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Abstract: Obstructive sleep apnea syndrome (OSAS) is a pervasive disorder with an incidence esti-
mated at 5–14 percent among adults aged 30–70 years. It carries significant morbidity and mortality
risk from cardiovascular disease, including ischemic heart disease, atrial fibrillation, and cerebrovas-
cular disease, and risks related to excessive daytime sleepiness. The gold standard for diagnosis
of OSAS is the polysomnography (PSG) test which requires overnight evaluation in a sleep labo-
ratory and expensive infrastructure, which renders it unsuitable for mass screening and diagnosis.
Alternatives such as home sleep testing need patients to wear diagnostic instruments overnight, but
accuracy continues to be suboptimal while access continues to be a barrier for many. Hence, there
is a continued significant underdiagnosis and under-recognition of sleep apnea in the community,
with at least one study suggesting that 80–90% of middle-aged adults with moderate to severe sleep
apnea remain undiagnosed. Recently, we have seen a surge in applications of artificial intelligence
and neural networks in healthcare diagnostics. Several studies have attempted to examine its ap-
plication in the diagnosis of OSAS. Signals included in data analytics include Electrocardiogram
(ECG), photo-pletysmography (PPG), peripheral oxygen saturation (SpO2), and audio signals. A
different approach is to study the application of machine learning to use demographic and standard
clinical variables and physical findings to try and synthesize predictive models with high accuracy in
assisting in the triage of high-risk patients for sleep testing. The current paper will review this latter
approach and identify knowledge gaps that may serve as potential avenues for future research.

Keywords: sleep apnea; ML; screening; artificial intelligence

1. Introduction

Obstructive sleep apnea (OSA) is a common chronic medical disease with an estimated
prevalence rate of 5–14% [1]. A recent study has suggested that the actual prevalence of
OSA could be much higher, with estimates ranging from 24% to as high as 50% in the
mean which would make it the most prevalent chronic medical condition. Besides high
prevalence, OSA has a wide-ranging impact on health and has been shown to be associated
with an increased risk of hypertension, cardiovascular disease, cerebrovascular disease,
atrial fibrillation, impaired glycemic control, erectile dysfunction, and gastroesophageal
reflux, as among other conditions. Moreover, sleep disruption caused by sleep apnea leads
to significant daytime sleepiness with implications for risk for motor vehicle accidents,
especially in high-risk employees such as truck drivers or those heavy operating machinery.
It can also lead to significant changes in mood, including depression, and cause attention
deficit and loss of memory [2].

Traditionally the diagnosis of sleep apnea has been made by overnight polysomnogra-
phy, which is done in a sleep laboratory. However, this requires significant investment in
infrastructure, including hiring certified personnel, and hence became an impractical solu-
tion to diagnose sleep apnea efficiently. With the advent of home sleep testing, it became
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easier to screen more people for sleep apnea. Still, given the high disease prevalence, and
relatively small numbers of home sleep testing equipment in use, especially among certified
sleep providers, this approach is associated with significant barriers and diagnosis delays.

It has become increasingly apparent that we need a better strategy to accurately
identify those at high risk for sleep apnea to use testing devices more efficiently. Previously,
physicians relied on questionnaires such as the Epworth sleepiness scale (ESS) or the
STOP-BANG questionnaire to screen for patients and triage those with high risk for sleep
testing. However, this has increased reliance on patient self-reporting of symptoms. In the
past few years, there has been an emergence of predictive models that take into account
demographic and anthropometric data and the presence of comorbidities and symptoms to
improve the accuracy of screening [3–6].

With the explosive growth of machine learning (ML) and artificial intelligence and
its increasing use in healthcare, recently, the focus has turned to applications of ML in
developing predictive models to improve the screening strategy for OSA and increase its
sensitivity and accuracy. This article will highlight some of the critical studies and reports
that cover this topic in the recent literature.

2. Why Machine Learning?

The diagnostic approach towards OSA is based off symptomatology and clinical
suspicion leading to PSG study that is a gold standard for OSA diagnosis. However, the
entire process is time taking and inconvenient and burdensome for patients. Moreover, the
American Academy of Sleep medicine (AASM) has stated that the diagnosis of OSA should
involve more reliable systematic diagnostic methods, than only through apnea-hypopnea
index (AHI). For this purpose, ML is an evolving technology that combines pre-determined
OSA indicative aspects to develop a tool to diagnose future patients. Researchers over
decades have devised various methods to shape automated tools to diagnose OSA [3,4].

ML (ML) is a sub-field of artificial intelligence that describes how computers create
pattern recognition and the capacity to learn from examples and make predictions based on
historical data without being explicitly programmed to do so. ML provides highly complex
algorithms. The way these algorithms work depends on the type of application. The whole
idea depends on creating a model that can learn from data. Any task based on data points
can be programmed using ML; even more, complex tasks like understanding email spam,
customer interest, intelligent car driving, and classifying objects.

The four major ML models are supervised, unsupervised, semi-supervised, and rein-
forcement. With supervised learning, the model uses a dataset with data and we provided
labels (classifications of the observations. Supervised models can be further classified based
on output variables into regression and classification—in regression output variables have
a real continuous value like weight, while in classification the output variable is a category
like obese/not obese.

In unsupervised learning, model works with a dataset without any labels and is then
able to explore the data to infer a function to describe relationships from the unlabeled
data. The system does not predict the right output but is used to detect clustering (inherent
grouping based on shared traits) or association rules (association between different charac-
teristics). Semi supervised models are a combination of both above where the model uses
labeled as well as non-labeled data. Reinforcement models involve a sequence of decisions
made based on error and reward with a goal of maximizing reward

In Figure 1, we show the four major ML models.
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Figure 1. The four major machine learning models [1]. 
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tomate data from monitoring devices such as oximetry, or electrocardiogram or was used 
to study data acquired during sleep testing or polysomnography. We presented a sum-
mary of the papers that were included in this review in Table 1 [5–14]. Kirby et al. used a 
neural network to train using 23 clinical variables in 255 patients, and subsequently eval-
uated the predictive properties in a cohort of 150 additional patients. OSA prevalence was 
69% for the sample. The trained generalized regression neural network (GRNN) had an 
accuracy of 91.3% (95% confidence interval (CI), 86.8 to 95.8). Values for sensitivity was 
98.9% for having OSA (95% CI, 96.7 to 100), and specificity was 80% (95% CI, 70 to 90). 
Positive predictive value was high at 88.1% (95% CI, 81.8 to 94.4), as was the negative 
predictive value of 98% (95% CI, 94 to 100). This approach of applying Artificial neural 
networks (ANNs)to the clinically based prediction of OSA allows involving a more vari-
ables than utilized in linear or logistic regression techniques [11,15]. 

Figure 1. The four major machine learning models [1].

3. Machine Learning in Screening for OSA

For the purpose of this review, we searched for relevant articles using PubMed and
only included those studies that described applications of ML for screening for OSA using
clinical features. We specifically excluded studies where ML was primarily applied to
automate data from monitoring devices such as oximetry, or electrocardiogram or was used
to study data acquired during sleep testing or polysomnography. We presented a summary
of the papers that were included in this review in Table 1 [5–14]. Kirby et al. used a neural
network to train using 23 clinical variables in 255 patients, and subsequently evaluated the
predictive properties in a cohort of 150 additional patients. OSA prevalence was 69% for
the sample. The trained generalized regression neural network (GRNN) had an accuracy
of 91.3% (95% confidence interval (CI), 86.8 to 95.8). Values for sensitivity was 98.9% for
having OSA (95% CI, 96.7 to 100), and specificity was 80% (95% CI, 70 to 90). Positive
predictive value was high at 88.1% (95% CI, 81.8 to 94.4), as was the negative predictive
value of 98% (95% CI, 94 to 100). This approach of applying Artificial neural networks
(ANNs)to the clinically based prediction of OSA allows involving a more variables than
utilized in linear or logistic regression techniques [11,15].
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Table 1. Summary of major trials involving machine learning methods to predict OSA.

Study Sample Size Extractable
Variables Models Used Methodology Results

Mencar et al. [5] 313 19

7 Classification
models #:

5 Regression
models ##:

-trained classification
models to predict the

severity classes
-trained regression

models to directly predict
the numerical
AHI values.

>Feature ranking
-BMI is the most
important feature

-FVC% and FEV1/FVC
least important

>Classification models
-RF classification model trained
with 1st 5 features -best results

-CN trained with 6 features
highest precision value
>Regression models

-SVM-R trained with 16 features
is best predictive model for AHI

Ustun et al. [6] 1922 10

-SLIM model
-7 State of the art

classification
models

SLIM and 7 classification
methods to produce

predictive models for
OSA screening

Features (i) self-reported
symptoms; (ii)

self-reported medical
information

Low prevalence
64.2% sensitivity, 77%

specificity
LR+: 2.8, LR−: 0.46
Posttest probability

patient w/OSA increase from
10% to 23%.

w/out OSA decrease from 10%
to 5%

High prevalence
-a negative result would

lower\patient’s posttest OSA
probability to 52%; not
sufficient to have ruled

out OSA.

Su et al. [7] 124 6 MMTS model

Multiclass MMTS based
on anthropometric

information and
questionnaire data

(ESS, SOS)

Accuracy of 84.38% OSA
prediction, outperforming other

methods including LR*, BPN,
LVQ, SVM, C4.5 decision tree,

and RS.

Zhang et al. [8] 481 7 SABIHC2 model

SABIHC2 model screens
moderate to severe OSA
based on faciocervical
and anthropometric

measurements

Better predictive ability than the
STOP-BANG questionnaire.
In asymptomatic patients

(sensitivity (0.892 vs. 0.348) and
specificity (0.755 vs. 0.809))

In patients experiencing
sleepiness (ESS ≥10 (sensitivity
(0.941 vs. 0.632) and specificity

(0.740 vs. 0.727).

Ramesh et al. [9] 1479 8 7 Classification
models+

56 continuous and
categorical covariates are

initially selected, the
feature dimension

narrowed systematically
based on multiple feature

selection methods
according to their relative

impacts on the models’
performance.

Performance with trained
19-EHR features

-XGB model performs the best
across the metrics of accuracy,
sensitivity, F1-score, PPV, and
NPV while LGBM still retains

the highest specificity.
Performance with trained

8-EHR features
-SVM for classifying OSA
patients at the cut-off of

apnea-hypopnea index ≥5 and
achieved accuracy: 68.06%,

sensitivity: 88.76%, specificity:
40.74%, F1-score: 75.96%, PPV:

66.36% and NPV: 73.33%,
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Table 1. Cont.

Study Sample Size Extractable
Variables Models Used Methodology Results

Bozkurt et al. [10] 338 14

5 machine learning
method (Bayesian
network, Decision

Tree, Random Forest,
Neural Networks
and Multinomial

Logistic Regression)

Classification of OSA
severity of patients with
suspected sleep disorder

breathing as normal,
mild, moderate, and
severe based on (1)

clinical data, (2)
symptoms and (3)

physical examination.

-Lateral Pharyngeal Wall
Collapse (LPW) ranked 1
-Models achieved better

performance using physical
examination variables only but
poorer performance using only

clinical data and symptoms.
-For OSA severity, Bayesian
Network models showed the
highest TPR, PPV, F Measure

and AUC and lowest FPR
and RMSE.

Kirby et al. [11] 255 23

Artificial neural
networks (ANNs) to
form a generalized
regression neural

network
(GRNN) model

23 variables trained in
training set—then the

variables for the test set
was presented to the
trained network, and

predictions were
compared with

actual outcomes.

Sensitivity for the diagnosis of
OSA was 98.9% (95% CI, 96.7

to 100)
Mean predictive accuracy of

91.3% (95% confidence interval
(CI), 86.8 to 95.8). Sensitivity

98.9%, Specificity 80%,
PPV88.1%, NPV 98%; AUC

was 0.94.

Holf et al. [12] 17,448
4

age, sex, BMI,
and race

LR and machine
learning techniques,
including artificial

neural network
(ANN), random
forests (RF), and

kernel support vector
machine models

Patients were randomly
split into training (n =
10,469) and validation

(n = 6979) sets.

AUCs (95% CI) of ML models
significantly higher than logistic
regression (0.61 (0.60–0.62)) in
both training and validation

datasets (ANN, 0.68 (0.66–0.69);
RF, 0.68 (0.67–0.70); and kernel
support vector machine, 0.66

(0.65–0.67)).
-OSA prediction tools using
machine learning without

patient-reported symptoms
provide better diagnostic

performance than
logistic regression

Sun et al. [13] 120 29 Genetic
algorithm (GA)

GA used to build 5 best
models based on 110

validated questionnaires
and Logistic regression

model was used
for comparison

Sensitivity of the GA models
varied from 81.8% to 88.0%,

with a specificity of 95% to 97%;
vs. sensitivity and specificity of
the LR model were 55.6% and

57.9%, respectively.
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Table 1. Cont.

Study Sample Size Extractable
Variables Models Used Methodology Results

Huang et al. [14] 6875

2, 6, and 6 for
AHI ≥5/h,
≥15/h, and
≥30/h,

respectively.

SVM, LR, BQ (Berlin
questionnaire),
NoSAS, SLIM

Proposed a data
mining-driven SVM

model using a large-scale
sleep lab-based data set

to predict OSA with three
different AHI cutoffs.

AUROC for AHI cutoffs, ≥5/h,
≥15/h, and ≥30/h were 0.82,

0.80, and 0.78, respectively.
Sensitivty—74.14%, 75.18%, and

70.26%, Specificity −74.71%,
68.73%, and

70.30%, respectively.
-Compared to logistic

regression, Berlin questionnaire,
NoSAS Score, and Supersparse

Linear Integer Model (SLIM)
scoring system, the SVM model

performs better with a more
balanced sensitivity

and specificity.

Acronyms: SLIM: Supersparse Linear Integer Models; LR: likelihood ratio; MMTS: Mahalanobis-Taguchi system;
SBP: systolic blood pressure, DBP: diastolic blood pressure; DI3: Frequency of desaturation (saturation index <3%
in an hour); DI4: Frequency of desaturation (saturation index <4% in an hour); RDI: respiratory disturbance index,
LR*: logistic regression, BPN: back propagation neural network, LVQ: learning vector quantization, SVM: support
vector machine, C4.5 decision tree, and RS: rough set (RS); SABIHC2: Sex-Age-Body mass index (BMI)-maximum
Interincisal distance-ratio of Height to thyrosternum distance-neck Circumference-waist Circumference; XGB:
Extreme Gradient Boosting, LGBM: Light Gradient Boosting, CB: Catboost Algorithm, RF: Random Forest, SVM:
Support Vector Machines. #: Majority vote, Naive Bayes, k-nearest neighbor, Classification tree, Random Forest
(RF), Support vector machine (SVM), AdaBoost-SVM, CN2 rule induction. ##: Mean learner, LR, k-NN, Regression
trees, Support vector regression (SVR), AdaBoost-SVR. +: XGB, LGBM, CB, RF, kNN, LR*, SVM. %- Bayesian
network, Decision Tree, Random Forest, Neural Networks and Multinomial Logistic Regression.

Mencar et al. selected a mixture of respiratory signals and clinical variables to include
19 variables with a communality index ≥0.50 out of the 32 initial features to train classi-
fication models and regression models to evaluate the prediction OSA severity ability of
represented either by class or by available apnea–hypopnea indices from PSG. The dis-
criminating power between normal subjects and sufferers from OSAS has been examined
considering different efficacy/efficiency parameters such as classification accuracy (CA),
precision, sensitivity, and Area under curve (AUC) by means of cross validation. The
Support vector machine (SVM) classification model, trained with the first eight features
gave the best results in terms of CA (44.7%) and AUC (65%). In terms of precision/recall
(44.1%), the random forests (RF) classification model trained with the first five features
showed the best results. However, these resulted need to be validated in larger populations
with wider set of comorbidities. This study identified only body mass index (BMI) as a
single factor that could screen for OSA and also predict the severity [5]. In a study of
2690 patients, Bouloukaki et al. NC was seen to be the best correlate with the AHI as a
predictor of OSA [16].

Holfinger et al. used data from international Sleep Apnea Global Interdisciplinary
Consortium (SAGIC) (n = 1613) and the Sleep Heart Health Study (SHHS) (n = 5599)
to compare logistic regression and ML techniques, including artificial neural network
(ANN), RF, and kernel SVM. They looked at demographic features including age, gender,
ethnicity to predict OSA. A cohort of 17,448 subjects was randomly divided into two sets-
the first training set had 10,469 patients and a second group which was the validation
set included6,979 patients. The AUCs (95% CI) of the ML models (ANN, 0.68 (0.66–0.69)
were significantly higher than logistic regression (0.61 (0.60–0.62)) in both the training and
validation datasets. In both the SAGIC testing sample, and the SHHS testing sample, the
ANN had AUCs similar to those of STOP-BANG [12].

Ustun et al. used 3 subsets of features (Electronic Medical Records (EMR) extractable
“size 5”, EMR extractable “size 10” and self-self-reported symptoms) to train the Super-
sparse Linear Integer Model (SLIM) and the classification models. SLIM and classification
models were trained at 19 and 39 different points on the receiver operating characteristics
(ROC). For each model class they specifically ran SLIM to produce a model that had the
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highest true positive rate (TPR) subject to a constraint on the maximum allowable false
positive rate (FPR)≤ 5%, 10%, and so on. The performance of models using only extractable
features sometimes exceeded the performance of models using all features at some points
of the ROC curve, possibly since using a smaller set of features prevents over-fitting. The
predictive utility of extractable features was superior to that of symptom-based features,
regardless of the classification method used. The posttest probability of the SLIM model
also varied with the prevalence of OSA (Table 1) [6].

In a study from Taiwan on 120 patients undergoing overnight PSG the intake ques-
tionnaire was analyzed making use of a genetic algorithm (GA) in order to build the five
best models, and analysis using logistic regression (LR) served as a comparator. Sensitivity
(81–88%) and specificity (95–97%) of the GA model was seen to be much higher compared
to the LR model (55.6% and 57.9%, respectively) [13]. Zhang et al. showed that a SABIHC2
(Sex-Age-Body mass index (BMI)-maximum Interincisal distance-ratio of Height to thy-
rosternum distance-neck Circumference-waist Circumference) machine-learning model
provides a simple and accurate assessment of moderate to severe OSA in the Chinese
population. For this study, they set up a SABIHC2 model. The SABIHC2 model was
able to screen for OSA better than STOP-BANG (AUC = 0.83 vs. 0.62, sensitivity 0.92 vs.
0.49 specificity 0.75 vs. 0.77 respectively) Interestingly the model performed better for
asymptomatic patients (ESS < 10) [8].

Huang et al. developed a SVM model incorporating features from routinely collected
parameters during clinical evaluation from 6875 Chinese patients referred for suspected
sleep apnea. AHI cutoffs of 5, 15 and 30 were used to stratify OSA severity. The modeling
was achieved through fivefold cross-validation. Two features were selected to predict AHI
cutoff ≥5/h while six were selected for the other 2 groups. Area under the Receiver Oper-
ating Characteristic (AUROC) in the 3 groups was 0.82, 0.80, and 0.78, respectively, while
sensitivity was 74%, 75%, and 70%, and specificity was 75%, 69%, and 70%, respectively.
The SVM model was seen to perform better than other traditional screening tools such as
the Berlin questionnaire, and the NoSAS Score [14].

Ramesh et al. used routinely acquired clinical data of 1479 records from the Wisconsin
Sleep Cohort dataset. They found that the feature selection methods revealing the important
primary predictors were waist-to-height ratio, waist circumference, neck circumference,
body-mass index, lipid accumulation product, excessive daytime sleepiness, daily snoring
frequency, and snoring volume. With a five-fold cross-validation strategy, Support vector
machines achieved accuracy: 68.06%, sensitivity: 88.76%, specificity: 40.74%, F1-score:
75.96%, Positive predictive Value: 66.36% and Negative Predictive Value: 73.33% [9].

Bozkurt studies five different ML methods (Bayesian network, Decision Tree, Random
Forest, Neural Networks, and Logistic Regression) in patients with clinical suspicion for
OSA. They were able to show that the models performed well making use of clinical
features, with a true positive rate as high as 0.71 and a true negative rate as low as 0.15.
They were able to improve the accuracy of the classification models by including physical
examination findings as features in the model [10].

Our group studied the use of an anthropometry-based model using ML and was able
to show excellent sensitivity and predictive value [17].

Ghandeharioun et al. classified OSA severity using k-means and reported specificity
and specificity and accuracy of 85.7%, 96.3%, 94%, respectively, with nonpolysomnographic
features. However, no details were given regarding the training/testing strategy and
OSA severity classifications’ results. In the validation phase, the 10-fold cross validated
test results showed that Bayesian classification models are superior to other methods
concerning classification accuracy in terms of minimum false positive rate (FPR), maximum
true positive rate (TPR) and area under the ROC curve (p < 0.05). Although all the methods
yield promising results for the classification of OSA, it is known that the performance of
various classification algorithms strongly depended on the tested sample. Consequently,
the superiority of Bayesian network over the other tested method holds for the given
experiment only and cannot be generalized [18].
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Sahin et al. retrospectively evaluated 390 patients that were referred to the sleep center.
They used multi- variate linear regression analysis to identify independent AHI predictors
and derived a formula AHI = ((0.797 × BMI) + (2.286 × NC) − (1.272 × SpO2) + (5.114 ×
TS) + (0.314 ×WC)) to predict AHI. (WC = waist circumference, NC = neck circumference
and TS = tonsil size). The authors found that up to 68.2% of the variation in the AHI was
able to be explained with this formula [19].

In a study by Karamanlı et al. used an artificial neural network in the detection of
OSA (AHI ≥ 10) based on patient demographic data (sex, age, BMI, and snoring status)
and achieved high accuracy. Although the accuracy rate is reasonably high, they admitted
that the model was tested with data from a small sample size [20].

Using a different approach to ML, Huo et al. recently described developing BASH-GN,
a ML-based questionnaire to classify obstructive sleep apnea (OSA) risk by considering risk
factor subtypes, using the SHHS test set (n = 1237) and Wisconsin Sleep Cohort (WSC) set
(n = 1120). For purposes of comparison, they used four questionnaires that are commonly
used to screen for OSA including the STOP-BANG, Epworth, and the Berlin. The model
proved to be superior to these questionnaires on both test sets achieving AUROC (SHHS 1:
0.78, WSC: 0.76) and area under the precision-recall curve (AUPRC) (SHHS 1: 0.72, WSC:
0.74), respectively [15].

4. Knowledge Gaps

The performance of ML algorithms is primarily dependent on appropriate feature
selection. One common theme that emerges is that models that include more objective
based features perform better than those that include subjective based features based on
patient self-reporting. Making use of different ML techniques to effect dimensionality
reduction including principal component analysis, and singular value decomposition could
help reveal weighted combinations of features that enhance the discriminating capacity
of these models. Use of regularization and other techniques can help automate feature
selection and bias inclusion of models with fewer parameters. More research may be
needed to help improve feature selection using weighted combinations and automated
selection in large population datasets. Furthermore, we may need to look at how factors
like gender, ethnicity may influence feature selection.

We propose a three-stage tier system as an ideal model (Figure 2) to leverage the power
of machine learning and apply it to a screening strategy for sleep apnea. This strategy may
need to be prospectively validated in a large healthcare setting to evaluate its accuracy in
detecting sleep apnea and measuring its ability to reduce healthcare resource utilization
costs by reducing the burden of expensive testing for sleep apnea particularly involving
in-lab polysomnography.
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5. Limitations

There is important limitation to this review. Due to the limited scope of the review, we
were unable to identify large numbers of articles specifically focused on use of ML to screen
for risk or presence of sleep apnea. This clearly points to the need for many more research
studies urgently needed in this area to evaluate the accuracy of one or more ML models
and identify the ideal strategy in terms of feature selection and techniques to achieve the
best results.

6. Conclusions

We are on the cusp of the next wave of approaches to better detect sleep apnea in the
general population, with the more widespread use of ML. With the advent of wearable
medical devices, we predicted that we would soon see a paradigm shift in the decision
strategy for detecting sleep apnea. More reliance on objective measures such as body signal
processing (i.e., heart rate or pulse waveforms, and anthropometric characteristics such as
body weight, waist-hip ratio, neck circumference, and craniofacial and airway anatomy)
are emerging. Smartphone-based apps that synthesize some or many of these features will
be more prevalent. They could trigger patients to self-refer for more formal home sleep
testing or polysomnography, thereby reducing the healthcare utilization of resources and
improving the efficiency of diagnosing sleep apnea.
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