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Abstract: Existing detection methods face a huge challenge in identifying insulators with minor
defects when targeting transmission line images with complex backgrounds. To ensure the safe
operation of transmission lines, an improved YOLOv7 model is proposed to improve detection
results. Firstly, the target boxes of the insulator dataset are clustered based on K-means++ to generate
more suitable anchor boxes for detecting insulator-defect targets. Secondly, the Coordinate Attention
(CoordAtt) module and HorBlock module are added to the network. Then, in the channel and spatial
domains, the network can enhance the effective features of the feature-extraction process and weaken
the ineffective features. Finally, the SCYLLA-IoU (SIoU) and focal loss functions are used to accelerate
the convergence of the model and solve the imbalance of positive and negative samples. Furthermore,
to optimize the overall performance of the model, the method of non-maximum suppression (NMS)
is improved to reduce accidental deletion and false detection of defect targets. The experimental
results show that the mean average precision of our model is 93.8%, higher than the Faster R-CNN
model, the YOLOv7 model, and YOLOv5s model by 7.6%, 3.7%, and 4%, respectively. The proposed
YOLOv7 model can effectively realize the accurate detection of small objects in complex backgrounds.

Keywords: YOLOv7; insulator-defect detection; attention mechanism; HorBlock; SIoU

1. Introduction

An insulator is a special kind of insulation control and is essential electrical equipment
in overhead transmission lines. In early years, insulators were mainly used for power poles
and gradually developed into disc insulators, usually made of glass or ceramics, hung on
one end of the connection tower of high-voltage power lines. They fill the role of electrical
insulation and mechanical fixation in transmission lines [1]. In addition, by hanging
insulators on transmission lines, the transmission distance can be increased and capacitive
reactance between transmission lines can be reduced. However, due to the long-term
influence of factors such as strong electric fields and harsh environments, insulators have
many defects, such as self-explosion, damage, pollution flashover, and current leakage [2,3].

Among these defects, the most common faults are insulator damage and surface defects
caused by pollution flashovers. The damage is mainly caused by insulator manufacturing
defects, the combined action of various stresses, and other reasons. Surface defects are
mainly caused by partial discharge in pollution flashovers. Pollution flashover means
that pollutants are attached to the insulation surface, and soluble substances gradually
dissolve in water under wet conditions, forming a conductive film on the insulation surface
that reduces the insulation strength and increases the leakage current, resulting in partial
discharge [4]. According to the research, power system paralysis caused by insulator defects
accounts for more than half of power grid system failures. Therefore, research on the rapid
detection and identification of insulators and their defects has excellent application value
for maintenance and repair personnel [5].
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The traditional insulator-defect detection method mainly uses helicopter-manned
inspection, field inspection, or traditional detection algorithms to analyze pictures taken
by robots or drones [6]. However, the structure of China’s transmission lines is complex,
and the use of traditional detection methods will lead to a huge waste of financial and
material resources, as its efficiency is not high. At the same time, the images taken by
uncrewed aerial vehicles have the property of a large field of view. In this scenario,
there are some problems with targeting insulator defects, such as a complex background
environment and a small defect target, which interfere with defect detection [7]. Therefore,
it is urgent to propose a small-target fault detection method for transmission lines with
complex backgrounds to improve detection efficiency.

In recent years, with the development of deep-learning theory and the improvement
of computer performance, target detection algorithms based on deep learning have been
widely studied because of their good generalization ability and cross-scene ability [8].
Zheng et al. [9] proposed a two-stage training method to regularize a depth CNN from the
perspective of data attenuation. The experimental results show that the algorithm improves
the generalization ability of depth CNNs by optimizing the feature boundary and is robust
to the selection of super parameters. Zhao et al. [10] proposed a meteorological photo-
classification system based on a multi-channel convolutional neural network (CNN) and
improved frame difference method (FDM). The system can work in an embedded system
with limited computing resources and can accurately classify cloud observation photos
taken by ground cameras. Jin et al. [11] realized deep transfer learning from face recognition
to face diagnosis. Successful application of deep transfer learning in face diagnosis with
small datasets can provide a low-cost and non-invasive method for disease screening and
detection. To replace the depth sensors by generated pseudo-depth maps, Jin et al. [12]
also proposed a pseudo-RGB-D face-recognition framework and provided data-driven
ways to generate depth maps from 2D face images. Zhao et al. [13] proposed a faster mean
shift algorithm to solve the bottleneck of cell instance segmentation and tracking based
on cosine embedding. This algorithm provides a plug-and-play model suitable for any
clustering reasoning based on pixel embedding. At present, the digital construction of the
smart grid provides massive data, while the development of deep learning provides an
effective means for data value extraction. This also makes insulator-defect detection based
on neural networks widely used.

The current research is mainly divided into two categories: the first is a two-stage object
detection model represented by Region-based Convolutional Neural Networks (R-CNNs) [14],
Fast Region-based Convolutional Neural Networks (Fast R-CNNs) [15], and Faster Region-
based Convolutional Neural Networks (Faster R-CNNs) [16]. Lu et al. [17] proposed a Faster
R-CNN based on an improved anchor box selection method to detect insulators. This
method achieves good accuracy and takes less time to obtain the final result. However, it
only detects three images per second, which is far from real-time detection. Liao et al. [18]
proposed a Faster R-CNN algorithm combined with the deep residual network Resnet101
to detect insulator defects, which significantly improved the detection accuracy of insulator
defects compared with traditional detection algorithms, but the algorithm has a large
amount of calculation and cannot meet the real-time requirements of insulator-defect
detection. The other category is the one-stage target detection model represented by
You Only Look Once (YOLO) [19] and Single Shoot MultiBox Detector [20] for direct
position regression. Feng et al. [21] proposed an automatic insulator detection method
based on the YOLOv5 target detection model. Compared with four different versions
of YOLOv5, the YOLOv5x model based on K-means clustering can effectively identify
and locate insulator defects on transmission lines, but the highest accuracy rate is only
86.8%. Liu et al. [22] proposed the MTI-YOLO network, which uses a multi-scale feature
detection head, a multi-scale feature fusion structure, and a spatial pyramid pooling model
in the network, and which improves the accuracy of the model, but only detects normal
insulators. Differing from the above two research methods, to realize end-to-end training
and reasoning, Wu et al. [23] proposed an insulator-defect detection method based on
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Centernet, which simplified the backbone network and used an attention mechanism to
suppress useless information and improve the accuracy of network detection. However, the
detection speed is not high, and when two different kinds of objects share the same center
point, CenterNet can only detect one of them.

Compared with the above algorithm, the YOLOv7 model proposed by Wang et al. [24]
in 2022 has faster speed and higher accuracy on the COCO dataset. YOLOv7 includes
several trainable bags of freebies so that the real-time detector can greatly improve de-
tection accuracy without increasing the reasoning cost. It also studies how module re-
parameterization can effectively replace the original module, and how the dynamic label
allocation strategy can handle the allocation of different output layers. The speed and accu-
racy exceed all known target detectors in the range of 5 FPS to 160 FPS. It can also support
both mobile GPUs and GPU devices from the edge to the cloud. In the future, the model
can be deployed for practical engineering applications and meet the real-time requirements
of insulator-defect detection. However, there is little research on the application of the
YOLOv7 model to insulator-defect detection at present. At the same time, there is room for
improvement in the accuracy of this model when detecting insulator defects. The accuracy
of detection is also vulnerable to the impact of the complex background of transmission
lines and small defect targets.

Aiming at the above problems, this paper proposes an improved insulator-defect
detection method based on the YOLOv7 algorithm. Firstly, to improve the accuracy and
efficiency of detection, this paper uses the anchor box size obtained from the K-means++
clustering insulator dataset to replace the default anchor box size of YOLOv7. Secondly,
the coverage of overhead transmission lines is vast and the background of the collected
image data is relatively complex. The deep-learning object-detection algorithm must be
able to eliminate the interference of the complex background. In view of the complex
background of image data, the CoordAtt attention mechanism and HorBlock module
are integrated into the original backbone network to enhance the network’s ability to
extract image features and increase the network’s detection accuracy for small insulator
defect targets. The SIoU regression loss function and focal loss classification function are
introduced to improve the network convergence speed and detection efficiency and solve
the dataset’s sample imbalance problem. Finally, SIoU-NMS is used to implement a new
non-maximum suppression process to reduce the problem of false detection of insulators
and insulator defects. Experimental results show that the improved network has a better
detection effect on insulator defects in complex environments.

2. Materials and Methods
2.1. Dataset Preparation and Preprocessing
2.1.1. Image Acquisition

There are few insulator-defect datasets published for overhead transmission lines,
or even in the whole electric power field. In total, 1600 original images were captured
from Baidu and Google or collated from public datasets [25]. The resolution width of the
image pixels in this dataset is more than 2000–5000 and the height value is more than
2000–3000. Insulators and the insulator dataset are constructed according to the original
pictures, which mainly include two defects: pollution flashover and damage, as shown in
Figure 1.
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(a) (b)
Figure 1. Two different types of defects: (a) pollution flashover; (b) damage.

2.1.2. Image Preprocessing

In a deep-learning model, numerous data samples are needed for model training
to reduce the over-fitting problem. In the model-training stage, the more sufficient and
comprehensive the data collected are, the more significant the model recognition effect.
Therefore, the number of samples is expanded by data augmentation. The data augmen-
tation strategy adopted in this paper includes morphological operations such as angle
rotation, saturation adjustment, image up and down flipping, and translation. At the same
time, the model uses the Mosaic data enhancement method at the input end. The four
defect images are spliced by random scaling, random clipping, and random layout, which
can improve the model classification performance. The mixup data enhancement method
is also adopted and the two images are interpolated proportionally to mix the samples.
Even color space conversion is carried out, and the pictures’ hue, saturation, and exposure
are changed, in order to minimize the over-fitting of the network and improve the general-
ization ability of the training model. The input to the model after a series of operations is
shown in Figure 2. 0 represents the defect of pollution flashover; 1 represents the defect of
damage; 2 represents the insulator.

Figure 2. Renderings of data enhancements.

In addition to the above regularization techniques, this paper also adopts standard
methods such as early stop, weight regularization, dropout, and batch normalization in the
training phase to prevent overfitting of the model.
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2.1.3. Image Database and Label Database

At the same time, the Labelme tool is used to label the ground-truth box of the image,
and the label category is divided into pollution flashover, damage, and insulator. Finally,
the labeled insulator dataset is divided into training, verification, and test sets. There are
1600 picture samples in this experiment and the dataset was divided at a ratio of 7:2:1.
The number and distribution of tags in the dataset were counted; the results are shown in
Figure 3.

(a)
(b) (c)

Figure 3. Labels and label distribution: (a) number of labels; (b) label location; (c) label size.

In Figure 3a, the ordinate axis is the number of labels, and the abscissa axis is the
name of labels. There are enough defect samples in the dataset for it to include most defect
scenarios in insulators in daily life.

Figure 3b shows the distribution of tags. The abscissa x is the ratio of the abscissa of
the label center to the image width, and the ordinate y is the ratio of the abscissa of the label
center to the image height. As can be seen from the figure, the data is widely distributed
and concentrated in the middle of the image. In Figure 3c, the abscissa width is the ratio of
the label width to the image width, and the ordinate height is the ratio of the label height
to the image height. The dataset contains data of various sizes, mainly small and medium
target data, which is more suitable for the actual situation.

2.2. Proposed Methods

The detection framework of the proposed method in this article is shown in Figure 4.
Firstly, the insulator dataset is labeled with ground-truth boxes. Based on all ground-
truth boxes in the dataset, anchor boxes with different sizes are generated by a clustering
algorithm, which makes the initial anchor box size of the model match the target size of the
insulator defects. Secondly, the network structure of YOLOv7 is changed. The CoordAtt
attention mechanism and HorBlock module are added to the backbone network to focus on
extracting helpful feature information in the image, while irrelevant features are weakened.
Thirdly, the improved loss function is used to accelerate the convergence of the model.
Finally, the SIoU NMS method is used to improve the non-maximum suppression process
to reduce the multi-detection phenomenon of defect targets so that the model output results
are more accurate.

Figure 4. Detection framework of the proposed method.
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2.3. Anchor-Box Optimization

YOLOv7 uses the K-means algorithm to cluster the anchor boxes obtained from
the COCO dataset by default and uses the genetic algorithm to adjust the anchor boxes
during the training process. However, the K-means clustering algorithm’s convergence
depends heavily on the cluster center’s initialization [26]. Therefore, this paper uses the
K-means++ algorithm [27] to alleviate this problem and improve the accuracy and efficiency
of detection.

The traditional K-means algorithm selects multiple clustering centers at once, while
the K-Means++ algorithm selects only one cluster center at a time. The improved method
allows the random center point chosen to not just tend to the optimal local solution, but to
come as close as possible to the optimal global solution.

Specific steps are as follows:

(1) Randomly select a sample target box from the dataset as the initial cluster center
and calculate the minimum intersection ratio distance A(x) between the remaining
sample boxes and the current cluster center.

A(x) = 1− IoU(x,c) (1)

where IoU represents the intersection parallel ratio between two rectangular boxes, x
is the sub-target mark sample box, and c represents the center of the cluster;

(2) Calculate the probability O(x) that each insulator sample box is selected as the next
cluster center and use the roulette method to select the next cluster center.

O(x) =
A(x)2

∑x∈X A(x)2 (2)

where X is the total sample of the target marker frame;
(3) Repeat Steps 1 and 2 until all clustering centers are selected.
(4) Calculate the distance from each sample in the dataset to the cluster centers, divide

the sample into the class corresponding to the cluster center with the smallest distance,
and recalculate the cluster center of each category ci. Update the classification and
cluster center repeatedly until the anchor box size remains unchanged.

ci =
1
|ci| ∑

x∈ci

x (3)

where i = 1, . . . , K, K is the number of anchor boxes with different sizes, and its
value is determined by the number of anchor boxes of the detection model. Since the
detection model in this paper contains three detection feature maps, and each feature
map corresponds to three anchor boxes, k = 9. The dimensions of the three feature
maps and the corresponding optimized anchor boxes are shown in Table 1.

Table 1. Optimized anchor box parameters.

Feature Map Size 80 × 80 40 × 40 20 × 20

YOLOv7
(13, 12) (135, 131) (430, 112)
(21, 21) (65, 326) (188, 324)
(39, 31) (101, 304) (393, 266)

The small-sized anchor box corresponds to the final output of the 80 × 80 feature
map, which is responsible for detecting small-sized objects. The medium-sized anchor box
corresponds to a feature map with a size of 40 × 40, which is responsible for detecting
medium-sized objects. The large-sized anchor box corresponds to a feature map with a size
of 20 × 20, which is responsible for detecting large objects in the image.
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2.4. Backbone Network

The inspection model for insulator defects in this paper is shown in Figure 5. The whole
network model structure is divided into four parts: input, backbone network, neck network,
and head network.

Figure 5. Structure of the improved YOLOv7 network.

First, the input side performs data enhancement operations such as Mosaic, random
cropping, and scaling on the image to avoid overfitting. The backbone part comprises
CBS, MP, and ELAN modules. The MP module consists of maxpooling and CBS modules.
The CBS module consists of regular convolution, batch normalization, and activation
functions. The difference between the CBS module and a traditional CNN network is that
the Leaky ReLU function replaces the activation function with the SiLU function. The ELAN
module can control the shortest and longest gradient paths, and deeper networks can learn
and converge efficiently. The ELAN module is also composed of several CBS modules.
The input feature map does not change the size of the feature map after passing through
the ELAN module, but only changes the number of output channels at the end.

The improved network adds the HorBlock module between the third and fourth CBS
modules in the backbone section. It adds the CoordAtt attention mechanism between the
original backbone and neck sections. The improved network can make the model pay more
attention to valuable content and locations in the input image samples. Feature information
can be effectively extracted for small targets and targets with complex backgrounds to
improve detection accuracy.

The neck consists of a path aggregation network PAN (path aggregation network) and
a feature pyramid network FPN (feature pyramid network). After the 32-fold downsam-
pling feature map output by the backbone passes through the SPPCSP module, the number
of channels changes from 1024 to 512. Then, the feature map performs feature fusion
according to the top-down strategy and the bottom-up method. The structure of PA-FPN
efficiently fuses feature maps at different levels. Compared with YOLOv5, YOLOv7 re-
places the CSP module with the ELANC module, and the downsampling becomes the MP2
layer. After the PAFPN network, the network’s output is three layers of feature maps of
different sizes. Finally, the network outputs the prediction results through the RepC and
Conv modules in the head part.
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2.4.1. HorBlock Module

After the network passes through the third CBS module of the backbone, the size of
the feature map is further reduced by half and the feature information is greatly reduced.
To retain the nonlinear ability, establish long-range attention, reduce the phenomenon
of gradient dispersion, and improve the detection of insulator defects. HorBlock blocks
consisting of gnConv [28] recursively gated convolution and layer norm normalization are
added between the third and fourth CBS modules. The schematic diagram of the HorBlock
block structure is shown in Figure 6.

Figure 6. The schematic diagram of HorBlock.

The gnConv module is built using standard convolution, linear mapping, and element
multiplication, but with input adaptive spatial blending capabilities similar to self-attention.
Layer norm calculates the mean and variance of all parameters in all channels and then
normalizes them. The main structure of gated convolution is not very different from a
standard CNN, but the gating mechanism is introduced in the convolutional layer. First,
the number of feature channels is adjusted by two convolutional layers. Next, the output
feature map with separable convolution is divided into multiple parts, and each part is
multiplied element by element to obtain the output feature map. Recursion here is the
constant multiplication of elements, through which higher-order information can be saved.

2.4.2. CoordAtt Module

Due to the complex and changeable environment in which the insulators are lo-
cated, to improve the characteristic expression ability of the model on insulators and
defective parts, an attention mechanism module is added to the end of the YOLOv7 back-
bone network.

Attention mechanisms can generally be divided into channel attention mechanisms,
spatial attention mechanisms, and a combination of the two attention mechanisms. Tra-
ditional attention mechanism modules such as Squeeze-and-Excitation attention (SE) [29]
and Convolutional Block Attention Module (CBAM) [30] have achieved good results in
modeling channel-to-channel relationships, but are prone to spatial position information.
Although the other attention modules without this problem have good effects, the number
of parameters is too large and not suitable for application deployment.
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The Coordinate Attention mechanism [31] captures not only cross-channel information
but also directional perception and position perception, which helps the model more
accurately locate and identify targets of interest. Second, the CoordAtt module is flexible
and can be added in multiple places on existing models.

The CoordAtt attention mechanism framework diagram is shown in Figure 7.

Figure 7. The schematic diagram of CoordAtt.

The input is pooled horizontally and vertically to preserve the long-distance depen-
dencies of both directions. The information in both directions is then stitched. Next,
the feature map is split and convoluted to focus on both horizontal and vertical directions.
The two-part feature map output by the module can be pinpointed to the row and column
of the target object that we are interested in.

2.5. Loss Function

The loss function of the YOLOv7 model consists of three parts: localization loss (Lbox),
confidence loss (Lobj), and classification loss (Lcls). The total loss is the weighted sum of the
three losses. Among them, the confidence loss and classification loss functions use binary
cross-entropy loss, and the localization loss uses the CIoU loss function.

LOSS = W1 × Lbox + W2 × Lcls + W3 × Lobj (4)

where W1, W2, and W3 are the weight values of the three loss functions, respectively.
The loss functions optimized in this paper include regression and classified loss functions,
which replace the traditional CIoU loss function with the SIoU regression loss function
and use the focal loss classification loss function instead of the standard cross-entropy
loss function.

2.5.1. SIoU Loss

Traditional regression losses such as GIoU [32], DIoU [33], and CIoU [34] only consider
the distance, overlapping areas, and aspect ratio of the prediction box and the ground-truth
box, and do not take into account the angle between the ground-truth box and the prediction
box, resulting in slower convergence. However, Gevorgyan [35] proposed the SIoU loss
function. The SIoU regression loss function redefines the penalty metric by considering
the vector angle between the desired regressions. This consideration can greatly speed up
the training convergence process so that the prediction box first moves to the nearest axis
(x-axis or y-axis). Then, the prediction box conducts regression along that axis.

The SIoU regression loss function consists of four parts: angle cost, distance cost,
shape cost, and IoU cost. SIoU is defined as follows:

Lbox = 1− IoU +
∆ + Ω

2
(5)

x =
max

(
bgt

cy, bcy

)
−min

(
bgt

cy, bcy

)
√(

bgt
cx − bcx

)2
+
(

bgt
cy − bcy

)2
(6)
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∧ = 1− 2 ∗ sin2
(

arcsin(x)− π

4

)
(7)

∆ = 2− e(∧−2)×
( Ch

Ch1

)2

− e(∧−2)×
(

Cw
Cw1

)2

(8)

Ω =

1− e
− |w−wgt|

max(w,wgt)


θ

+

1− e
− |h−hgt|

max(h,hgt)


θ

(9)

IoU =
A
⋂

B
A ∪ B

(10)

where IoU, ∆, and Ω are the intersection-over-union loss, distance loss, and shape loss,
respectively. At the same time, the calculation of the distance loss takes into account the
loss of the angles of the two boxes.

As shown in Figure 8a, Cw and Ch are the width and height of the rectangle constructed
diagonally by connecting the center points of the two boxes, Cw1 and Ch1 are the width and
height of the minimum bounding rectangle of the two boxes, wgt and hgt are the width and
height of the ground truth box, and w and h are the width and height of the predicted box.
α is the included angle between the line connecting the center point of the two boxes and
the x-axis, and β is the included angle between the diagonal of the two boxes’ center points
and the y-axis. θ is an adjustable variable, which indicates how much weight the network
gives to the shape loss. The schematic diagram of IoU calculation is shown in Figure 8b,
which calculates the ratio of the intersection and union of the ground-truth box and the
predicted box.

(a)
(b)

Figure 8. Schematic diagram of the calculation: (a) schematic diagram of the calculation of the angle
cost; (b) schematic diagram of IOU calculation.

The angle loss added to SIoU is mainly calculated for the distance loss between
two boxes. Generally, in the early stage of model training, the predicted box and the
ground-truth box do not intersect. Adding the loss of angle can speed up the calculation
of the distance between the two boxes and make the distance between the two boxes
converge quickly.

When the angle of α is greater than 45 degrees, the degree of β is used in the formula
to replace the angle of α. At this time, the angle is considered from the x-axis to the y-axis.
The network model will first try to make the center point of the predicted box parallel to the
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center point of the ground-truth box, and then let the predicted box continue to approach
the ground-truth box along the relevant axis.

The traditional CIoU loss function converges with the overall shape of two boxes,
while the SIoU regression loss function converges on two edges to achieve the effect of
global shape convergence.

2.5.2. Focal Loss

The insulators and insulator defects in a picture sample are the foreground, while the
other parts are called the background. The insulator image has an imbalance in foreground
and background complexity, as shown in Figure 9. The number of insulators in Figure 9a
is small and the background is simple. However, the number of insulators in Figure 9b is
large and the background is complex. At the same time, there is an imbalance in the number
of positive and negative samples in each category. The original network directly uses cross-
entropy as the loss function to evaluate the model. However, as one-stage target detectors,
the YOLO series has the problems of sample complexity and the unbalanced number of
positive and negative samples [36], which will affect the gradient update direction of the
network and lead to lower accuracy of final detection compared to a two-stage detector.

(a) (b)
Figure 9. Samples with uneven complexity: (a) easily divided samples; (b) hard-to-classify samples.

Given the above problems, the cross-entropy function is improved. The focal loss
function can solve the imbalance between positive and negative samples in target detection.
It is possible to add weight to the loss corresponding to the sample according to the
difficulty of sample discrimination, that is, add less weight to the easily distinguishable
sample and add greater importance to the complex distinguishable sample.

The formula for the classification loss function is as follows:

Lcls = −ζt(1− pt)
δ log(pt) (11)

pt =

{
p if y = 1
1− p otherwise

(12)

ζt =

{
ζ if y = 1
1− ζ otherwise

(13)

where Lcls is the classification loss value and p is the probability that the sample predicted
by the model belongs to the foreground. To solve the imbalance of sample categories,
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the weight parameter ζ is introduced. The adjustment factor δ is added to the cross-entropy
loss function.

2.6. Non-Maximum Suppression

The traditional NMS [37] method has some defects in calculating IOU. If traditional
NMS is used to screen the predicted box of two close objects, there will be missed detection.

The improvement of this paper is to introduce target scale and distance into the
consideration of IOU, and use SIoU to calculate the IOU values of the candidate box with
the highest confidence and all other boxes to determine which box to delete. It can solve
the problem that of the insulator shield being too close to the insulator.

The improved non-maximum suppression algorithm of SIoU-NMS is used to filter the
preliminary prediction box of the image output to be recognized, and the final prediction
box is obtained by the following steps:

(1) Set the confidence threshold and SIoU threshold;
(2) Calculate the confidence level of all preliminary prediction boxes output by the

network model, put the preliminary prediction boxes whose confidence level is higher
than the confidence threshold in the candidate list, and sort the preliminary prediction
boxes in descending order of confidence from high to low in the candidate list;

(3) Take the initial prediction box with the highest confidence from the candidate list,
save it to the output list, and delete the initial prediction box from the candidate list;

(4) Calculate the cross-merger loss of the initial prediction box with the highest confidence
obtained in the previous step and all the other preliminary prediction boxes in the
candidate list, and delete the initial prediction box whose cross-merger loss is higher
than the set SIoU threshold from the candidate list;

(5) Repeat Steps 3 and 4 until the candidate list is empty;
(6) Use the preliminary prediction box in the output list as the final prediction box.

3. Results and Discussion
3.1. Experimental Environment

To verify the effectiveness of our model, we conducted neural network training
and testing with the following computer-configuration parameters and super-parameter
settings (shown in Table 2).

Table 2. Experimental environment configuration.

Parameter Configuration

CPU 12th Gen Intel(R) Core i9-12900KF 3.2 GHz
GPU NVIDIA GeForce RTX3080 Ti (12G)

Operating System Windows10
CUDA 11.3
Python 3.7.13
Torch 1.10.0

Momentum 0.937
Weight decay 0.0005

Batch size 16
Learning rate 0.01

Image size 640 × 640
Epochs 100

3.2. Visual Analysis of Model

After training the model, we visualized the feature map of the trained model [38].
The information that the network model is interested in can be seen from the visualized
feature map. In addition, we further examined whether the model contributed to the
attention mechanism. Figure 10 shows the feature diagram of the first convolution module
visualized by the model, the backbone module, and the output of the three detectors.
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From the visual feature map after the first convolution layer, we can see that the
features extracted from the model have particular emphasis; some focus on edge features
and some on overall features. Of course, this is only the feature map after the first convolu-
tion layer. Compared with the deeper features, the shallow features are mostly complete,
while the deeper network features will be fewer. From the feature map output after the
backbone, we can see that adding an attention mechanism will play a good role in strength-
ening the feature map and suppressing some unnecessary features. The feature maps
corresponding to the last three layers are used to detect large, medium, and small targets,
which significantly improves the multi-scale detection capability of the model.

Figure 10. Visualization of the feature map.

After the target is detected, the model also needs to carry out classification tasks.
Figure 11 shows the class activation map of the model, which can further visualize which
pixels of the image the neural network pays attention to when predicting a certain category.
It can be seen that the improved algorithm can better extract the target feature information
from the insulator image.
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Figure 11. Grad-CAM visualizations for the original categories.

3.3. Evaluation Metrics

To comprehensively and objectively evaluate the performance of our model in this
paper, we used a confusion matrix (Shown in Table 3) for comprehensive evaluation.

Table 3. Confusion matrix.

Reference
Prediction Positive Negative

Positive True positive (TP) False negative (FN)
Negative False positive (FP) True negative (TN)

TP represents correct detection—the prediction of the model is positive and the actual
value is also positive. FN represents detection error—the prediction of the model is negative
and the actual value is positive. FP represents detection error—the prediction of the model
is positive but the actual value is negative. TN represents correct detection—the model
prediction is negative and the actual value is also negative.

The expressions of precision and recall are as follows:

Precision =
TP

TP + FP
(14)

Recall =
TP

TP + FN
(15)

Mean average precision (mAP), which depends on precision and recall, is used to
measure the accuracy of the model.

3.4. Experimental Results and Analysis

To verify the effectiveness of the improved method proposed in this paper, we per-
formed comparative experiments on the setting of super-parameters of the anchor box,
the selection of the loss function, and the selection of attention mechanisms. The baseline
of each experiment is the YOLOv7 model. Because this paper’s primary goal is to improve
detection accuracy, our experiment here mainly uses recall, precision, and mAP to evaluate
the effect.

First, we determined the nine parameter values of the anchor box. For the generation
of the anchor box, we used the K-means algorithm to cluster the anchor box of the COCO
dataset and K-means++ clustering to compare the parameters. It can be seen from the
results (shown in Table 4) that all the evaluation indexes have increased significantly
when using the nine anchor frame parameters obtained after K-means++ clustering, which
verifies the idea of selecting the initial center of the anchor box with appropriate methods.
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Table 4. Performances of different anchor boxes parameters.

Anchor Boxes Parameters Precision Recall mAP@0.5

Initial anchor box 0.9 0.871 0.901
Clustered anchor box (ours) 0.911 0.884 0.914

Then, we made a comparison of different loss functions. YOLOv7 uses CIoU as its loss
function. We compared the performances of three methods: GIoU, CIoU, and SIoU (ours);
the results are shown in Table 5.

Table 5. Performances of different loss function.

Loss Function Precision Recall mAP@0.5

GIoU 0.895 0.867 0.9
CIoU 0.9 0.871 0.901

SIoU (ours) 0.914 0.882 0.905

As seen from Table 5, using SIoU can improve precision and recall by about 1.4% and
1.1%, compared with other methods. These experimental results show that the SIoU loss
function can obtain good performance in insulator-defect detection.

In order to add appropriate attention mechanisms to the network, this paper added
SE, CBAM, and CoordAtt attention mechanisms to the backbone layer and feature fusion
layer of the model for training and comparison. The results are shown in Table 6.

Table 6. Effects of models with different attention mechanisms.

Strategy mAP@0.5 FPS

Backbone 0.901 107
Backbone+SE 0.897 105

Backbone+CBAM 0.906 103
Backbone+CoordAtt (ours) 0.911 102

The effect on model detection caused by different attention mechanisms added to the
backbone is different. Not every kind of attention will improve the model’s performance
after joining the network. Although SE attention ignores location information, it also
considers channel attention. From the results, the performance effect of the model is reduced
after SE attention is added to the backbone. CBAM tries to use location information by
reducing the channel dimensions of the input tensor and then calculating spatial attention
by convolution. However, convolution can only capture local relationships; it cannot
model long-term dependencies crucial to visual tasks. After CBAM attention is added
to the backbone, the performance effect of the model is improved, but it is not apparent.
The CoordAtt attention mechanism embeds location information into channel attention,
capturing remote dependencies in one spatial direction and keeping accurate location
information in another. According to the results, the mAP increased by 1% after adding
CoordAtt to the backbone. This proves that using the CoordAtt attention mechanism can
make the network model notice the target in a broader range and improve the detection
ability of the network.

Ablation experiments were carried out to verify the positive impact on the network
of the improved strategy proposed in this paper. The improved strategy proposed in this
paper was trained on the insulator dataset. The experimental ablation results are shown in
Table 7 below. “X” indicates that the corresponding improvement method is used, and “×”
indicates that the improvement method is not used .
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Table 7. Ablation experiment results.

Model HorBlock+CoordAtt K-Means++ SIoU+NMS mAP@0.5/% Precision/% FPS (Frames per Second)

YOLOv7

× × × 90.1 90 107
X × × 91.4 91.1 101
× X × 90.3 93.6 108
× × X 91.1 92.4 104
X X X 93.8 94.9 95

The first row in the table is the detection result of the original YOLOv7 network. It
can be seen from the above table that when the HorBlock module and CoordAtt module
are added to the original network, mAP@0.5 and accuracy are increased by 1.3% and 1.1%,
respectively, compared with the original YOLOv7 without any improvement strategy. When
YOLOv7 uses the K-means++ algorithm to cluster anchor boxes generated by insulator
datasets, the positioning accuracy is improved to 3.6% higher than the original YOLOv7
algorithm. In addition, because the K-means++ algorithm does not increase the number
of layers and parameters of the network, it will not reduce the model’s speed. Moreover,
K-means++ does not have the problem of significantly affecting the initial value selection,
which can improve the speed of model border regression. Using the improved strategy of
SIoU+NMS, precision increased by 2.4% and mAP@0.5 increased by 1%.

Combining the above three groups of improved methods, it can be found that the
combined improved algorithm has the best effect; the detection accuracy can reach 94.9%
and mAP@0.5 can reach 93.8%, which can meet the requirements for detection accuracy on
insulator images.

Table 8 shows the detection of this model in each category. The insulator has high
precision and low leakage rates. However, because complex environments and tiny targets
characterize the defects of pollution flashover and damaged insulators, the precision and
recall rates are not as good as those of insulators.

Table 8. Detection effect of the model on each category.

Class Precision Recall mAP@0.5

Pollution flashover 0.92 0.87 0.9
Damage 0.94 0.93 0.93
Insulator 0.97 0.98 0.99

Precision and recall cannot be used as the only indicators to measure the model’s
performance, as they may lead us to misunderstand the model’s performance. Therefore, we
further use a PR curve to measure the model’s performance. The PR curve comprehensively
considers the precision and recall rate of each category detected by the model.

The PR curve of this model is shown in Figure 12a. The horizontal axis of the PR curve
is recall and the vertical axis is precision. You can intuitively see the change rate of precision
as recall increases. If the curve in the figure is close to the upper right corner, it means that
with the increase in recall, the fall in precision is not obvious, and the overall performance
of the model is better. Figure 12b is a confusion matrix diagram; 0 represents the defect
of pollution flashover; 1 represents the defect of damage; 2 represents the insulator; 3
represents the background. The row direction in the figure represents the real label and the
column direction represents the predicted category. From the values in each line, the correct
detection rates of damage and pollution flashover are 95% and 91%. The confusion matrix
is a summary of the prediction results of classification problems. It can be seen that the
classification of insulator defects is accurate.

The ablation experiments can only prove that the improved strategy in this paper
is effective compared with the original algorithm, but whether it can reach an advanced
level needs to be proved. Therefore, under the same experimental conditions, a series of
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comparative experiments were carried out on insulator datasets between the improved
method and the current mainstream target detection method.

The comparison of the training results of different models is shown in Figure 13.
From the figure, it can be seen that the mAP@0.5 and recall of the improved algorithm in
this paper are significantly higher than those of the other three models.

Figure 14 shows the comparison of training loss curves of different models. After 20 it-
erations, the loss curves of different models are stable and the training results can converge.
It can be seen that YOLOv5s is far less effective than YOLOv7 in terms of regression loss
and classification loss. Since the network structure is added to the improved model in this
paper, the convergence speed of the improved model in the figure is slightly lower than
that of YOLOv7. However, in about 20 iterations, the model in this paper shows a better
decline rate and convergence ability than YOLOv7. It is proven that the loss function’s
adjustment improves the network’s convergence ability.

(a) (b)
Figure 12. Operation result curves of this model: (a) precision–recall curve; (b) confusion matrix.

(a) (b)
Figure 13. Comparison of training results of different models: (a) recall curve; (b) mAP@0.5 curve.
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(a) (b)
Figure 14. Comparison of training loss curves of different models: (a) cls-loss curve; (b) box-
loss curve.

Compare the loss function curves during model training; Figure 15 shows the loss
on the test set. The loss is the sum of model regression, confidence, and classification loss.
The figure shows that the effect of our model is better than other models.

Figure 15. Comparison of model loss curves on the testing data.

Finally, Table 9 lists the comparison results of evaluation indicators of different models.
It can be seen from the table that the recall of this model was greater by 6.3% and mAP@0.5
by 3.7% compared with YOLOv7. Although the model’s speed has decreased, the speed is
still 95 FPS, much faster than the speed of the two-phase model.

Table 9. Comparison of evaluation indicators of different models.

Method F1 Score Recall mAP@0.5 FPS

Faster R-CNN 0.80 0.821 0.862 12
YOLOv5s 0.89 0.845 0.898 111
YOLOv7 0.88 0.871 0.901 107

Ours 0.94 0.934 0.938 95

Based on the comparison and analysis of the above series of experiments, it can be
concluded that the improved YOLOv7 algorithm proposed in this paper has obvious
advantages in detection accuracy. Although the speed is decreased to a certain extent, it can
still meet the real-time requirements of insulator-defect detection in practical engineering.

To better verify the generalization ability and robustness of the model in this paper,
we specifically selected small targets and targets in complex environments in the test set
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for testing. In the contrast-detection experiment, to verify that the model in this paper
is more suitable for insulator-defect detection, we also purposely add the comparison of
detection results of the YOLOX model. The detection results are shown in Figures 16–18.
Through comparative analysis, the improved algorithm can better identify micro-defects of
insulators and can accurately identify some insulator targets in complex environments.

In conclusion, the results of ablation and comparison tests show that the strategy in
this paper has significantly improved the accuracy of insulator-defect detection.

Dian et al. [39] previously proposed a Faster R-Transformer algorithm for aerial
insulator detection. The algorithm also combines self-attention mechanism, with an average
accuracy of 97.31%. However, the FPS is only 12, which does not meet the actual application
requirements of the project. The research results in this paper can improve the accuracy,
while the FPS is still 95. Ding et al. [40] detected insulator defects by improving the classic
YOLOv5 model. This model also improves the regression loss function, anchor frame
generation method, and NMS method, which improves the model detection accuracy.
However, the recall rate is only 90.4%, while the recall rate in this paper is 93.4%.

The improved strategy proposed in this paper provides more possibilities for small-
target detection such as insulator defects. In the future, this model can also be applied
to various small-target detection scenarios in agriculture and industry. Finally, the im-
provement of this paper is mainly in the backbone of the network. The detection head is
also important for model fusion features. We plan to expand our research in the future to
understand the network model more fully.

Figure 16. Detection results after the target are obscured.
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Figure 17. Small-object detection experimental results.

Figure 18. Detection results of images with obscured objects and complex backgrounds.

4. Conclusions

This paper proposes an improved YOLOv7 insulator-defect detection method, which
can accurately identify insulators and their defects in transmission line images with com-
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plex backgrounds. The experimental analysis proves that the anchor box generated by
clustering the target box of the insulator dataset with K-means++ can improve the detec-
tion accuracy and effect. Combining the CoordAtt attention mechanism and HorBlock
module in the network can increase the expression ability of the feature graph, optimize
the feature representation of the insulator-defect target, and improve the detection effect of
the insulator-defect target. Finally, SIoU, the loss function, introduces the concept of the
angle between the real box and the predicted box to help calculate the distance between
the two boxes, accelerating the network’s convergence. By adding the above strategies,
the improved model increases recall and mAP@0.5 by 2.5% and 2.7%, respectively, com-
pared with the original network. In addition, the detection speed of the model is still 91
fps, which can meet the needs of real-time high accuracy. Compared with other models,
this method has obvious advantages.

There are still some improvements to be made. At present, the insulator defects in the
dataset are external contour damage, and there is no image dataset of internal crack defects
of insulating materials. Suppose that an internal crack defect in the insulating material
shows some characteristics on the outer surface of the insulator. We will further improve
the dataset to detect insulator defects in that case.
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