs
in diverse species, which indicated that they may have similar functions. However, their
functions are still unclear.

To investigate the expression patterns of LS1 in different tissues and leaves at different
stages, RT-qPCR assays were performed. The results showed higher expression levels of
LS1 in the panicle, stem, and leaf than that in the roots (Figure 1D). In addition, the results
also showed that the expression level of LS1 was lower in younger leaves and higher in
mature or senescent leaves (Figure 1E).

http://mbkbase.org
http://mbkbase.org
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Figure 1. Expression assay and bioinformatic analysis of leaf senescence 1 (LS1). (A) Subcellular
localization of LS1. LS1 fused with green fluorescence protein (GFP) was transiently expressed in
rice protoplasts. The bottom panels show the localization of GFP as the control. Scale bar = 5 µm.
(B) Phylogenetic tree analysis of the LS1 and its homologies. Each accession number represents
a gene; their information is available in NCBI. (C) Multiple sequence alignment analysis of LS1
and its homologies. (D) Expression pattern of LS1 in various tissues. (E) Expression pattern of
LS1 in the leaves at various developmental stages. The error bars indicate SDs of three biological
replicates (D,E).

2.2. Loss of LS1 Function Accelerates Leaf Senescence

To further explore the function of LS1 in rice, we conducted a targeted mutation of the
LS1 gene using CRISPR/Cas9-mediated technique. To efficiently and specifically mutate
LS1 in rice, a CRISPR/Cas9 vector containing two target sites (T1 and T2) was constructed
(Supplementary Figure S1A). The binary vector pC-LS1-gRNA (Supplementary Figure S1B)
was constructed as previously described by Ma et al. [53]. Further, the recombinant plasmid
was introduced into the rice variety R893 via an Agrobacterium-mediated transformation.
After the transformation, specific PCR and sequencing were performed to identify the posi-
tive transgenic plants. Further, two effective mutation types with different base insertions
of 1 bp from T1 were selected and named as ls1-1 and ls1-2, respectively (Figure 2A–C,
Supplementary Figure S1C). The qPCR experiment showed that LS1 was almost not ex-
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pressed in ls1 plants, which indicated that LS1 gene was successfully knocked out in ls1
mutants (Figure 2D).
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Figure 2. Phenotypic characterization of WT and ls1 plants. (A) Phenotypes of WT and ls1 mutants at
the heading stage. (B) Leaf phenotype of WT and ls1 plants at the heading stage. (C) Mutation sites
of LS1 gene in the ls1-1 and ls1-2 plants. The “+” indicates the insertion and the numbers indicate
the number of bases. The red arrow indicates the insertion position of the coding region. (D) LS1
expression level in WT and ls1 plants. (E,F) Length and width of leaves from WT, ls1-1, and ls1-2
plants. (G) Determination of photosynthetic pigment content. The error bars indicate SDs of three
biological replicates. The p-value was calculated using a Student’s t-test. ** p < 0.01, * 0.01 < p < 0.05.
Bar = 20 cm (A); bar = 10 cm (B).
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The phenotypic characteristics of WT and ls1 mutants that were grown in paddy fields
in Changsha or Sanya with daily field management were investigated. The results revealed
that the ls1 plants exhibited premature leaf senescence, a reduced plant height, and slightly
curled leaves at the heading stage (Figure 2A,B). At the seedling stage, the leaves of the ls1
and WT plants exhibited no significant differences (Supplementary Figure S1D). Compared
with WT, the leaf width and length were clearly lower in ls1 mutants (Figure 2E,F). In
addition, we detected the pigment contents in the leaves of WT and ls1 plants. The results
indicated that the carotenoid (Car), chlorophyll a (Chl a), and chlorophyll b (Chl b) contents
in the senescent leaves of ls1 plants were lower than those in the leaves of WT plants.
Moreover, the total Chl content in the ls1 mutants was significantly lower than that in the
WT (Figure 2G). These results revealed that LS1 is involved in regulating leaf senescence
during normal growth and development in rice.

2.3. Mutations in LS1 Lead to Increased Expression of Senescence-Related Genes

At the heading stage, the leaves of the lsl-1 and lsl-2 plants exhibited severe water loss,
wilting, and brown lesions on the upper and middle parts of flag leaves compared with
the WT (Figure 3A). To understand the mechanisms underlying the premature senescence
of ls1 leaves, we examined the transcript levels of several SAGs [28], such as stay-green
(SGR), OsSAG12-2, Osl85, Os157, OsWRKY23, and OsNAP, in the WT and ls1 leaves using
qRT-PCR assays. These data showed that the transcript levels of SGR, OsSAG12-2, Osl85,
Os157, and OsWRKY23 were significantly increased in the ls1 plants compared with the WT.
In contrast, there were no significant differences in the expression levels of OsNAP in the
ls1 and WT plants (Figure 3B). These results indicated that most SAGs were expressed at
higher levels in the ls1 plants than in the WT, suggesting that the process of leaf senescence
was significantly accelerated in ls1 leaves.

2.4. The LS1 Mutants Exhibited More ROS Accumulation and Cell Death

Many studies have reported that premature senescence in rice mutants was mainly
induced by overaccumulation of ROS [54–56]. To investigate the ROS content in the ls1
plants, histochemical staining was carried out to examine the levels of H2O2 and O2− in
the leaves (DAB, NBT, and TB staining for H2O2 accumulation, O2− accumulation, and cell
death, respectively). In the TB and NBT staining, more blue formazan precipitates were
observed in the ls1-1 and ls1-2 leaves than in those of the WT (Figure 4A–C). In the DAB
staining, the leaves were stained dark brown in the ls1 plants; however, the leaves of the
WT exhibited almost no staining (Figure 4D).

Intracellular accumulation of H2O2 accelerates leaf senescence or cell death. It was
reported that the content of malondialdehyde (MDA) is a reliable indicator that reflects the
damage to cells. Therefore, the contents of H2O2 and MDA were measured in the ls1 and
WT leaves. The results revealed that the H2O2 and MDA contents were significantly higher
in the ls1-1 and ls1-2 leaves than in the WT leaves, which was consistent with the results of
the DAB staining (Figure 4E,F). SOD catalyzes the conversion of O2− into H2O2 and O2,
and CAT accelerates the decomposition of H2O2 [57,58]. Thus, the SOD and CAT activities
were measured in the ls1-1, ls1-2, and WT plants. The results indicated that the SOD activity
was significantly increased and the CAT activity was clearly decreased in the ls1 plants
compared to the WT (Figure 4G,H). These results suggested that ROS overaccumulation
and cell death occurred in the ls1 plants.



Int. J. Mol. Sci. 2022, 23, 14464 7 of 18
Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 7 of 19 
 

 

 

Figure 3. Leaf upper phenotype in ls1 plants at the heading stage and expression levels of SAGs. (A) 

Leaf phenotype of WT and ls1 mutants at the heading stage. (B) Transcript levels of six SAGs were 

analyzed using RT-qPCR. The error bars indicate SDs of three biological replicates. The p-value was 

calculated using a Student’s t-test. ** p < 0.01, * 0.01 < p < 0.05. Bar = 2 cm (A). 

2.4. The ls1 Mutants Exhibited More ROS Accumulation and Cell Death 

Many studies have reported that premature senescence in rice mutants was mainly 

induced by overaccumulation of ROS [54–56]. To investigate the ROS content in the ls1 

plants, histochemical staining was carried out to examine the levels of H2O2 and O2− in the 

leaves (DAB, NBT, and TB staining for H2O2 accumulation, O2− accumulation, and cell 

death, respectively). In the TB and NBT staining, more blue formazan precipitates were 

observed in the ls1-1 and ls1-2 leaves than in those of the WT (Figure 4A–C). In the DAB 

Figure 3. Leaf upper phenotype in ls1 plants at the heading stage and expression levels of SAGs.
(A) Leaf phenotype of WT and ls1 mutants at the heading stage. (B) Transcript levels of six SAGs
were analyzed using RT-qPCR. The error bars indicate SDs of three biological replicates. The p-value
was calculated using a Student’s t-test. ** p < 0.01, * 0.01 < p < 0.05. Bar = 2 cm (A).
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Figure 4. Analysis of ROS contents and measurement of physiological and biochemical parameters.
(A) The leaves of WT, ls1-1, and ls1-2 plants with no treatment at the heading stage. (B–D) NBT-, TB-,
and DAB-stained leaves of WT and ls1 plants. (E,F) Measurement of the H2O2 and MDA contents
in WT and ls1 plants. (G,H) Activities of the ROS-related enzymes SOD and CAT in WT and ls1
plants. The error bars indicate SDs of three biological replicates. The p-value was calculated using a
Student’s t-test. ** p < 0.01.

2.5. Loss of Function of LS1 Causes DNA Damage and Triggers PCD

Excessive accumulation of ROS such as H2O2 and O2− may cause cellular damage
or trigger PCD [59]. It is well known that PCD is a representative feature of rice leaf
senescence [60]. To evaluate the PCD process in the ls1 leaves, we performed a terminal
deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay to investigate the
degree of DNA fragmentation. When the cells underwent apoptosis, the DNA broke and
fluorescein could be added to the exposed 3′-OH, which could be easily detected using
fluorescence microscopy. The results showed that TUNEL-positive signals were clearly
detected in the leaves of the ls1-1 and ls1-2 plants, whereas almost no green fluorescein
signals were detected in the leaves of the WT (Figure 5). These results suggested that severe
DNA damage occurred in the ls1 plants that further led to PCD.
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Figure 5. Programmed cell death (PCD) detection in the leaves of ls1 plants. The red signal represents
staining with propidium iodide (PI); yellow and green signals indicate TUNEL-positive nuclei of
dead cells due to PCD. WT and ls1 leaves were analyzed at the heading stage. The green fluorescence
(520 nm) of apoptotic cells (TUNEL) in a red (620 nm) background (propidium iodide, PI) was
detected with a Zeiss LSM880 confocal laser scanning microscope. Scale bar = 100 µm.

2.6. Alteration in mRNA Levels of ROS-Related Genes in LS1 Plants

The balance of ROS in the plant body is closely related to the transcription of SOD,
POD, and ascorbate oxidase (AO) genes. A growing stream of research reported that
ROS-associated genes were induced by the excessive accumulation of ROS. For a further
analysis of the molecular basis of the overaccumulation of ROS in ls1 plants, we determined
the mRNA levels of several ROS-related genes such as AOX1a, AOX1b, APX1, APX2,
APX8, SODB, SODA1, CatA, and CatB, which strictly regulate the levels of ROS in plant
cells [30,31]. The qRT-PCR results showed that the transcript levels of most genes including
AOX1a, AOX1b, APX2, SODB, SODA1, and CatA were significantly upregulated in the
ls1 plants, while no significant alterations of the transcript levels of APX1, APX8, or CatB
were detected in the WT, ls1-1, and ls1-2 plants (Figure 6). Therefore, most ROS-related
genes exhibited higher expression levels in the ls1 plants, which were correlated with the
overaccumulation of ROS.
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replicates. The p-value was calculated using a Student’s t-test. ** p < 0.01, * 0.01 < p < 0.05.
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2.7. Acceleration of Dark-Induced Leaf Senescence in LS1 Plants

A decrease in pigment content is one of the typical characteristics of leaf senescence.
Dark-induced senescence, which is an effective method to simulate synchronous plant
senescence, has been widely used in numerous studies on leaf senescence [61]. Accordingly,
we evaluated the effects of dark-induced leaf senescence in the WT, ls1-1, and ls1-2 plants.
After 4 days of dark treatment, detached leaves from the ls1-1 and ls1-2 plants became
more yellow than those from the WT plants and exhibited a higher rate of senescence in
the mutants than that in the WT (Figure 7A). Moreover, we measured the pigment content
in the WT and two ls1 mutants after dark-induced senescence. Consistent with the yellow
phenotype, the Chl a, Chl b, and Car contents were significantly reduced in the ls1 leaves
compared with the WT leaves (Figure 7B). These results suggested that disruption of the
LS1 function accelerates leaf senescence upon the induction of darkness.
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Figure 7. The ls1 plants exhibited accelerated leaf yellowing during dark-induced senescence. (A) De-
tached leaves of WT and ls1 plants were immersed in 15 mL ddH2O at 28 ◦C for 4 days in complete
darkness. (B) Pigment contents of detached leaves of WT and ls1 plants before and after darkness
treatment. The error bars indicate SDs of three biological replicates. The p-value was calculated using
a Student’s t-test. ** p < 0.01, * 0.01 < p < 0.05.

3. Discussion
3.1. Mutation of LS1 Leads to Leaf Senescence in Rice

Leaf senescence is an inevitable stage of annual crop plants. However, premature
senescence causes a severe decrease in the yield and quality. Recently, some leaf-senescence-
associated mutants of rice were isolated and characterized. The identification of these
mutants contributed to the further exploration and understanding of the molecular mech-
anisms underlying leaf senescence. The dwarf and early-senescence leaf1 mutant (del1)
exhibited a decreased content of Chl and melatonin, tiller number, root length, plant height,
and thousand grain weight [62]. The lower leaf tips and leaf margins of the progeria mutant
es4 turned yellow (mainly at the tillering stage), whereas the whole leaves of es4 turned
yellow and senescent at the grain-filling stage [63]. The early senescence 2 (es2) mutant
exhibited rapid leaf senescence; its leaves exhibited some yellow spots at the seedling
stage and gradually withered at the tillering stage until maturity [61]. The mutant Nature
Blight Leaf 1 (nbl1) exhibited leaf senescence and delayed growth compared with the WT
at various developmental stages. At the seedling stage, the nbl1 mutant exhibited delayed
growth, and the lower leaves of the nbl1 mutant displayed distinct senescence. At the
tillering stage, the nbl1 mutant displayed yellowish and whitish leaf tips [28]. Although
many leaf-senescence-associated genes have been cloned and identified to understand the
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process of leaf senescence, some gaps still exist in understanding the process in detail. In
this study, ls1 plants exhibited premature leaf senescence, decreased chlorophyll contents,
a short plant height, small leaves, and cell death. Therefore, LS1 not only regulates leaf
senescence but also participates in the regulation of other traits during growth and devel-
opment. These results suggested that ls1 is a mutant different from those reported above.
First, the leaves of the ls1 mutant displayed no clear differences compared with those of the
WT at the seeding stage. Second, some brown spots appeared on the upper part of the ls1
leaves from the tillering stage to the heading stage that became more severe at the heading
stage. These results indicated that ls1 is an ideal material to understand the mechanisms of
leaf senescence.

In this study, we found that disruption of the LS1 function resulted in a phenotype
of premature leaf senescence. LS1 encoded a ZFP with an undefined function with three
tandem-repeat ZnF domains. The phylogenetic tree revealed that LS1 was more closely
related to monocot plants. Thus, we speculated that LS1 and its homologues may play
a similar role. More than 10 years ago, a study reported that the expression of LS1 was
regulated by various stresses; however, its function still had not been reported yet [53]. To
our knowledge, this was the first study to report that LS1 plays an important regulatory
role in plant growth and development, particularly in the regulation of leaf senescence. For
further understanding of the mechanism of LS1 in regulating leaf senescence, the transcript
levels of SAGs were investigated. Among them, stay-green (SGR), OsSAG12-2, Osl85, Os157,
OsWRKY23, and OsNAP were the main marker genes of leaf senescence in rice [28,61]. The
alterations in the expression levels of these genes reflected the senescence process of leaves
to a certain extent. The qPCR results showed that the expression levels of most SAGs were
significantly higher in the ls1 plants than that in the WT. Senescent mutants typically dis-
played increased ROS accumulation and a higher expression of senescence-related marker
genes [64]. Moreover, excessive ROS accumulation and severe cell death were detected
in the mutants. Collectively, these results suggested that the ls1 plants exhibited typical
senescence features and that the process of leaf senescence was significantly accelerated in
the ls1 leaves. In addition, we found that leaf segments yellowed faster and the Chl content
decreased more rapidly after incubation in the dark in the ls1 plants than that in the WT.
These results were consistent with studies on previously reported mutants such as nbl1,
osgst4, and oswrky5-D [28,37,65]. Therefore, the disruption of LS1 function led to premature
leaf senescence in rice under normal growth conditions and accelerated dark-induced
leaf senescence.

3.2. Disruption of LS1 Function Leads to ROS Accumulation and Cell Death in Rice

Previous studies have reported that ROS are among the critical signaling molecules
in cells; however, overaccumulation of ROS, particularly H2O2, can accelerate the leaf
senescence process [66]. H2O2 is mainly produced in various organs via cellular metabolic
pathways; its intracellular balance is mainly regulated by the antioxidant enzymes SOD and
CAT [67,68]. Our data indicated that ROS content in the ls1 leaves was remarkably increased
compared with the WT as confirmed by several histochemical staining assays and H2O2
content measurement. The SOD activity increased and CAT activity decreased, although
the qRT-PCR analysis revealed that the transcript levels of ROS-scavenging-related genes
were higher in the ls1 plants, which suggested that considerable levels of ROS accumulated
in ls1 leaves. There was lower activity of CAT in the ls1 mutants, which suggested that ROS
detoxification in these mutants was lower than in the WT plants. The increased ROS content
induced the expression of CAT-related genes, but its enzyme activity was not enough to
rapidly increase at a specific stage. Similar results were obtained by Zheng et al. in the leaf
senescence mutants msl-1 and msl-2 [69]. Thus, we speculated that aberrant changes in the
activity of two key enzymes that scavenged excess ROS resulted in an inability to timely
remove ROS from cells, which led to an overaccumulation of excess ROS. Collectively, we
speculated that LS1 is involved in ROS metabolism and that disruption of LS1 function
leads to high levels of ROS in rice. However, excessive H2O2 production often induces
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PCD or cell death [14–16]. To investigate whether LS1 was involved in ROS-mediated cell
death in rice, histochemical strains and a TUNEL assay were used for further analysis. All
of the staining results demonstrated that the mutation of LS1 may trigger cell death in rice.
The TUNEL assay indicated that the ls1 leaves exhibited strong TUNEL-positive signals.
Collectively, these results suggested that high cellular ROS levels were accumulated in the
ls1 leaves, which ultimately led to PCD or cell death. Currently, the mechanism underlying
ROS-mediated leaf senescence and cell death is being elucidated. Cui et al. [9] revealed
that mutations of EARLY LESION LEAF 1 (ELL1) promoted ROS accumulation and cell
death in rice. Yang et al. [28] reported that the disruption of ES2 function accelerated ROS
accumulation in es2 leaves, which led to leaf senescence in rice. Zheng et al. [69] revealed
that the mutation of CYP71P1 promoted early senescence and cell death, mainly due to
higher ROS levels in the mutant leaves. In this study, we demonstrated that a novel ZFP LS1
is involved in leaf senescence and cell death through ROS metabolism. Our study provided
a basis for further understanding the molecular mechanism underlying ROS-mediated leaf
senescence in rice.

4. Materials and Methods
4.1. Plant Material and Growth Conditions

Seeds of the R893 rice variety (Oryza sativa L. ssp. indica) were provided by the
Hunan Hybrid Rice Research Center (HHRRC) as the WT seeds for the physiological
experiments and genetic transformation. The R893 and ls1 mutants were cultured at 28 ◦C
in a greenhouse under a 14 h day/10 h night cycle or were grown in the field of the HHRRC
in Changsha or Sanya with daily field management. Mature seeds of the R893 and ls1
plants were harvested, dried, and stored in a refrigerator at 4 ◦C.

4.2. CRISPR/Cas9 Vector Construction, Rice Transformations, and Generation of Cloned Lines

The plant expression plasmids of pYLCRISPR/Cas9 and gRNA were provided by
the team of Yaoguang Liu of South China Agricultural University. The sites containing
(N)20GG or G(N)20 GG were confirmed as the target sequences in the coding or genome
sequence regions of the LS1 gene according to a previously described method [53]. Then,
we designed sgRNA based on the two target sites according to the method described in [70].
Briefly, the specific primers containing the two (T1 and T2) target site sequences were ligated
into the respective pYLsgRNA-U3 and pYLsgRNA-U6a cassettes. The overlapping PCR
reaction was performed to construct the pYLCRISPR/Cas9 vector using the F-U/R-gRNA
primers and site-specific F-B1/R-B2 and F-B2/R-BL primers. The pYLCRISPR/Cas9-LS1-
T1/T2 recombinant plasmids were transformed into Agrobacterium tumefaciens EHA105.
The rice transformation was performed as described previously [71]. After transformation,
all of the transgenic seedlings were cultivated in the greenhouse or fields for further
identification. To determine the mutation at the target sites, genomic DNA was extracted
from approximately 30 mg of leaf tissue using a DNA Plant Kit (TsingKe Biotech, Beijing,
China). The isolated and purified genomic DNA was used for PCR amplification using
I5-TM (TsingKe Biotech, Beijing, China), and the fragments were amplified using specific
primers (LS1-F/LS1-R) containing the two CRISPR/Cas9 target sites. Further, these PCR
fragments were purified and sequenced to identify any LS1 mutations. The sequence
alignment analysis was performed using DNAMAN7.0 and MAGE6.0 software. The
specific primers mentioned above are listed in Supplementary Table S1.

4.3. Histochemical Marker Staining Assay

The 3,3′-diaminobenzidine (DAB) and nitro blue tetrazolium (NBT) staining were
performed to detect H2O2 and O2− accumulation, respectively, as described previously
with a small modification [72,73]. Briefly, the leaves of ls1 mutants and WT were placed in
1% Triton X-100 solution for 15 s and transferred to a DAB (pH 3.8) or NBT (pH 7.8) solution
followed by gentle shaking in the dark for 20 h at 28 ◦C. Further, the treated leaves were
placed in 90% ethanol for 48 h until the chlorophyll was removed and then further placed
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in 75% glycerol for photographing. Trypan blue (TB) staining was performed as previously
described for detecting dead cells [74]. Briefly, the leaves were dipped in boiling water for
2 min and then placed at room temperature for cooling. Further, they were soaked in TB
staining solution with gentle shaking in the dark for 48 h and transferred to 75% glycerol
for rinsing and photographing. Each treatment was repeated three times.

4.4. Dark Treatment

Dark-induced leaf senescence was conducted as described previously with some
modifications [28,37]. In brief, the flag leaves of the ls1-1, ls1-2, and WT plants were cut
into approximately 2 cm fragments at the tillering stage. Then, the detached fragments
were placed in 15 mL ddH2O in petri dishes and incubated at 28 ◦C in complete darkness.
After 4 days, the leaf fragments were used to determine the pigment content and were
photographed. Each treatment was repeated three times.

4.5. Analysis of H2O2, MDA Content, and Enzyme Activity

At the heading stage, the leaves of the ls1 mutants and WT grown in rice fields were
used to prepare tissue homogenate for evaluating the CAT, H2O2, SOD, and MDA contents
as described previously [75]. All procedures were performed according to the manuals
for reagents of Nanjing Jiancheng Bioengineering Institute. Each treatment was repeated
three times.

4.6. Determination of Photosynthetic Pigment Content

Leaves that were subjected to dark-induced senescence for 4 days were used to mea-
sure the chlorophyll content. Leaves without any treatment served as the control. The
contents of Chl a, Chl b, and Car were measured using a method described previously [76].
Briefly, the leaves were cut into small fragments with a length of approximately 0.5 cm
and a weight of 0.08 g, placed in 80% acetone, and soaked for more than 24 h in the dark
with shaking every 5 h. Then, the absorbance of the supernatant of the tissue homogenate
was measured at 645, 470, and 663 nm against 80% acetone as the blank using a microplate
reader. The pigment content was calculated using the following formulae:

Chl a = (12.7 × A663 − 2.69 × A645) × V/W;

Chl b = (22.9 × A645 − 4.68 × A663) × V/W;

Total Chl = Chla + Chlb;

Car = (1000 × A470 × V/W − 3.27 × Chla − 104 × Chlb)/198.

where V is the total volume of the chlorophyll extract (mL) and W is the fresh weight of the
material (g). Each treatment was repeated three times, and a t-test was conducted in the
statistical analysis.

4.7. TUNEL Assay

To examine whether PCD occurred in the ls1 plants, we performed a TUNEL assay.
Concisely, the WT and ls1 leaves were cut into thin slices, fixed with 70% FAA fixative, and
embedded in paraffin. The TUNEL staining was performed using a TUNEL assay kit as
previously described [77]. Apoptosis was detected using a DeadEnd Fluorometric TUNEL
system (Promega, #G3250, USA) according to the manufacturer’s instructions.

4.8. Subcellular Localization

To further determine the subcellular localization of LS1, we used the full-length LS1
coding sequence to construct the pCA1301-LS1-GFP recombinant using the specific primers
LS1-GFP-F/R (Supplementary Table S1). Briefly, the recombinant (35S: LS1-GFP) and
nuclear marker (Ghd7-CFP) and similarly, the control vector (35S: GFP) and nuclear marker
plasmid (Ghd7-CFP), were co-transformed into rice protoplasts for expression. For the tran-
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sient expression, protoplasts were isolated and prepared from the leaf sheaths of the R893
rice cultivar at the seeding stage as described previously [78]. The transformed protoplasts
were incubated at 28 ◦C for 20 h under weak light conditions. After transformation, the
positively co-transformed protoplasts were selected, and GFP or CFP signals were detected
using confocal laser scanning microscopy (Zeiss, #LSM880, Germany).

4.9. Phylogenetic Analysis and Sequence Alignment

The sequences used for the phylogenetic analysis were searched using the NCBI Blastp
search program (http://www.ncbi.nlm.nih.gov, accessed on 18 June 2021) with the LS1
protein sequence as the query; the resulting protein sequences were then analyzed. The
phylogenetic analysis of LS1 from various eukaryotes was performed using the maximum-
likelihood method. A neighbor-joining tree was constructed using MEGA 6 software with
the bootstrap method and 1000 replicates as previously described [79]. Multiple sequence
alignments were performed using the software DNAMAN 7. The accession numbers of the
proteins used in the phylogenetic tree construction are listed in Supplementary Table S2.

4.10. RNA Extraction and Quantitative Real-Time PCR

The total RNA was extracted from the leaves of the WT and ls1 plants using a TRIzol
reagent kit (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s instruc-
tions. To remove the genomic DNA, the RNA was treated with DNase I for 15 min. The
cDNA was synthesized using TransScript® First-Strand cDNA Synthesis SuperMix (Trans,
#AT301-02, Bengjing, China). The specific primers used for the RT-qPCR were designed
using Primer 5.0 software according to the transcript sequences of genes in Shuhui498. Os-
Actin (OsR498G0306938500) was used as the reference gene. The RT-qPCR was performed
using an ABI QuantStudio 3 Real-time PCR Instrument (ABI, USA) with 10 µL of PCR
reaction mixture that included 0.5 µL of cDNA, 5 µL of 2 × SYBR Green Pro HS mix, 0.3 µL
of forward primer, 0.3 µL of reverse primer, and 3.9 µL of nuclease-free water. The relative
expression levels of genes were calculated using the 2−∆CT and 2−∆∆CT method. Three
biological replicates were performed for each sample, and a t-test was used in the statistical
analysis. The specific primers mentioned above are listed in Supplementary Table S2.
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