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Abstract

REarranged during Transfection (RET) is a receptor tyrosine kinase essential for the normal 

development and maturation of a diverse range of tissues. Aberrant RET signaling in cancers, 

due to RET mutations, gene fusions, and over-expression, results in the activation of downstream 

pathways promoting survival, growth, and metastasis. Pharmacological manipulation of RET 

is effective in treating RET-driven cancers, and efforts towards developing RET specific 

therapies has increased over the last five years. In 2020, RET selective inhibitors pralsetinib 

and selpercatinib achieved clinical approval, which marked the first approvals for kinase 

inhibitors specifically developed to target the RET oncoprotein. This Perspective discusses current 

development and clinical applications for RET precision medicine by providing an overview of the 

incremental improvement of kinase inhibitors for use in RET-driven malignancies.
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1. Introduction

The REarranged during Transfection (RET) gene was identified as a transmembrane 

receptor tyrosine kinase with proto-oncogenic properties by Takahashi et al in 1985, 

following the transfection of NIH/3T3 cells with human lymphoma DNA.1–2 RET is 

essential for the normal development and maturation of a diverse range of tissues 

including kidney, central and peripheral nervous systems, thyroid, adrenal and pituitary 

glands, maturation of spermatogonia, and the survival and expansion of hematopoietic 

stem cells.3–14 Following ligand binding to RET coreceptors, RET is recruited to the 

coreceptors-ligand complex and localized to lipid rafts, where it undergoes dimerization and 

autophosphorylation of the RET intracellular tyrosine kinase domain (Figure 1).4, 15 Adaptor 

and signaling proteins then bind to the RET kinase domain resulting in the activation of 

multiple signaling pathways, which regulate proliferation, differentiation, and survival.6, 16 

RET is activated in numerous cancer types mainly through chromosomal rearrangements 

that generate fusion genes containing the active RET kinase domain. RET fusions occur 

in 10–20% of papillary thyroid carcinoma (PTC), 3% of spitzoid tumors, and 1–2% of 

non-small-cell lung carcinoma (NSCLC) and have also been identified in other cancers.17–32 

Gain-of-function mutations in RET cause multiple endocrine neoplasia 2 (MEN2), which 

is an autosomal dominant cancer characterized by high risk of developing early-onset 

medullary thyroid carcinoma (MTC).33 Increased expression or activity of wildtype RET 

has also been shown to contribute to the pathogenesis of several cancer types including 

breast cancer, pancreatic ductal adenocarcinomas, acute myeloid leukemia, and prostate 

adenocarcinomas.24, 34–52 Aberrant RET signaling enhances activation of downstream 

pathways that promote tumor growth, survival, and metastasis leading to poor prognosis 

in numerous cancers. RET is a targetable kinase and many studies have investigated the use 

of both multikinase inhibitors as well as RET specific inhibitors as therapeutic strategies. 

Our prior efforts and continuous interest in RET inhibitors prompted us to compile a detailed 

review of RET and RET inhibitors developed to pharmacologically modulate RET signaling 

in RET-driven malignancies.53–56

2. RET Biology and Signaling

RET receptor

RET is a receptor tyrosine kinase (RTK) containing an intracellular tyrosine kinase 

domain, a transmembrane domain, and a large extracellular domain (Figure 1A).1 The 

RET extracellular domain contains four cadherin-like domains and a conserved cysteine-

rich region important for ligand interactions and protein structure.57–59 Following the 

transmembrane domain, a juxtamembrane segment marks the start of the intracellular 

portion of RET, which is followed by the kinase domain and an isoform specific C-

terminus.58–60 RET has three functionally distinct protein isoforms, which differ in their 

C-terminus due to alternative splicing. The three isoforms, RET9, RET43, and RET51, have 

high homology and are co-expressed in many tissues.61–62 However, numerous studies have 

identified differences in temporal and spatial regulation of expression, cellular localization, 

trafficking, with the isoforms showing different contributions to both RET-mediated normal 

development and oncogenicity.58, 60–64 RET51 may play a more prominent role in tumors, 
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with RET51 being more effective at promoting cell proliferation, migration, and anchorage-

independent growth.58, 60, 65 Transcripts of RET51 are more abundant than those of RET9 

in some MEN2 tumors, and increased RET51 expression was seen in stage IIB pancreatic 

tumors.49, 66

RET activation in normal conditions occurs via the binding of a coreceptor-ligand complex 

of glial cell line-derived neurotrophic factor (GDNF) family ligands (GFLs): GDNF, 

neurturin (NRTN), artemin (ARTN), or persephin (PSPN) and one of four cell surface 

glycosylphosphatidylinositol-linked GDNF family receptor-α (GFRα) (Figure 1A).4, 6, 67 

These GFLs bind to GDNF family receptor-α (GFRα) coreceptors, which recruit RET for 

dimerization inducing RET autophosphorylation.15, 68 The RET-coreceptor-ligand complex 

is then incorporated into lipid rafts, where adaptor and signaling proteins bind to docking 

sites on the RET intracellular tyrosine kinase domain allowing for RET-mediated activation 

of multiple downstream pathways (Figure 1B).4, 6, 16, 57, 66–67, 69–71 The intracellular 

domain of RET contains twelve autophosphorylation sites: Y687, Y752, Y806, Y809, Y826, 

Y900, Y905, Y928, Y981, Y1015, Y1062 and Y1062, which serve as docking sites for 

adapter proteins.72 A primary docking site is the phosphorylated tyrosine, Y1062, which 

binds to several adapter proteins such as Src homology and collagen (SHC), insulin receptor 

substrate 1/2 (IRS1/2), fibroblast growth factor receptor substrate 2 (FRS2), protein kinase 

C (PKC), downstream of tyrosine kinase 1/4/5/6 (DOK1/4/5/6), and Enigma.72–73 Other 

docking sites include Y687 and Y981, which bind to tyrosine phosphatases, Shp2, and 

c-Src kinase, respectively.74–75 Y905 is the docking site for Grb7/10; Y752 and Y928 

are STAT3 docking sites; Y1015 is involved in the activation of PKC signaling through 

binding of phospholipase Cγ (PLCγ), and Y1096 binds Grb2.58, 72–73, 76–77 Activation of 

these adapter proteins leads to the activation of several signaling pathways such as RAS/

extracellular signal-regulated kinase (ERK), RAS/mitogen activated protein kinase (MAPK), 

phosphatidylinositol 3-kinase (PI3K)/AKT, and c-Jun N-terminal kinase (JNK), which are 

mediators of cell motility, proliferation, differentiation, and survival.78–84

3. RET Implications in Cancer

RET Gene Fusions

RET fusions occur in a variety of malignancies and are most common in PTC, Spitzoid 

tumors (rare melanocytic lesions), and NSCLC (Figure 2).17–18, 24–27, 84 RET fusions have 

also been identified in other cancer types following deep sequencing approaches: chronic 

myelomonocytic leukemia, colorectal, breast, ovarian, spitzoid melanomas, and head and 

neck tumors.17, 19–23, 29–31, 59 These somatic RET fusions of the RET gene result from 

chromosomal rearrangements or inversions which juxtaposition the RET intracellular kinase 

domain with the N-terminal region of another gene that contains dimerization domains 

such as: coiled-coil motifs, Lis1 homology (LisH) domain, or a sterile α motif (SAM) 

domain.18, 85–87 More than 30 genes are reported to form fusion genes with RET.58 The 

most frequently occurring RET fusions contain either the coiled-coil domain containing 

6 (CCDC6), the nuclear receptor co-activator 4 (NCOA4), or the kinesin family 5B 

(KIF5B).18, 58, 88–89 RET fusions or rearrangements are thought to arise from errors that 

occur during the repair of double-stranded DNA breaks including nonhomologous end 
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joining, break-induced replication, and other complex rearrangements 58, 90–92 Many factors 

can lead to double-stranded DNA breaks, such as ionizing radiation and genotoxic chemicals 

or stress factors such as hypoxia and replication stress.93–94 Patients with papillary thyroid 

cancer who were exposed to the atomic bomb in Japan or to the Chernobyl radioactive 

fallout had RET fusions in 50–80% of cases.95–98 Fusion to the RET kinase domain 

can lead to ligand independent dimerization resulting in constitutive activation of the 

RET kinase.28, 99 Altered localization from the plasma membrane to the cytosol results 

in a loss of RET kinase regulation and enhanced downstream signaling of growth and 

survival pathways.100–101 The KIF5B-RET fusion has been shown to increase RET kinase 

expression by 2- to 30-fold in lung tissue.102 The NCOA4-RET fusion is associated with 

more aggressive papillary thyroid cancer histology and promotes tumor cell migration 

and invasion in vitro.18, 63 Clearly, RET gene fusions are implicated in the pathology 

of numerous cancer types and pharmacological modulation of these gene fusions is an 

important therapeutic strategy.103

Elevated RET expression

Beyond gene fusions, increased expression or activity of wildtype RET is a contributing 

factor for oncogenesis in many tumor types.42 GFLs are released by some tumor cells 

and by the tumor microenvironment, promoting autocrine activation of RET, increasing 

tumor growth, and metastasis. In breast cancer, tumor specific expression of GDNF and 

ARTN promotes tumor growth and resistance to several endocrine therapy regimes.34, 44–48 

GDNF and ARTN, as well as soluble forms of GFRα1, are secreted by pancreatic ductal 

adenocarcinomas cells as well as pancreatic nerve cells.50–51, 100, 104 This stimulates 

metastasis and invasion of RET-expressing tumor cells along nerve fibers within the central 

nervous system.35–37, 49–51 In 60–70% of acute myeloid leukemias, increased RET activity 

was observed due to the secretion of NRTN or ARTN from stromal cells promoting cell 

viability.39, 43 Increased RET expression in prostate adenocarcinomas is linked to perineural 

invasion and increased proliferation.40–41 Elevated GFL secretion and RET expression 

are detected in numerous other cancers including: melanoma, glioma, neuroblastoma, 

seminoma, endometrial, head and neck cancers, and renal cell carcinomas.105–111 In many 

cases, RET stimulates tumor cell migration and invasion, and is correlated with poor 

prognosis and reduced overall survival.20, 106–107, 109–111 Targeting RET may be of greater 

therapeutic value than first realized and has the potential to be clinically relevant for a much 

broader group of human cancers.

RET Mutations

MEN2 is an autosomal dominant cancer syndrome characterized by high risk of developing 

early-onset MTC.33 MEN2 can be classified into two subtypes, MEN2A and MEN2B, in 

which RET activating mutations are pathognomonic.117–118 The most common subtype is 

MEN2A and occurs in ~95% of MEN2 cases.58–59 Familial medullary thyroid carcinoma 

(FMTC) was previously considered a third MEN2 subtype but is now considered part of 

the MEN2A subtype.59 MEN2A is characterized by MTC in all patients and may also 

be associated with pheochromocytoma, hyperparathyroidism, cutaneous lichen amyloidosis, 

and Hirschsprung disease.117, 119–120 The MEN2B subtype is clinically more severe with 

an early onset of MTC, and makes up ~5% of MEN2 cases.32, 121 MEN2 is caused by 
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mutations in the RET receptor; to date, more than 60 RET mutations are known, with most 

being gain-of-function mutations (Figure 2). The majority of these mutations occur as point 

mutations found in RET exons 5–16, which lead to constitutive RET kinase activity.6, 122 

Approximately 95% of MEN2A cases arise from substitutions of cysteine residues within 

the cysteine-rich domain of the RET extracellular domain (C609, C611, C618, C620, C634) 

and patients with the C634 mutation account for ~85% of cases.58, 123–124 These mutations 

decrease the formation of intramolecular disulfide bonds promoting receptor dimerization 

resulting in constitutive activation of RET independent of ligand binding.124–127 Less 

common MEN2A mutations include G533C in the RET extracellular domain and (E768, 

L790, V804, S891) in the RET intracellular domain—these mutations are associated with 

delayed onset or with MTC as the only disease characteristic.6, 118, 128 In the less common 

MEN2B subtype, ~95% of cases are associated with the M918T mutation within the RET 

kinase domain resulting in altered phosphorylation kinetics, increased ATP-binding, and 

decreased auto inhibition. This leads to a dominant active kinase domain resulting in 

elevated downstream signaling.33, 124, 128–130 A883F has also been identified in MEN2B 

patients and is located in the RET kinases domain leading to enhanced activation and 

signaling, however the A883F mutation is associated with a less aggressive phenotype 

compared to M918T.131–133 Two dual mutations have also been identified in rare cases 

of MEN2B, V804M and Y806C; these act synergistically to enhance RET activity but 

are associated with a less aggressive phenotype compared to M918T.133–134 In ~65% 

of sporadic MTCs, somatic MEN2B-type mutations have been identified and these are 

associated with a more aggressive phenotype.115

Next generation sequencing techniques in recent years have identified activating RET 

mutations in multiple cancer types including breast carcinoma (C634R), colorectal 

adenocarcinoma (V804M), GI stromal tumor (V804M), Merkel cell carcinoma (E511K), 

and paraganglioma (M918T). However, how these RET mutations contribute to cancers 

regarding cancer progression and prognosis require additional research.30, 59 With most of 

the mutations leading to RET activation and increased downstream signaling, RET specific 

inhibitors to block activation of pro-survival pathways is a therapeutically valid approach.

Aberrant RET signaling occurs from several mechanisms including RET gene fusions, 

RET activating mutations, and over-expression of the RET kinase. Increased RET activity 

has been identified in many cancer types contributing to cell motility, proliferation, 

differentiation, and survival. RET is an actionable oncoprotein and pharmacological 

modulation of RET is effective in the treatment and management of many cancers. Initially, 

multikinase inhibitors with RET activity were investigated for RET-driven malignancies but 

were found therapeutically limited by off target effects. Current therapeutic investigation 

involves testing RET specific inhibitors with activity on numerous mutant forms of 

RET. Clinical investigation with these specific, RET mutant inhibitors is effective but 

promotes drug resistance via novel RET mutations. To counter this, a new generation 

of RET inhibitors is being developed to overcome novel, treatment-induced mutations. 

In the following perspective, we provide a comprehensive overview of RET inhibitors 

by discussing the incremental improvement of kinase inhibitors for use in RET-driven 

malignancies.
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4. First generation Multikinase Inhibitors (MKIs) with RET activity

Sorafenib

Sorafenib (NEXAVAR®; Bayer Pharmaceuticals) was the first MKI brought to market in 

2005 to obstruct Raf oncogenic signaling. It was later discovered that sorafenib inhibited 

the RET oncoprotein in an in-vitro kinase assay (IC50 = 5.9 nM) including the gatekeeper 

mutant RETV804M (IC50 = 7.9 nM).135–136 In the clinical setting, sorafenib is approved to 

treat renal cell and hepatocellular carcinomas. Clinical activity has also been documented in 

patients with metastatic radioiodine nonresponsive differentiated thyroid carcinomas, which 

may have a RET counterpart driving the malignancy.137 Thyroid cancer patients receiving 

sorafenib achieved greater progression-free survival, but overall survival was similar to that 

of non-treated patients.130

In 1994, development of sorafenib was initiated by Bayer and Onyx with the intention of 

discovering therapies to interrupt the Ras–Raf–MEK–ERK pathway. The discovery platform 

relied on high-throughput screening of two million compounds that were tested for Raf1 

kinase inhibitory activity.135 From the enzymatic screen, 3-thienyl urea 1 was discovered 

as a hit compound (Raf1 IC50 = 17 μM).138 The activity of the initial hit was improved 

ten-fold with the addition of a methyl substitution on the phenyl ring (compound 2). Further, 

a library of bis-aryl urea analogues was synthesized and screened against Raf1 kinase in an 

effort to improve inhibition, and 3-amino-isoxazole (compound 3) exhibited a Raf1 kinase 

IC50 of 1.1 μM.139–140 Further scaffold refinement was completed by modifying the distal 

ring system, which furnished the 4-pyridyl analog 4. Additional modification of the distal 

pyridine ring system, while maintaining the diphenylurea moiety, led to the identification of 

sorafenib.135, 141–142

Sorafenib is a multikinase RET inhibitor and several other molecular targets of sorafenib 

contribute to its broad-spectrum inhibitory activity against various human cancers (listed 

in Tables 1 & 2).137 Beyond RET, molecular targets include wild-type BRAF and 

oncogenic BRAFV600E serine/threonine kinases, pro-angiogenic RTKs such as vascular 

endothelial growth factor receptors (VEGFRs) 1/2/3, platelet-derived growth factor receptor-

β (PDGFRβ) and fibroblast growth factor receptor 1 (FGFR1), and RTKs involved in 

tumorigenesis (c-Kit and Flt-3).138, 141

Wilhelm et al. demonstrated that sorafenib inhibited VEGF- and PDGFβ-stimulated 

phosphorylation of VEGFR2 and PDGFRβ RTKs in human cells, respectively.137 It was 

also found that sorafenib induced complete tumor stasis in colon and breast carcinoma 

xenograft models. In addition, sorafenib inhibited the growth of a number of human 

xenografts, including ovarian (SK-OV-3, EGFR+ and HER2/neu+), pancreatic (Mia PaCa 

2, KRAS+), melanoma (LOX, UACC 903 and 1205 Lu containing B-RAF V600E) and 

thyroid (RET+).138

Many research groups became particularly interested in sorafenib because of the ability for 

sorafenib to inhibit RET activity.141 Plaza-Menacho et al. investigated the mechanism of 

sorafenib inhibition of RET and studied structural aspects of the binding of sorafenib to 
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RET.135 To gain insight into the binding pose of sorafenib in RET, it was modelled in a 

DFG-out (inactive fold) homology model as previously described (Figure 3B).56, 138

It was also found that sorafenib induced degradation of RET and, to further study this, a 

lysosome or proteasome inhibitor was co-administered with sorafenib. In both RETC634R 

and RETM918T transfected HEK293 cells, sorafenib-induced RET degradation was rescued 

by the lysosome inhibitor concanamycin A. Sorafenib was also found to inhibit the 

gatekeeper mutation RETV804M.135 The RETV804M gatekeeper mutation desensitizes kinase 

inhibition of other RET inhibitors including PP1, PP2, and vandetanib. By examining the 

RET-PP1 crystal structure, a mechanism for resistance has been proposed (Figure 3A). 

The RETV804M gatekeeper mutant contains a bulky methionine residue in place of valine 

that sterically hinders binding of PP1 to the kinase.129 When examining the RET-sorafenib 

complex (Figure 3B), inhibitory potency is maintained as the binding of sorafenib shifts to 

accommodate the methionine residue. This is explained by compensatory conformational 

changes in the RET binding site, inducing a shift in the DFG (aspartic acid, phenylalanine, 

glycine) motif to adopt a DFG-out conformation when bound to sorafenib.56, 129, 135, 141

Due to its activity against B-RAF, VEGFR2, and RET, sorafenib was clinically 

investigated for the treatment of advanced renal cell carcinoma (RCC), unresectable 

hepatocellular carcinomas (HCC) and locally advanced, metastatic, or locally recurrent 

thyroid cancer.56, 143–146 Sorafenib was also investigated as an adjuvant to radioiodine 

therapy in MTC (NCT00095693). A phase II trial of sorafenib against medullary thyroid 

carcinoma (MTC), a cancer that commonly harbors a RET oncogene, found that sorafenib is 

tolerated in advanced MTC with extended clinical benefits if adverse events are recognized 

and managed via reduction or discontinuation of treatment.142, 147 Common adverse events 

include diarrhea, hand-foot-skin reaction, rash, hypertension, and, less common, death. 

Severity of the adverse events likely stems from the multikinase profile of sorafenib. 

Although sorafenib can effectively inhibit the RET kinase at a therapeutic dose, the 

multikinase activity becomes dose-limiting, which restricts therapeutic benefits.137, 142 

Sorafenib was also investigated in combination with tipifarnib, a farnesyltransferase 

inhibitor, and provided a clinical response in spontaneous MTC with an aberrantly activated 

RET kinase.148 A reduction in tumor volume was confirmed by the Response Evaluation 

Criteria in Solid Tumors (RECIST) criteria to be 36% by 8 weeks and 46% by 10 months.148

The clinical investigation of sorafenib supported the hypothesis that inhibiting RET in 

RET driven cancers can provide a therapeutic benefit. However, clinical investigation also 

suggested that selectivity of the RET-targeted agent was important to consider to reduce 

adverse events that lead to dose reduction or discontinuation of therapy. A summary of all 

clinically investigated RET inhibitors can be found in Table 6.

Regorafenib

Regorafenib (BAY 73–4506, STIVARGA®) is a multikinase RET inhibitor approved for 

the treatment of metastatic colorectal cancer (mCRC).149–150 Regorafenib was discovered 

during the development of sorafenib via a traditional medicinal chemistry analoging 

approach. Regorafenib is active against several oncogenic RTKs, including RET, angiogenic 

RTKs (VEGFR-1, VEGFR-2, VEGFR-3, TIE-2), stromal RTKs (PDGFR-B, FGFR1), and 
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intracellular signaling kinases (c-RAF/RAF-1, BRAF, BRAFV600E). The biochemical 

enzymatic inhibition of regorafenib is listed in Table 2.149 In contrast to sorafenib, 

regorafenib contains a fluorine in the center phenyl ring. This additional structural 

modification results in a similar, but distinct, therapeutic profile to that of sorafenib.151

It was found that regorafenib binds to the RET kinase domain like sorafenib (Figure 

4A). Regorafenib is metabolized into two active metabolites, M-1 (BAY 75–7495) and 

M-2 (BAY 81–8752).152 Kinase profiling of regorafenib and the two active metabolites 

revealed that regorafenib and the active metabolites have higher affinity for RET compared 

to angiogenic and stromal RTKs. The active metabolites also exhibited more pronounced 

inhibitory activity compared to regorafenib.152 Regorafenib and metabolites also display 

dose-dependent inhibition of tumor growth in CRC xenograft models.152

Distribution studies revealed that regorafenib and its metabolites concentrate at high 

levels in mammary alveolar cells, which presents a risk of neonatal exposure. Despite 

this, regorafenib was progressed into clinical trials to assess safety, pharmacokinetics, 

pharmacodynamics, and efficiency in patients with advanced solid tumors. Large, 

multinational Phase III and IV studies were completed to assess regorafenib efficacy in 

mCRC patients that progressed after treatment with standard therapy. In this patient class, 

regorafenib was approved for the treatment of mCRC in 2012.153

Although rare, 0.2% of mCRC patients have a RET oncogenic fusion, which can occur as 

NCOA4-RET, CCDC6-RET, TRIM24-RET, TNIP1-RET and SNRNP70-RET.20 In a mCRC 

patient harboring a CCDC6-RET fusion oncogene, a reduced regorafenib dose compared 

to the starting mCRC dose produced a therapeutic response.22, 151 Further investigation is 

required to confirm the efficacy of regorafenib in mCRC patients that harbor a RET fusion 

oncogene. Beyond mCRC, regorafenib can inhibit the RET-mediated PI3K/AKT/mTOR 

pathway in neuroblastoma.154 This suggests regorafenib penetrates the blood brain barrier 

and could be utilized to treat central nervous system cancers or metastases driven by a RET 

oncogene.

Sunitinib

Sunitinib (SU11248, SUTENT®; Pfizer, Inc.) is a multitargeted kinase inhibitor that inhibits 

RET, VEGFRs (1, 2, and 3), PDGFRs α and β, KIT, FLT3, and CSF1R.155 Sunitinib was 

approved in 2006 for the treatment of advanced RCC and gastrointestinal stromal tumors 

(GISTs).156 The discovery of sunitinib was initiated at Sugen Inc. with the identification 

of three indolin-2-one cores with inhibitory properties against various RTKs. Both 1 and 3, 

with a Z-configuration, were found to be potent and selective inhibitors of VEGFR, whereas 

2, an E-configuration, was found to inhibit RTKs non selectively.157

The E/Z configuration was determined by the nature of substitutions at the C - 3 position of 

the indolin-2-ones. The potency was found to be dependent on adopting a Z-isomeric form. 

This is supported by co-crystal studies using SU5402 bound to the active sites of FGFR1 

and VEGFR2.156, 158 Co-crystallized structures of SU5402 with both FGFR1 and VEGFR2 

demonstrate that SU5402 coordinates to a conserved asparagine residue (Asn568) through 

its C-3’ propioninc acid substituent on the pyrrole ring. The asparagine residue is not 
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conserved in PGDFRβ, which contains an aspartic acid in the corresponding position, and 

efforts to improve PGDFRβ affinity while maintaining VEGFR2 affinity were completed.158 

This led to the discovery of SU6668, which maintained both PDGFRβ and VEGFR2 

inhibitory activity.159 Binding of SU6668 in the active site of FGFR1 revealed that the C-4 ′ 
position on the pyrrole ring orients to the solvent front, and thus substitution at this position 

was completed to improve pharmaceutical properties of the indolin-2- ones.159 Various basic 

amine side chains were introduced at the C-4′ position among which sunitinib (SU11248) 

was identified and exhibited the most optimal profile.156 Initial kinome profiling of sunitinib 

demonstrated selectivity for class III and V RTKs, which included RET, VEGFRs 1–3, 

PDGFRs α and β, KIT, FLT3, and CSF-1R (Table 2).156

To identify the individual roles of RTK targets, sunitinib was compared to selective RTK 

inhibitors.157, 160 This identified that the reduction of micro vessel density and antitumor 

efficacy of an indolin-2-one analog SU10944 combined with imatinib was similar to that 

of single-agent sunitinib and was superior to that of each compound. Together, these data 

suggested that inhibition of VEGFR, PDGFR, and KIT synergistically contribute to the 

antitumor and antiangiogenic profile of sunitinib.157

Sunitinib was designed with a fluoro substitution at the C-5 position to prevent aromatic 

hydroxylation by CYP.157, 161 The major metabolite M-3 is the N-dealkylation product of 

sunitinib, SU12662, which exhibited comparable in vitro and in vivo properties. Sunitinib 

was found to exhibit desired pharmacokinetic properties (i.e., oral bioavailability, solubility, 

stability) and tumor regression was observed in tumor xenografts.157, 161

Tumor growth inhibition and pharmacodynamic modulation of RTKs was evaluated, which 

indicated a plasma level ≥ 50 ng/mL per day was required to efficiently block targeted 

RTKs. Sunitinib exhibited direct antiproliferative activity against a subset of tumor cells 

including the acute myeloid leukemia cell line MV4–11, presumably from activity on 

FLT3.162 It was also reported that sunitinib had a benefit in lung adenocarcinoma patients 

harboring a KIF5B-RET fusion.163 Despite activity on RET, sunitinib is not approved to 

treat RET-driven disease but is approved for other malignancies.164

Vandetanib

Vandetanib (ZD6474, CALPRESA®, Genzyme) is a heteroaromatic-substituted 

anilinoquinazoline developed by Astra-Zeneca to inhibit VEGFR with inhibitory effects on 

RET and epidermal growth factor receptor (EGFR) kinases.167 Vandetanib inhibits cancer 

cell-proliferation in vitro and impairs tumor growth in xenograft models of prostate, lung, 

breast, ovarian, vulvar and colorectal cancers, and in syngenic murine models of lung cancer 

and melanoma.167

Due to its multitargeted nature (enzymatic inhibitory activities are listed in Table 2), 

vandetanib exhibits anti-angiogenic, anti-tumorigenic, and anti-metastatic properties, and 

exhibits efficacy in orthotopic murine models of lung, gastric, pancreatic, and renal 

cancers.165
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Several preclinical studies suggests that vandetanib inhibits two key pathways: (1) indirect 

tumor growth arrest via inhibition of VEGF-dependent tumor angiogenesis and VEGF-

dependent endothelial cell survival, and (2) direct tumor growth arrest via inhibition 

of oncogene-dependent tumor cell proliferation and survival. Vandetanib exhibits broad-

spectrum antitumor activity in preclinical xenograft models of lung, prostate, breast, ovarian, 

colon, and vulvar.165, 167

Vandetanib treatment was studied in MTC, which is commonly driven by a RET oncoprotein 

in approximately 10–30% of cases.157–158, 169–170 It was hypothesized that vandetanib 

inhibited the growth of MTC by the blockade of both RET and VEGFR pathways. 

Carlomagno et al investigated the inhibitory profile of vandetanib against various oncogenic 

RET kinases.171 It was found that vandetanib could block in vivo phosphorylation and 

signaling of the RET/PTC3 and RET/MEN2B oncoproteins and the EGF-activated EGF-

receptor/RET chimeric receptor.172 Vandetanib prevented the growth of two human PTC 

cell lines that carry RET/PTC1 oncogene rearrangements.171 Also, vandetanib blocked 

anchorage-independent growth of RET/PTC3-transformed NIH3T3 fibroblasts and in vivo 
formation of RET/PTC3 driven tumors in nude mice.172 Therefore, although vandetanib is 

a multikinase RET inhibitor, the multikinase profile appears advantageous in RET-driven 

carcinomas.

Co-crystal studies of vandetanib bound to RET illustrates that the molecule occupies the 

ATP-binding site of RET by displacing the nucleotide-binding loop.128 Vandetanib binds to 

the hinge region through a hydrogen bond between the quinazoline core and Ala807. The 

bromofluorophenyl group of vandetanib occupies a hydrophobic pocket at the back of the 

ATP site, which is gated by VAL804 (Figure 4B). The gatekeeper VAL804 cannot form 

hydrogen bonds with vandetanib, and the size of the amino acid side chain at this position 

controls access to the pocket. This explains why VAL804 mutants, with more bulky amino 

acid side chains, confer resistance to vandetanib.

Vandetanib is metabolized by CYP3A4 and hepatic flavin-containing mono-oxygenases, 

which generates the metabolites N-desmethyl vandetanib and vandetanib N-oxide, 

respectively. Investigation of the in vitro activity of these metabolites has shown that 

N-desmethyl vandetanib is able to inhibit VEGFR and RET and contributes to the 

overall pharmacological profile of vandetanib. The N-oxide metabolite does not retain 

pharmacological activity.173

Vandetanib was approved in April 2011 for advanced or metastatic MTC.173–174 In a Phase 

III trial, 89% of patients in the vandetanib arm developed a rash, and 13% of patients had 

a photosensitivity reaction. Clinical efforts were launched at 16 different European medical 

centers to expand the therapeutic profile of vandetanib, but QT prolongation was a major 

dose-limiting adverse event that blunted therapeutic development.173

The clinical effects of vandetanib stem from other kinase targets beyond RET, such as 

VEGFR2, which can impair VEGF-dependent tumor angiogenesis and VEGF-dependent 

endothelial cell survival. However, this activity also leads to discontinuation and dose-

limiting toxicities as excessive VEGFR2 inhibition is linked to cardiotoxicity and the EGFR 
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inhibitory component of vandetanib is likely the culprit of dermatological toxicities.175 

Further, vandetanib does not retain inhibition of clinically relevant RET point mutations that 

have been shown to drive drug resistance.171, 173 The discovery and clinical development of 

vandetanib highlight that a lack of target specificity for RET may increase adverse events 

and discontinuation rates. Also, the clinical utility of vandetanib is limited since the drug 

does not retain activity on RET mutations that drive drug resistance. Although clinically 

effective for MTC, adverse drug events blunt clinical utility.

Lenvatinib

Lenvatinib (LENVIMA®) is a quinoline based multikinase inhibitor developed by Eisai in 

2015.168, 176 Lenvatinib targets RET, VEGFR 1–3, FGFR 1–4, mast/stem factor receptor kit 

(SCFR) or c-Kit, and PDGFRβ.168 (Biochemical IC50s are listed in Table 2) Lenvatinib 

elicits antitumor effects by interfering in pro-angiogenic and oncogenic-pathways in a 

similar fashion to vandetanib.168, 176 Due to activity on the RET oncogene, lenvatinib 

can inhibit proliferation of RET-driven malignancies.166 Lenvatinib was discovered by 

screening a compound library against an angiogenic-factor-induced tube formation assay, 

which identified an active quinoline skeleton.177 The quinoline underwent optimization to 

improve the VEGFR inhibitory profile.159 From drug development efforts, lenvatinib was 

identified and found to simultaneously inhibit VEGF-induced proliferation (IC50 = 3.4 nM) 

and tube formation of HUVECs (IC50 = 2.7 nM) and FGF-induced angiogenesis (IC50 = 7.3 

nM).178

Binding kinetics of lenvatinib with VEGFR2 demonstrate the compound is 14–16 times 

more potent than sunitinib and sorafenib, respectively. The X-ray cocrystal structure of the 

lenvatinib-VEGFR2 complex (Figure 4C) reveal that lenvatinib binds to the active (DFG-in) 

conformation of VEGFR2.168 The nitrogen in the quinoline ring binds to the hinge residue 

CYS919 and the cyclopropane ring uniquely interacts in the allosteric pocket of the kinase. 

Typically, kinase inhibitors that interact in the allosteric pocket of a kinase induce a DFG-out 

conformation (type II/III kinase inhibitors). However, lenvatinib does not induce a DFG-out 

conformational change but still interacts in the allosteric pocket. This type of binding 

interaction is unique to lenvatinib and is classified as a ‘Type V’ inhibitor.168 In comparison 

with other types of kinase inhibitors, Type V is distinguished by rapid binding and generally 

greater affinity.179

Lenvatinib was studied in thyroid cancer because of its VEGFR 1–3 anti-angiogenic activity 

and inhibition of oncoproteins including RET.179–181 Lenvatinib demonstrated anti-tumor 

activity in xenograft mouse models of thyroid cancer including differentiated thyroid 

cancer (DTC), MTC, and anaplastic thyroid cancer (ATC). However, in vitro cancer cell 

proliferation was inhibited in only two cell lines: RO82-W-1 (FGFR1 overexpression) and 

TT cells (RET point mutation).182 It is important to note that inhibition of VEGF-mediated 

pathways in cell culture does not reduce proliferation as cell culture lacks a vascularized 

microenvironment.181 Lenvatinib was also found to inhibit autophosphorylation of three 

RET gene fusions (KIF5B-RET, CCDC6-RET, and NCOA4-RET) and exhibited antitumor 

activity in RET gene fusion tumor models.177, 182
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Lenvatinib, in combination with everolimus, was examined as a treatment for RCC as 

VEGF-promoted angiogenesis and overactivity of the mTOR pathway are characteristics 

of this malignancy. The combination of lenvatinib and everolimus displayed synergy 

by suppressing mTOR–S6K–S6 signaling via VEGFR and FGFR and angiogenesis via 

VEGFR.183

Clinical studies of lenvatinib for thyroid cancer was first evaluated in phase I dose-

escalation trials in patients with solid tumors and clinical benefits were observed in 55% 

of patients.184–185 A single-arm phase 2 trial was initiated with 58 patients that had 

radioiodine-refractory differentiated thyroid cancer (RR-DTC) and were then enrolled and 

treated with lenvatinib. After a follow-up of 14 months, the objective response rate (ORR) 

was 50%. Out of all patients that received prior VEGFR-targeted therapy the observed ORR 

was similar to patients who had not received such therapy (59% vs 46%, respectively).186 

A phase 3 randomized, double-blind, placebo-controlled study of lenvatinib was completed 

in patients that had differentiated thyroid cancer (SELECT).187 In total, 392 eligible patients 

were recruited in a 2:1 ratio to receive oral lenvatinib once daily (261 patients) or placebo 

(131 patients). Patients were further categorized based on age, geographic region, and 

receipt or non-receipt of prior TKI treatment.187 Lenvatinib prolonged progression free 

survival compared to placebo (18.3 months vs 3.6 months), and there was a marked 

improvement in response rate (64.8% lenvatinib vs 1.5% placebo). The overall survival 

in patients >65 years of age showed a significant improvement (vs placebo) in comparison 

to patients ≤ 65. This suggests that lenvatinib produces a more favorable clinical response in 

the elderly.187–188

A phase II study (59 patients) of lenvatinib in progressive MTC obtained a high objective 

response rate and disease control rate. However, no significant tumor shrinkage in 

RET positive tumors was identified. This suggests tumor shrinkage is not a necessary 

outcome to achieve disease control in RET-driven malignancies.189 Clinical investigation of 

lenvatinib illustrated the advantage of the pharmacological impairment of VEGF-stimulated 

angiogenesis while also blocking the RET oncogene within the tumor.

Cabozantinib

Cabozantinib (Cometriq®, XL-184), developed by Exelixis, is a VEGFR2 selective inhibitor 

with additional activities against RET, MET, FLT3, c-KIT, AXL, and Tie-2 (in-vitro kinase 

inhibition profile is demonstrated in Table 2).160 Cabozantinib was originally developed as 

dual inhibitor of VEGFR2 and MET and was approved by the FDA for the treatment of 

MTC in 2012.

To understand the RET inhibitory mechanism of action, cabozantinib was docked into the 

RET kinase domain and was found to exhibit a similar binding pose to that of vandetanib. 

The major difference is that cabozantinib binds to RET in the DFG-out fold, which is an 

inactive conformation of the RET kinase. The quinoline moiety adopts a similar H-bond 

interaction with the RET hinge residue ALA807, which is a key interaction for many RET 

kinase inhibitors. (Figure 4D)
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Studies of cabozantinib in MTC displayed a reduction in MET phosphorylation with drug 

treatment. Xenograft studies utilizing cabozantinib exhibited reduced cell proliferation, 

reduced vascular density, and increased apoptosis.160 In phase I and II trials evaluating 

cabozantinib for MTC, ten patients out of thirty-five showed a partial response and twenty-

five exhibited tumor shrinkage.190 Three patients that had confirmed responses received 

previous treatment with vandetanib and sorafenib. Genotyping of each tumor showed 

twenty-five of thirty-five patients had an active RET mutation. A Phase III EXAM (Efficacy 

of XL184 in Advanced Medullary Thyroid Cancer) trial evaluating cabozantinib for MTC 

identified an overall response rate of 28% in the cabozantinib group versus 0% in the 

placebo group. The duration of response was 14.6 months, which was similar in both 

RET-positive and RET-negative patients suggesting that VEGFR2 inhibition is a major 

contributing component to efficacy.191 Drilon et al. reported clinical efficacy of cabozantinib 

in advanced NSCLC with a KIF5B-RET gene fusion.192 In phase II trials, three patients 

with RET fusion-positive NSCLCs were treated with cabozantinib, out of which two patients 

had confirmed partial responses and the third patient had prolonged stable disease for 8 

months.190

Clinical development of cabozantinib suggests VEGFR2 inhibition is integral for the 

efficacy in the treatment of RET-driven malignancies, regardless of RET mutation status.193 

This is supported since RET-positive and RET-negative MTC patients exhibit a similar 

response to cabozantinib treatment. It is unclear from the development of cabozantinib the 

importance of inhibiting the RET oncoprotein compared to inhibiting tumor angiogenesis 

via VEGFR2. Cabozantinib does not retain clinical activity against drug-resistant RET 

point mutations, which is a flaw shared with both vandetanib and lenvatinib.193 The lack 

of activity on drug-resistant RET mutations may represent a clinical shortcoming among 

first-generation RET inhibitors. Although VEGFR2 inhibition appears robust regardless of 

RET status, as a RET-positive patient progresses, additional RET mutations are identified 

that confer resistance to treatment.183 Therefore, a contributing factor in the progression 

of RET-positive patients may be the selection of drug-resistant clones that are resistant 

to RET inhibition. This hypothesis shifted the effort of RET drug development to focus 

on identifying agents with RET mutant profiles capable of blocking common mutations 

resistant to vandetanib, lenvatinib, and cabozantinib.

5. First generation MKIs with RET mutant activity

As of September 2020, seventy-five drugs targeting protein kinases have been clinically 

approved. Out of these seventy-five drugs, numerous possess activity on RET mutations, 

which helped progress the development of RET mutant inhibitors (Scheme 7).

Ponatinib

Ponatinib (AP24534) is a imdazopyridazine based multikinase inhibitor, which exhibits 

inhibitory activities against RET (observed in thyroid cancer cells, IC50 = 25.8 nM), BCR-

ABL (observed in Ba/F3 Cellular proliferation assays, IC50 = 0.5 nM), SRC (observed in 

hematologic cells, IC50 = 5.4 nM), FLT3 (observed in Hematologic cells, IC50 = 0.3–2 nM), 

KIT (observed in hematologic and gastrointestinal stromal tumor cells, IC50 = 8–20 nM), 
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FGFR (IC50 = 2.2 nM), VEGFR (observed in hematologic cells, IC50 = 1.5 nM), PDFGR 

(observed in hematologic cells, IC50 1.1 nM) and others.194–195 Ponatinib was approved 

for clinical use in chronic myeloid leukemia (CML) and Philadelphia chromosome-positive 

acute lymphoblastic leukemia (Ph+ ALL) (NCT01207440) in 2012.196

Ponatinib was developed by ARIAD Pharmaceuticals using computational and structure-

based drug design approaches by first screening an in-house library, which identified 

compound 10 as a lead candidate.195 Template morphing and linker modification to target 

the T315I gatekeeper mutation within the kinase domain of BCR-ABL generated 11. 

To improve pharmacokinetic properties, the amine/acetamide group at C8 was removed 

to furnish 12 (Scheme 8). Alternate hinge-region heterocycles were explored to improve 

pharmacokinetic and pharmacodynamic properties.195

SAR exploration and modification to improve pharmacokinetics led to the discovery of 

ponatinib. The co-crystal structure of ponatinib with ABL-T315I revealed the acetylene-

linker helps extend the inhibitor around the T315I gatekeeper mutation to retain inhibition of 

the kinase.197 This can be explained as the acetylene-linker forms favorable van der Waals’ 

interactions with gatekeeper ILE315 and PHE382 of the DFG motif. The crystal structure of 

ponatinib bound to RET kinase shows the molecule binds to the DFG-out conformation and 

is classified as a Type II inhibitor (Figure 5A).

Ponatinib inhibits RET with an IC50 of 25.8 nM and the RET gatekeeper mutation, 

RETV804M, with an IC50 of 33.9 nM. De Falco et al. reported a reduction in tumor volume 

of MTC cells harboring a RETC634W mutation receiving ponatinib treatment.198 It was 

found that ponatinib could inhibit RETV804M/L gatekeeper mutations, which are resistant 

to multikinase inhibitors including cabozantinib, vandetanib, and levantinib.198 A phase 

II clinical trial of ponatinib for NSCLC was conducted in patients with RET mutations 

(NCT01813734). Investigation of the drug was suspended by the FDA because of safety 

concerns from an increase in serious vascular occlusion events, including blood clots and 

severe narrowing of blood vessels. Although ponatinib did not receive approval for a RET-

driven malignancy, ponatinib was the first agent that exhibited broad activity on RET point 

mutations. This set a new precedent for the discovery and development of RET inhibitors by 

focusing on the development of RET inhibitors with activity on clinically significant RET 

mutations.

Alectinib

Alectinib is a second generation ALK inhibitor (IC50 = 1.9 nM) bearing a naphtha-[2,3-

b]benzofuran-11(6H)-one framework.199 Chugai, a subsidiary of Roche, developed alectinib 

using a high throughput screening platform.200–201 Beyond ALK, alectinib has weak or no 

inhibition for other protein kinases.202 When subjected to Ambit’s kinase profiling screen, 

only three other kinases (GAK, LTK, and RET) showed more than 50% of inhibition 

at 10 nM.203 Replacement of the benzofuran fragment with an indole moiety, followed 

by optimization at the solvent front and the ATP binding region, generated alectinib.200 

Alectinib inhibited ALK with an IC50 of 1.9 nM and the ALK gatekeeper mutation L1196M 

with an IC50 of 1.56 nM. In ALK-positive cell lines, KARPAS-299 (lymphoma), NB-1 

(neuroblastoma), and NCIH2228 (lung cancer), alectinib inhibited cell proliferation with 
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IC50 values of 3, 4.5, and 53 nM, respectively.203 Alectinib is an ATP-competitive ALK 

inhibitor, and inhibits EML4-ALK positive NCI-H2228 xenografts in a dose-dependent 

manner. Kodama et al. showed that alectinib inhibits RET kinase activity and RET 

gatekeeper mutations (RET, IC50 = 4.8 nM; RETV804L, IC50 = 32 nM; RETV804M, IC50 

= 53 nM).202 Alectinib was also shown to inhibit other clinically relevant RET mutations 

(RETG691S, IC50 = 9.5 nM; RETY719F, IC50 = 14 nM; RETS891A IC50 = 8.3 nM; RETM918T, 

IC50 = 5.7 nM). In xenograft studies, alectinib displayed antitumor activity in tumors driven 

by RET fusion genes and blocked cell growth driven by fusion genes with a RETV804L/M 

gatekeeper mutation.202

To understand ligand-receptor binding interactions, alectinib was modeled in the RET 

kinase domain. It was found that the naphtha-[2,3-b]benzofuran-11(6H)-one moiety binds 

to the backbone NH of the ALA807 hinge residue, the N-piperidinyl morpholine orients 

towards the solvent front, and the benzonitrile enters the back pocket (Figure 5B). Structural 

modelling of V804L/M mutations demonstrate that these mutations do not cause steric 

clashes that would interfere with the binding of alectinib to RET. This indicates the potential 

for alectinib to inhibit RET gatekeeper mutations that are resistant to vandetanib and other 

first-generation RET inhibitors.

A phase I/II study of alectinib was completed to examine efficacy in NSCLC with RET 

gene fusions.203 In the study, twenty-two patients had a KIF5B-RET fusion gene, eight 

patients had a CCDC6-RET fusion, and five were not distinguishable. Twenty-five RET 

inhibitor-naïve patients were treated with alectinib, of which one achieved an objective 

response and thirteen achieved disease control at 8 weeks.203 The median progression-free 

survival was 3.4 months (95% CI 2.0–5.4), and the median overall survival was 19.0 months 

(5.4-NE). In patients treated with 450 mg alectinib twice daily, adverse effects included 

neutropenia, pneumonitis, diarrhea, hyponatremia, increased CPK, and blood bilirubin (4%). 

Despite exhibiting broad RET activity in pre-clinical studies, alectinib was found to have 

limited, clinical benefit in patients with RET-rearranged NSCLC.204

Nintedanib

Nintedanib (BIBF1120) is an angiokinase inhibitor and antifibrotic agent active against 

three major signaling pathways involved in angiogenesis and fibrosis mediated by VEGFR2, 

FGFR, and PDGFR. The biochemical enzyme inhibitory activities are listed in Table 3.206 

Nintedanib is approved by the FDA for the treatment of idiopathic pulmonary fibrosis by 

blocking fibroblast proliferation and reducing deposition of the extracellular matrix.207–208 

Nintedanib was found to be active against 34 kinases, but in vitro kinase activity did not 

necessarily translate to cellular activity. For example, CUTO-3.29 and KM-12 cell lines that 

harbor a TRK oncogene were resistant to nintedanib.209

Discovery of nintedanib was initiated by hit identification of VEGFR2 inhibitors.207 

VEGFR2 inhibition, along with selectivity screening to avoid CDK2 inhibition, led to the 

generation of lead compound 13 (Scheme 9). The perpendicular conformation of the central 

phenyl ring and the oxindole scaffold were thought to promote aqueous solubility. For this 

reason, the oxindole motif and the central phenyl ring were unchanged. SAR was explored 

around R1 (C6 substitution) and R2, and SAR around R1 was found to be responsible 
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for kinase selectivity. Nitro and chloro substitutions produced lower selectivity whereas 

ester substitutions generated potent inhibitors albeit with risk of metabolic degradation. 

Optimization at R2 was straightforward to fine-tune cellular properties and solubility. 

Substitutions with imidazole and morphinyl moieties did not provide improved solubility 

whereas 4-(NMe)COCH2-(4-methylpiperazin-1-yl) had high exposure and displayed in vivo 

target inhibition after oral administration. Additional in vivo studies led to the clinical 

development of nintedanib.207

Nintedanib was identified as a potent RET inhibitor similar to other multikinase 

inhibitors.209 Nintedanib inhibited KIF5B-RET-dependent BaF3/KR cells with an IC50 

of 0.14 μM in comparison to parental BaF3 cells (IC50 = 1.67 μM), demonstrating 

the specificity of nintedanib for the KIF5B-RET gene fusion. Two nintedanib-resistant 

RET mutations were identified through long-term culture of KIF5B-RET-dependent cells 

in medium containing nintedanib.193, 210 Sensitivities of these RET mutations were 

then cross profiled with known RET TKIs (cabozantinib, lenvatinib, vandetanib, and 

nintedanib).205, 210 The L730I, V738A, V804L/M, Y806N, and G810S mutants were pan 

resistant to all four TKIs. The L730V/V804M double mutant had a higher degree of drug 

resistance to all four TKIs compared to the L730V or V804M single-site mutants. Apoptotic 

assays revealed that BaF3/KR (E732K) cells were resistant to cabozantinib-induced 

apoptosis, whereas they were sensitive to apoptosis induced by lenvatinib, vandetanib, and 

nintedanib. Unsurprisingly, the V804L/M gatekeeper mutants were resistant to all four TKIs. 

The G810S solvent front mutation resulted in resistance to all four TKIs, but the smaller 

alanine mutation at G810 was inhibited by cabozantinib, lenvatinib, and nintedanib. The 

RETM918T mutation is prevalent in MTC, and nintedanib was not significantly affected 

by that mutation or by the V871I and F998V mutations in the C-lobe, which suggests 

nintedanib could be effective for treating RETM918T-positive MTC.191, 205

The crystal structure of wild type RET-nintedanib shows nintedanib binds to the DFG-in 

confirmation of the kinase.205 Nintedanib engages in four hydrogen bonds with RET, and 

also engages in a series of hydrophobic interactions. It is hypothesized that these interactions 

cause a shift in PHE776, along with other hydrophobic residues, which generates a novel, 

nintedanib-induced confirmation of RET (Figure 5C).

Comparing the structures of the RET-nintedanib complex with RETG810A, it was predicted 

that ALA810 on RET would make hydrophobic contacts with the methyl group of 

nintedanib and unfavorable contacts with the phenyl ring (Figure 6A & 6B). 205 This may 

cause a shift of nintedanib in the binding pocket. Also, introduction of a bulkier residue at 

810 could cause steric clashes with both the methyl group and the phenyl ring of nintedanib 

(Figure 6C). This structural insight suggests an explanation as to why the RETG810S mutant 

is resistant to nintedanib. Nintedanib is active on RETL881V, a novel vandetanib resistant 

germline mutation in FMTC. This can be explained by the nintedanib RET co-crystal 

structure where the phenyl ring and C6 of the indole form favorable interactions with 

LEU881 (Figure 6D).205 When leucine is replaced with valine, the phenyl ring sits in a 

shallow notch between the side chain methyl group and the backbone of 810, which restores 

binding of the phenyl ring (Figure 6E).205 Hence, nintedanib was found active on the 
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L881V mutation, whereas this mutation confers resistance to vandetanib due to weak shape 

complementarity.

Agerafenib (RXDX-105)

Agerafenib (CEP-32496, RXDX-105) is a quinazoline based inhibitor of BRAF (WT BRAF 

and BRAFV600E) with activity against RET. Table 4 lists the biochemical and cellular 

inhibitory activities of agerafenib.212

Agerafenib was discovered by Ambit using an internal library that was screened against 

a kinase panel (Scheme 10).211 This led to the identification of diaryl amide derivatives 

exhibiting high affinity for BRAFV600E. Hit to lead optimization led to the discovery of 

4-quinazolinyloxy-diaryl urea derivative 16, which, when explored for SAR around the 

left-hand aryl moiety, led to the clinical candidate agerafenib.211

To understand RET binding, agerafenib was modelled in the RET kinase domain and found 

to bind the DFG-out conformation. The quinazoline binds the ALA807 hinge residue and 

the urea moiety forms two hydrogen bonds with the α-helix in the DFG-out fold of the 

kinase (Figure 5D).

Agerafenib demonstrated oral efficacy in several BRAFV600E-driven human carcinoma 

xenograft mouse models (Colo-205 and A375).211 Although agerafenib was initially 

identified as a BRAF inhibitor, the compound was also shown to inhibit wild-type RET, 

select mutant proteins (e.g., RET M918T), and chimeric oncoproteins generated by RET 

fusions (KIF5B–RET, CCDC6–RET, NCOA4–RET, and PRKAR1A–RET). Agerafenib 

is active in xenografts harboring the most common fusions in NSCLC (KIF5B–RET) 

and thyroid cancers (CCDC6–RET and NCOA4–RET) (Table 4 depicting the respective 

biochemical IC50s).213 Treatment with agerafenib in engineered RET-dependent cell lines 

inhibits phosphorylation of RET, AKT, and ERK. Consistent with pathway inhibition, a 

growth inhibitory effect was observed via an alamar blue cell viability assay in cells treated 

with agerafenib. In vivo efficacy of agerafenib was evaluated in four RET fusion xenograft 

models, including a HBEC3KT-RET cell line–derived xenograft model (driven by CCDC6-

RET), a NSCLC patient-derived xenograft (PDX) model (CTG-0838/CTG-1048 both driven 

by KIF5B-RET), and two colorectal cancer models (CRC) PDX models (CR2518 and 

CR1520 both driven by CCDC6-RET). Agerafenib was tolerated in all dose groups.213

In a Phase I/Ib trial of agerafenib, a total of 152 patients were enrolled.214 Fifty-five patients 

were treated in the Phase I dose-escalation portion of the study, while ninety-seven were 

treated in the Phase Ib dose-expansion portion of the study. The major tumor types were 

NSCLC (54%), followed by colorectal cancer (18%) and thyroid cancer (11%). Patients 

were treated in 9 dose level cohorts where agerafenib administration ranged from 20–

350 mg.214 The overall response to agerafenib included no complete responses, 2 (4%) 

partial responses, 20 (36%) stable disease, 22 (40%) progressive disease, and 11 (20%) 

unevaluable. The two confirmed partial responses were observed in an MTC patient with 

a RETM918T mutation (50% tumor regression) and a NSCLC patient with a KRASG12C 

mutation (40% tumor regression).
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A Phase IIb study included 8 cohorts of patients treated with agerafenib. The drug was 

found to be most active in patients with RET inhibitor–naïve RET fusion–positive lung 

cancers. Importantly, showcasing an improvement from the toxicity profile of vandetanib, 

QT prolongation and VEGFR2/KDR inhibition related toxicities were not observed with 

agerafenib.214

6. Second generation selective RET mutant inhibitors

The majority of RET targeted therapeutics are non-selective kinase inhibitors. Although 

non-selective agents exhibit varying potencies against RET-driven thyroid cancers and RET 

fusion lung cancers, off-target activities on other kinases, such as EGFR, MET, KIT, 

BRAF, and VEGFR2, increase the risk for adverse events triggering discontinuation of 

treatment or dose reductions.215–217 As a result, non-selective RET targeted agents have 

pharmacodynamic profiles not optimized for RET, which limits the ability to safely shut 

down RET signaling. Although TKI response rates in RET-associated tumors are high, the 

responses observed suggest limited control due to off target toxicities as well as the inability 

to maintain inhibition on clinically relevant RET mutations.215, 218 Prolonged exposure to 

TKIs results in acquired resistance to treatment, often through selection of tumor clones that 

harbor site-specific mutations in the RET.215–216 Inevitably, partial responses necessitate 

increased exposure of TKIs for patients with RET-associated tumors to maintain efficacy 

and this promotes acquired drug resistance and adverse events. To ameliorate this clinical 

issue, the development of second-generation RET and RET mutant selective inhibitors 

was initiated to improve the toxicity profile as well as maintain activity on multiple, 

clinically relevant RET mutations.6 As treatment promotes evolution of the tumor, RET 

mutant inhibitors, with inhibitory profiles against numerous RET mutations, should maintain 

blockade of RET signaling to sustain disease remission.

Selpercatinib (LOXO-292)

Selpercatinib is an ATP-competitive small molecule RET inhibitor that was approved in 

May 2020 for the treatment of patients with lung cancer or thyroid cancer harboring RET 

alterations.219 In contrast to MKIs, selpercatinib possesses selective, nanomolar potency 

against RET and a diverse set of RET mutations, including anticipated acquired resistance 

mutations. Selpercatinib also has favorable pharmacokinetic properties, including high 

bioavailability and exposure. Approximately 25% of patients with RET fusion–positive 

lung cancers have brain metastases, and selpercatinib was found to have significant central 

nervous system (CNS) penetration.217 The inhibitory profile of selpercatinib against RET 

alterations and VEGFR2 is listed in Table 5.

Selpercatinib exhibits potent activity on RET and RET mutants and is selective against 

VEGFR2. In RET dependent cell lines, treatment with selpercatinib reduces cell viability, 

while in non-RET dependent cell lines selpercatinib has little effect.205 This contrasts with 

cabozantinib and vandetanib as inhibitory profiles of these compounds overlap for cell 

lines with and without RET alterations, suggesting cabozantinib and vandetanib inhibit 

multiple targets necessary for cell viability. Selpercatinib was found to be 60–1300-fold 
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more effective than other MKIs against cell lines engineered with KIF5B-RETV804L/M 

gatekeeper mutations.221

In preclinical studies, anti-tumor activities of selpercatinib was compared to cabozantinib in 

patient-derived RET fusion-positive and RET-mutant mouse tumor models, including two 

RET fusion-positive models harboring a V804M acquired resistance gatekeeper mutation.221 

Results revealed that at the maximum tolerated dose, cabozantinib caused mild regression 

but was inactive against models containing RETV804M, whereas selpercatinib caused 

regression in all models.221

To understand the binding of selpercatinib to RET, the crystal structure of the RET kinase-

selpercatinib complex was determined at 2.06 Å (Figure 7A).222 Selpercatinib exhibits a 

unique binding mode, where both front and back pockets of RET (unlike other TKIs) are 

occupied without passing through the back-pocket wall between V804 and K758. The back 

pocket is accessed by wrapping around the conserved lysine to avoided steric clashes with 

gatekeeper mutations at V804.

Molecular modeling indicates that substitutions of the glycine residue at position 810 in 

the RET kinase solvent front with bulky, charged, or polar residues sterically clashes 

with the alkoxy group of selpercatinib (Figure 8A and 8B).223 These structural clashes 

are confirmed by loss of inhibitory activities (in vitro experiments using selpercatinib, 

pralsetinib, cabozantinib, and vandetanib) against RETG810S/R/A/C. Though selpercatinib 

exhibits diminished activity against RET solvent front mutations, the inhibitor maintains 

activity against RETV804 and RETS904F mutations. RETG810 solvent front substitutions 

have only a minor effect on ATP affinity, indicating that inhibition of drug binding is the 

likely culprit for loss of inhibition.223

LIBRETTO-001 was the first-in-human, phase 1 clinical trial of selpercatinib 

(NCT03157128). Patients were enrolled to study dose escalation and drug exposure. The 

ORR exceeded 70% for cancers with RET fusions in patients with NSCLC and in those 

with other tumors, specifically thyroid and pancreatic cancers. In patients with MTC and a 

RET mutation, the ORR and confirmed ORRs were 45% and 33%, respectively, including 

2 complete responses.221 Disease regression was observed in the majority of patients with 

RET fusions and in patients with MTCs and a RET mutation, irrespective of cancer type 

and pretreatment with other FDA approved agents. Treatment-emergent adverse events were 

observed in at least 10% of patients that included reversible grade 3 tumor lysis syndrome 

and elevated liver enzymes.204

Brain metastases are prevalent in lung cancer patients, so intracranial antitumor activity of 

selpercatinib was also investigated. CCDC6-RET fusion positive PDX cell suspensions were 

injected into mice intracranially and treated orally with selpercatinib and ponatinib.217, 222 

At reduced doses, selpercatinib significantly prolonged survival compared to ponatinib, 

which suggest a RET mutant selective inhibitor may present a clinical advantage over 

non-selective TKI therapy in RET-driven disease.222
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Pralsetinib (BLU-667)

Pralsetinib is a potent and highly selective RET and RET mutant inhibitor that targets 

mutations found in NSCLC, thyroid cancer, and other solid tumors.224 Pralsetinib received 

FDA approval in September 2020 for the treatment of adult metastatic RET fusion 

NSCLC.225 During pre-clinical studies, pralsetinib was found to be equally active across 

various RET fusions and mutants, including CCDC6–RET, KIF5B–RET, and clinically 

relevant mutations found at the gatekeeper region including V804L, V804M, and V804E. 

First generation RET targeted therapies are multikinase inhibitors, which have significant 

dose-limiting toxicities that limit amount and duration of therapy. Pralsetinib, like 

selpercatinib, was designed to overcome such therapeutic limitations while improving 

treatment efficacy by targeting multiple clinically relevant RET mutations.224

Pralsetinib was identified by screening a library of ~10,000 compounds against RET with 60 

unique chemical scaffolds. The goal was to identify compounds with activity against wild-

type RET and RET mutations (M918T, V804L, and V804M), while maintaining selectivity 

against other kinases.220 After identifying a hit candidate, iterative medicinal chemistry 

was completed to optimize for potency, selectivity, and drug properties, which lead to the 

generation of pralsetinib.

In biochemical assays, pralsetinib inhibited the kinase activity of wild type RET (IC50 

0.4 nM) 8- to 28-times more than cabozantinib, vandetanib, and agerafenib (IC50 11, 4, 

and 3 nM), respectively.220 Pralsetinib was 88-fold more selective for RET over VEGFR2, 

whereas other MKIs have notable VEGFR2 activity (Table 9). Although inhibiting VEGFR2 

is antiangiogenic, excessive VEGFR2 inhibition is cardiotoxic, which limits the therapeutic 

benefit of non-selective MKIs for RET-driven disease.218

A co-crystal structure of the RET kinase–pralsetinib complex was obtained at a resolution 

of 1.9 Å (Figure 7B).222 The crystal structure shows that pralsetinib binds to the RET 

kinase in a novel way similar to selpercatinib, occupying the front and back cleft by 

wrapping around the conserved lysine. This binding style avoids inhibitor disruptions from 

gatekeeper mutations while allowing high-affinity binding.222 Nevertheless, this binding 

mode is still sensitive to resistance from mutations at several non-gatekeeper residues 

including RETS904F and RETG810R/C/S/V solvent front mutations (Figure 8C & D).

In a pre-clinical study, pralsetinib and multikinase inhibitors were dosed to Ba/F3 

cells engineered to express a KIF5B–RET fusion, and pralsetinib inhibited RET 

autophosphorylation (IC50 = 5 nM) 10 times more potently than other multikinase inhibitors. 

Phosphorylation of RET, SHC, and ERK1/2 was measured in a panel of RET-driven cell 

lines including LC-2/ad (CCDC6–RET; NSCLC), MZ-CRC-1 (RETM918T; MTC), and 

TT (RETC634W; MTC) and it was found that pralsetinib inhibited phosphorylation of 

RET, SHC, and ERK1/2 at concentrations at or below 10 nM.220 Pralsetinib suppresses 

proliferation of KIF5B–RET Ba/F3 cells harboring wild type RET as well as V804L, 

V804M, and V804E variants, which is in contrast to multikinase inhibitors that have 

reduced activity on gatekeeper mutants.220 In xenograft models, pralsetinib demonstrated 

dose-dependent activity against both KIF5B–RET Ba/F3 and KIF5B–RETV804L Ba/F3 
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allograft tumors. Pralsetinib also demonstrated activity in a RETC634W MTC xenograft and 

KIF5B–RET NSCLC and CCDC6–RET colorectal cancer PDX models.220

Impact of pralsetinib on RET driven malignancies was measured by a first in-human 

phase 1/2 trial (ARROW) in patients with NSCLC, thyroid cancer, or other solid tumors 

(NCT03037385).226 The ORR was 47% among 49 response-evaluable MTCs. Further, 

96% of responding patients continued treatment, with 15 exhibiting a response duration 

greater than 6 months. Rapid plasma clearance of RET variants and marked reduction 

in carcinoembryonic antigen and calcitonin were observed, indicating proliferation of the 

medullary thyroid cells were reduced with pralsetinib treatment. On December 1, 2020 the 

FDA granted accelerated approval of pralsetinib to treat patients with advanced or metastatic 

RET-mutant MTC that requires systemic therapy or RET fusion-positive radioactive iodine-

refractory thyroid cancer.227

7. Third generation improved RET mutant inhibitors

Oncogenic activation of the receptor tyrosine kinase RET via point mutations or genomic 

rearrangements have been identified in multiple cancers. MKIs and RET mutant inhibitors 

have demonstrated efficacy against thyroid cancers and NSCLC with RET-fusions. However, 

despite achieving initial efficacy, drug resistant mutations are selected with treatment 

even with second generation RET mutant inhibitors. Solomon and colleagues report 

RETG810R/S/C/V solvent front mutations mediate acquired resistance to selpercatinib in 

RET fusion NSCLC and RET-mutant MTC (Figure 6).223 Therefore, third generation RET 

inhibitors are currently being investigated to inhibit additional RET mutations that confer 

resistance to MKIs and RET mutant inhibitors.

TPX-0046

TPX-0046 is a dual RET/SRC inhibitor with a small, rigid macrocyclic structure that was 

rationally designed to inhibit RET. The rationale behind designing a macrocycle was to 

generate a compact Type I inhibitor that binds to the ATP-binding site while maintaining 

anti-tumor activity without acquired resistance.228 By inhibiting SRC, as well as RET, 

TPX-0046 can block SRC driven resistance that is often observed with RET inhibitors. 

Moreover, TPX-0046 does not inhibit VEGFR kinases, which are often associated with 

cardiovascular toxicities such as hypertension. In enzymatic assays, TPX-0046 demonstrated 

nanomolar potency against RET and RET mutants, as well as SRC.228 TPX-0046 potently 

inhibits RET phosphorylation and cell proliferation in Ba/F3 KIF5B-RET, TT, and LC-2/ad 

cells with IC50s of approximately 1 nM.228 TPX-0046 is an inhibitor of the solvent front 

mutation RETG810R with a mean IC50 of 17 nM, whereas pralsetinib and selpercatinib 

have IC50s >500 nM. In a Ba/F3 KIF5B-RET xenograft model, a single dose of 5 mg/kg 

TPX-0046 inhibited more than 80% of RET phosphorylation. With dosing of 5 mg/kg twice 

daily, tumor regression was observed in RET-dependent xenografts.229 Tumor regression 

was also observed in models with RET solvent front mutations, including TT, CTG-0838 

PDX (NSCLC, KIF5B-RET), CR 1520 PDX (CRC, NCOA4-RET), Ba/F3 KIF5B-RET, and 

Ba/F3 KIF5B-RETG810R.229 A Phase I/II trial is currently underway to determine the safety 
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and efficacy of TPX-0046 in patients with advanced or metastatic solid tumors harboring 

RET mutations or alterations (NCT04161391).

BOS-172738

BOS172738 (formerly DS-5010) is an orally available small-molecule RET inhibitor under 

clinical investigation. The inhibitor has been shown to have in vitro RET inhibitor activity 

and in vivo potency against transfected allograft and xenograft models.230

TAS0953 (HM06)

TAS0953/HM06 is an investigational oral treatment, which inhibits several RET 

abnormalities identified as oncogenic driver alterations in NSCLC, papillary, and MTCs.231 

Preclinical data showed several defining features in comparison to other targeted therapies 

acting on RET abnormalities. On April 1, 2020, the U.S. FDA reviewed Investigational New 

Drug (IND) application for TAS03/HM06 and released a “Study May Proceed” letter for the 

Phase I/II Study of TAS0953/HM06 in patients with advanced solid tumors with RET gene 

abnormalities (NCT04683250).231

SL-1001

SL-1001 is an oral RET inhibitor developed by the Cancer Research UK Manchester 

Institute at the University of Manchester, UK. The inhibitor exhibits potent, selective, 

preclinical anti-cancer activity in RET driven tumor models.232–233 The same group recently 

developed a selective RETV804M kinase inhibitor (RETV804M IC50 = 19 nM) over wt-
RET (16-fold) and VEGFR2 (410-fold). Development of mutant specific RET inhibitors 

may offer a clinical advantage over mixed wild-type/mutant inhibitors. Mutant selective 

inhibitors may provide an alternative therapeutic option to patients that develop significant 

tolerability issues and may serve an adjunct therapy alongside RET-selective agents.234

Conclusion and future perspectives

Over the last decade, there has been an explosion of approvals of kinase inhibitors for 

clinical use. Many of these inhibitors are utilized in an oncology setting because of the 

intimate relationship shared between rogue kinase signaling and cancer biology. The RET 

kinase was discovered in the 1980s and its oncogenic potential and action has since been 

realized and heavily researched. With the approval of imatinib in 2001, the pharmacological 

modulation of kinase activity became a clinical reality, and subsequently inhibitors for the 

RET kinase were pursued.

The first iteration of RET kinase inhibitors were discovered by repurposing multikinase 

inhibitors for the RET kinase. This taught a valuable clinical lesson that the broad activity 

profile of multikinase inhibitors does not determine, but instead restricts, clinical utility. 

With information obtained from the use of multikinase inhibitors, a new generation of RET 

inhibitors were developed with specificity for the target oncogene. These new inhibitors 

were also engineered to be dynamic by maintaining broad activity on variant forms of the 

RET oncogene, thereby blocking inherent tumor resistance mechanisms.
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However, current research shows that even with RET inhibitors that possess broad activity 

on a variety of RET mutations resistance still occurs. This plays directly into the evolution 

paradigm that life, even rogue life, will find a way. Albeit, targeting the RET kinase has 

taught an important, clinical lesson—a kinase inhibitor active on a kinase and mutant 

forms of that kinase presents a significant, pharmacological advantage over a non-selective, 

multikinase inhibitor.

The current challenge for RET precision medicine is twofold. The first challenge is to 

develop scaffolds that can inhibit the next iteration of RET mutants, and the second 

challenge is to select patients with genetic criteria aligned with the pharmacology of 

the RET-targeted therapy. These two challenges are not mutually exclusive and must 

be developed in concert. In theory, next generation RET inhibitors will need to be 

continuously developed to block RET mutations that are selected for from prior therapy. 

In practice, however, these mutations are somewhat restricted as the novel mutants must be 

catalytically active—therefore, drug resistant mutations must bind ATP and phosphorylate 

the downstream substrate to act as an oncogene. Another important challenge is to address 

the off-target effects arising from the pleiotropic roles of RET. GNDF-RET signaling plays a 

significant role in maintenance of mature nerve lineages and kidney development. Prolonged 

inhibition of these signals may compromise nerve health and overall survival of the patient.

Constrained RET inhibitors, such as TPX-0046, occupy less space in the RET binding 

pocket and this will restrict areas of the kinase domain that can mutate to cause 

resistance to these molecules. This has already been clinically demonstrated with the 

TRK inhibitors LOXO-195 and repotrectinib (TPX-0005), which are constrained, cyclic 

versions of larotrectinib that are active against TRK solvent front mutations.250–251 These 

next-generation inhibitors place a new selection pressure on the tumor where resistance 

mechanisms may not stem from a new TRK mutation.252 Instead, resistance has been shown 

to occur through activation of the MAP kinase pathway via KRAS activating mutations.

It has also been demonstrated that resistance to RET inhibitors selpercatinib and 

pralsetinib is driven by RET-independent resistance mechanisms such as MET or KRAS 
amplification.253 Therefore, RET-dependent and RET-independent resistance mechanisms 

can be considered to help identify biomarkers that can be utilized in clinical trials to improve 

outcomes in patients with RET-driven disease. This will involve selection of patients for 

a specific RET-inhibitor based on the genetic makeup of their tumor with the addition of 

another therapy to block RET-independent resistance mechanisms. To accomplish this, it is 

important to continue to assess and validate mechanisms of resistance to next generation 

RET inhibitors in large sample sizes in a variety of tumor types. This will help inform 

on tumor-specific or patient-specific therapeutic strategies to better combat RET-driven 

malignancies.
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Abbreviations Used

ARTN artemin

ATC anaplastic thyroid cancer

CML chronic myelogenous leukemia

CNS central nervous system

DC discontinuation

CCDC6 coiled-coil domain containing 6

DFG aspartic acid, phenylalanine, glycine

c-Kit mast/stem factor receptor kit

DOK1/4/5/6 downstream of tyrosine kinase 1/4/5/6

DR dose reduction

DTC differentiated thyroid cancer

EGFR epidermal growth factor receptor

ERK RAS/extracellular signal-regulated kinase

FGFR1 fibroblast growth factor receptor 1

FMTC familial medullary thyroid carcinoma

FRS2 fibroblast growth factor receptor substrate 2

GDNF glial cell line-derived neurotrophic factor

GIST gastrointestinal stromal tumors

HCC hepatocellular carcinoma

IRS1/2 insulin receptor substrate ½

JNK c-Jun N-terminal kinase

KIF5B kinesin family 5B

LisH Lis1 homology

MAPK RAS/mitogen activated protein kinase

mCRC metastatic colorectal cancer

MEN2 multiple endocrine neoplasia 2
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MKI multikinase inhibitor

MTC medullary thyroid carcinoma

NCOA4 nuclear receptor co-activator 4

NSCLC non-small-cell lung carcinoma

NRTN neuturin

ORR objective response rate

PDGFR platelet-derived growth factor receptor

PDX patient-derived xenograft

PI3K phosphatidylinositol 3-kinase

PKC protein kinase C

PLCγ phospholipase Cγ

pNET pancreatic neuroendocrine tumors

PSPN persephin

PTC papillary thyroid carcinoma

RCC renal cell carcinoma

RECIST response evaluation criteria in solid tumors

RET rearranged during transfection

RR-DTC radioiodine-refractory differentiated thyroid cancer

RTK receptor tyrosine kinase

SAM sterile α motif

SFM solvent front mutation

SHC src homology and collagen

TC thyroid cancer

VEGFR vascular endothelial growth factor receptor
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Figure 1. 
Schematic of RET receptor tyrosine kinase, coreceptors, and ligands.

A. Domain structure of RET, glial cell line-derived neurotrophic factor (GDNF) family 

ligands (GFLs): GDNF, neurturin (NRTN), artemin (ARTN), and persephin (PSPN), GDNF 

family receptor-α (GFRα1–4). B. RET-coreceptor-ligand complex incorporated into a lipid 

raft, dimerization and autophosphorylation enabling adaptor and signaling proteins to bind 

to docking sites activating downstream signaling pathways.
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Figure 2. 
RET activation in cancers through RET fusions or mutations19, 30, 112–116

CML: Chronic myeloid leukemia; NSCLC: Non-small cell lung cancer; PTC: Papillary 

thyroid cancer, MTC: Medullary thyroid cancer.
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Figure 3: 
PP1 and sorafenib in the RET kinase. (A) PP1 bound to RET (PDB ID: 2IVV) with 

a V804M mutant. The V804M mutation extends into the ATP pocket clashing with 

the isopropyl substitution on PP1. (B) Docking of sorafenib in a DFG-out RET kinase 

homology model. The backbone of ALA807 and sidechains of conserved residues GLU775 

and ASP892 engage in hydrogen bonds with sorafenib. The hinge region, αC-helix, and 

DFG loop are illustrated in pink, red, and blue, respectively.56, 129
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Figure 4: 
(A) Regorafenib docked in a DFG-out RET kinase homology model. (B) Vandetanib 

and RET co-crystal structure (PDB ID: 2IVU). (C) Lenvatinib and VEGFR2 co-crystal 

structure (PDB ID: 3WZD). (D) Cabozantinib docked in a DFG-out RET kinase homology 

model. The hinge region, αC-helix, and DFG loop are illustrated in pink, red, and blue, 

respectively.128, 160, 168
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Figure 5: 
(A) Ponatinib docked in a DFG-out RET kinase homology model.197 (B) Alectinib docked 

in the RET kinase. (C) Nintedanib and RET co-crystal structure (PDB ID: NEC). (D) 

Agerafenib docked in a DFG-out RET kinase homology model.189, 205 The hinge region, 

αC-helix, and DFG loop are illustrated in pink, red, and blue, respectively.
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Figure 6: 
Binding pose of nintedanib in the RET kinase. (A) Residue G810 is situated at around 3.9 

Å from the phenyl group of p-phenylenediamine of nintedanib establishing hydrophobic 

contacts. (B) The G810A mutation reduces binding distance to nearly 2.5 Å, which increases 

steric strain with nintedanib. (C) The G810S mutation further reduces distance to ~2 Å, 

which significantly increases steric strain. (D) In wt-RET L881, the leucine side chain 

engages nintedanib in several hydrophobic contacts. (E) A L881V mutation increases 

interaction distance, resulting in a loss of hydrophobic contacts with nintedanib. The hinge 

region, αC-helix, and DFG loop are illustrated in pink, red, and blue, respectively.205, 211
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Figure 7. 
Binding pose and interactions of third generation inhibitors in the RET kinase. (A) 

Selpercatinib (PDB ID: 7JU6) and (B) pralsetinib (PDB ID: 7JU5) RET co-crystal 

structures. Both compounds bind to the DFG-in conformation of the RET kinase. The hinge 

region, αC-helix, and DFG loop are illustrated in pink, red, and blue, respectively.222
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Figure 8: 
Residue G810 of RET when mutated to arginine (A) or serine (B) creates steric clashes 

with the solvent-exposed alkoxy group rendering both the mutated kinases resistant to 

selpercatinib and pralsetinib (C&D). These mutations are termed solvent front mutations 

(SFMs). The hinge region, αC-helix, and DFG loop are illustrated in pink, red, and blue 

respectively.223
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Scheme 1. 
Discovery of sorafenib
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Scheme 2. 
Discovery of regorafenib
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Scheme 3. 
Regorafenib and metabolites M-1 and M-2.
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Scheme 4. 
Discovery of sunitinib
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Scheme 5. 
Structure of sunitinib and metabolite SU11248
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Scheme 6. 
First generation multikinase inhibitors with RET activity
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Scheme 7. 
First generation MKIs with RET mutant activity
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Scheme 8. 
Discovery of ponatinib
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Scheme 9. 
Discovery of nintedanib
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Scheme 10. 
Discovery of agerafenib
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Scheme 11. 
Second generation selective RET mutant inhibitors
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Table 1

Cellular inhibitory profile of sorafenib135, 138

Cellular kinase assay GI50 (nM)

RETV804M human thyroid carcinoma cells 147

RETV804L human thyroid carcinoma cells 110

RET phosphorylation in human NIH3T3 fibroblasts 47

BRAFV600E in human thyroid carcinoma cells 1000
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Table 2.

Comparative kinase inhibitory profile of first generation MKIs

Kinase Sorafenib IC50 

(nM)135, 138
Regorafenib IC50 

(nM)149–150
Sunitinib IC50 

(nM)156
Vandetinib IC50 

(nM)165
Lenvatinib IC50 

(nM)166
Cabozantinib IC50 

(nM)128, 160

RET 5.9 1.5 5 0.13 1.5 5.2

RETV804M 7.9 -- -- -- -- --

Raf-1 6 2.5 -- -- -- --

BRAF 25 28.0 -- -- -- --

BRAFV600E 38 19.0 -- -- -- --

VEGFR1 26 13 ND >1 22 --

VEGFR2 90 4.2 0.4 0.04 4.0 0.035

VEGFR3 20 46 ND 0.11 5.2 --

EGFR -- -- -- 0.5 6500 --

PDGFRα -- -- 6.9 -- 51 --

PDGFRβ 57 -- 3.9 >1 39 --

FGFR1 580 202 -- >1 46 --

FLT-3 33 -- 2.5 -- -- 11.3

FLT3-ITD -- -- 5 -- -- --

p38 38 -- -- -- -- --

c-Kit 68 7 -- >20 100 4.6

c-MET -- -- -- -- -- 1.3–14.6

AXL -- -- -- -- -- 7.0

Tie-2 -- 311 -- -- -- 14.3
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Table 3.

Kinase inhibition profile of nintedanib191

Kinase IC50 (nM) Kinase IC50 (nM)

RET 2±1 CSF1R 5±2

VEGFR1 99 TRKA 30±8

VEGFR2 3 TRKC 48±25

VEGFR3 4 ABL1 12±5

PDGFRα 18 KIT 6±3

PDGFRβ 28 FGFR4 421

FGFR1 41 FGFR3 96

FGFR2 47

J Med Chem. Author manuscript; available in PMC 2022 November 25.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Saha et al. Page 68

Table 4:

Inhibitory profile of agerafenib211–212

Target Kd (nM) IC50 (nM) GI50 (nM)

RET 1.5 7 21 (TT-1)

BRAF 36 na 2,736 (Hs578T), 6,631 (LNCaP

BRAFV600E 14 na 60 (Colo-205), 84 (A375)

CRAF 39 146 ≥3000 (HeLa)

ABL, BCR-ABL 2.8 6 39 (K562; ABL), 70 (K562; BCR

VEGFR2 7.9 43 ≥700 (HUVEC)

FLT-1 14 1 ≥1,000 (HUVEC)

CKIT 2.4 na 1,000 (A431)

Kinase IC50 (nM) 196 

CCDC6-RET 0.33

NCOA4-RET 0.41

PRKA1A-RET 0.81

RETM918T 4.34

RETV804M 266

RETV804L 319
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Table 5:

Biochemical activity of RET inhibitors and MKIs against RET mutants and VEGFR2220

Compound Biochemical IC50 (nM)

WT RET RETV804L RETV804M RETM918T VEGFR2 CCDC6-RET

Selpercatinib 0.4 0.42 0.8 0.7 100 --

Pralsetinib 0.4 0.3 0.4 0.4 35 0.4

Agerafenib 31 168 102 4 17 7

Cabozantinib 5.2 45 162 8 0.035 34

Vandetanib 130 3597 726 7 4 20
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