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Abstract: Nature may have the answer to many of our questions about human, animal, and envi-
ronmental health. Natural bioactives, especially when harvested from sustainable plant and food
sources, provide a plethora of molecular solutions to nutritionally actionable, chronic conditions. The
spectrum of these conditions, such as metabolic, immune, and gastrointestinal disorders, has changed
with prolonged human life span, which should be matched with an appropriately extended health
span, which would in turn favour more sustainable health care: “adding years to life and adding life
to years”. To date, bioactive peptides have been undervalued and underexploited as food ingredients
and drugs. The future of translational science on bioactive peptides—and natural bioactives in
general—is being built on (a) systems-level rather than reductionist strategies for understanding their
interdependent, and at times synergistic, functions; and (b) the leverage of artificial intelligence for
prediction and discovery, thereby significantly reducing the time from idea and concept to finished
solutions for consumers and patients. This new strategy follows the path from benefit definition via
design to prediction and, eventually, validation and production.

Keywords: bioactive; peptide; nutrition; food; plant; ingredient; supplement; artificial intelligence;
design; peptidomics; mass spectrometry; discovery; validation; in vitro biology; manufacturing;
sustainability

1. Natural Bioactives from Plants and Foods

Natural bioactives can be classified into micronutrients (i.e., vitamins and minerals) [1];
phytonutrients (e.g., phenolics, alkaloids, and terpenes) [2,3]; pre- and probiotics [4]; and
bioactive peptides [5]. In particular, bioactive peptides have remained largely underap-
preciated as molecular deliverers of health promotion, mainly due to [6]: (assumedly)
poor bioavailability after oral consumption due to proteolysis along the gastrointestinal
tract; limited transport from the gut lumen to the bloodstream; and, importantly, insuffi-
cient discovery and translation based on serendipitous research and/or high-throughput
screening [6].

Natural bioactive plant and food peptides can be regarded as safe and efficacious
means for the molecular delivery of specific health benefits, and they are well-suited for in
silico prediction and discovery because [7]:

- Peptides can be regarded as the “vocabulary of nature”: living systems use peptides to
communicate and to regulate and fine-tune their functions. Peptides have co-evolved
with humans as modulators of physiology and therefore exert highly specific biological
functions. The presence in natural (e.g., plant and food) sources and the biological
function of peptides can be predicted in silico by blasting peptide sequences against
the plant and food genomes and by the computational and human interpretation of
metabolic and signalling pathways. Orally administered peptides often suffer from
a short half-life across ingestion and digestion, as well as in the blood circulation.
The challenges of using peptides as orally delivered bioactives lie in their stability,
bioavailability, and bioefficacy, rather than in their safety. From a food perspective,
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peptides can be considered as nutrients, and they are the only nutrients that are
directly encoded in the genomes of their sources [8]. Food peptides are components
of long-term consumed food sources. Food protein hydrolysates can therefore be
“generally recognized as safe” (GRAS) [8].

While peptides are present and consumed abundantly in foods, they have typically
been discovered ad hoc or through traditional use. Presently, the most prominent ap-
plications of peptides in food are in infant formulae, sports nutrition, and dietary sup-
plements [9]. Food protein hydrolysates containing bioactive peptides also have a long
history of global use, e.g., in infant formulae based on soy or rice protein hydrolysates to
avoid cow’s milk allergy; or fermented foods such as yogurt, kefir, kimchi, tempeh, tofu,
natto, and pickled vegetables. The safety of food protein hydrolysates has been assessed
in pre-clinical and clinical studies and they are regulated as food hydrolysates, not as
drugs [8].

Fermented dairy products provide health benefits due to their peptide content: for
example, peptides (in the form of hydrolyzed vegetable proteins) provide savoury flavours
for traditional and processed foods; other anti-microbial peptides produced by the cheese-
making process protect the food from spoilage. Furthermore, food-derived peptides are
increasingly being accepted not only as providers of additional health benefits beyond
macronutrient-based good nutrition, but also as a potential solution to the removal and/or
substitution of artificial preservatives [10], sugar and salt reduction, and the enabling of
cultured meat protein [8].

2. Artificial Intelligence in (Life) Science and Technology

Human intelligence is unmatched when it comes to versatility: the human brain is
extremely flexible in learning and in developing and performing a vast array of cognitive,
creative, and executive tasks [11]. This is a major reason why humans have succeeded in
populating almost every place on this planet [12].

However, artificial intelligence (AI) is increasingly outperforming human intelligence
when it comes to data processing speed; handling huge volumes of data; establishing
connections between and within large sets of unrelated pieces of information, especially at
first glance; very fast learning; and—as a result—forecasting and predicting the scenarios,
behaviour, and functions of complex systems [13].

AI is already revolutionizing various science and technology sectors. It has tremen-
dous impact on medicine [14], nutrition [15], diagnostics [16], environmental science [17],
logistics [18], and robotics [19], and this impact is growing exponentially. Rational drug de-
sign, for example, is currently greatly enhanced by AI and holds promise for yielding more
efficacious drugs in a shorter time [20]. In medical diagnostics, AI’s superb capability of
pattern recognition is widely leveraged to improve and accelerate the early and accurate de-
tection of disease states and deviations from healthy physiology, especially when combined
with imaging technologies [21]. The fast-learning quality of AI has enabled robots to act
autonomously and react to changing conditions and situations. In environmental research
on climate change, for example, AI enables the forecasting of the behaviour of hugely
complex systems, such as connected biospheres and atmospheres [22]. Logistic companies
deploy AI to design and optimize networks of transportation and communication [18].

AI is therefore a key to improved health care, healthier food, a more sustainable food
system, and—thereby—a healthier society and planet. AI has been described to potentially
reduce global healthcare costs through more efficient and more directed discovery and
development of nutritional interventions [23]. However, in nutrition, the power of AI
is only beginning to be recognized and appreciated. AI can be deployed to discover
bioactive, health-beneficial peptides in natural sources [6]. Living systems use peptides to
communicate and regulate their functions. However, when these peptides reside in plant
and food proteins, they are inactive unless they are unlocked from their parent proteins.
Large peptide knowledge bases lay the foundation for predicting, localizing, unlocking,
and testing peptides that deliver health benefits to humans and animals and make our food
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healthier and more sustainable [24]. In other words, AI can be used to better learn how
to speak the language of nature and to teach the body to maintain or restore health and
improve performance.

After the initial phase of the rather ad hoc discovery of natural bioactives, including
peptides, high-throughput screening (HTS) has advanced both the speed and efficiency
of the process [25]. It was and still is the attempt to leverage the biomolecular complexity
and diversity of nature at large scale and with high automation. This said, the transla-
tion of these molecular discoveries into solutions for consumers and patients has been
limited. Especially in nutrition, and in contrast to pharmaceutical applications, it was
recognized that compound purity rarely correlates with compound bioactivity and bioeffi-
cacy: food bioactives typically exert multiple, individually subtle effects that—only when
combined—may converge to a profound and lasting health benefit [26]. Hence, it is often
the right blend of many bioactives and their optimal individual concentrations that make
the difference. Furthermore, HTS represents a brute-force approach to fractionation and
characterization of bioactives without much upfront guidance for possible translation and
application, thereby resulting in a very high number of required bioactivity and bioefficacy
tests, which are typically lower in throughput than the chemical screening is [27].

3. Artificial Intelligence for Prediction and Discovery of Bioactive Peptides
3.1. Concept and Computation

The key strategic advantage of using AI for the prediction and discovery of bioactive
peptides is that purpose definition and design can be put in front of the entire process.
This contrasts with traditional serendipitous or screening approaches. By putting AI in
front of the peptide discovery and development process, the path from idea and concept
to solution can be shortened from decades to a few years. The number of wet laboratory
experiments and pre-clinical studies, which are time- and cost-determining factors, can be
substantially reduced by upfront intelligent in silico design [6]. First, the desired benefit
is defined, be it for human or animal health or for a healthier and more sustainable food
solution; then, based on interrogable peptide knowledge repositories and machine learning,
bioactive peptides can be predicted to exert such benefit; such predicted peptides can
then be tested in vitro. The iterative process and integrated cycle of prediction and testing,
which results in computational learning, can generate a feasible number of potent bioactive
candidate peptides to then be validated in vivo, in a human, or in a food technology
setting. Typically, three rounds of prediction and testing are performed to produce a
list of lead peptides for further ingredient development. Consequently, AI can indeed
guide and empower bioactive peptide discovery, food ingredient and dietary supplement
design, manufacturing, and clinical validation [6,28]. Such AI-discovered, natural bioactive
peptides were recently taken from concept to pre-clinically proven solutions [29–32].

3.2. Prediction of Peptide Properties

The target benefit is defined typically around the established or new value propo-
sitions of a private company or around an established or new research area of a public
research institution. In the context of this manuscript this value proposition would be
either in human health care or in the food/feed system’s sustainability. The molecular
mechanisms underlying the specific target benefit(s), for example, consumer/patient ben-
efits like physical mobility, immune balance, or metabolic control, can in many cases be
identified through public and proprietary knowledge mining: both public-domain ‘flat
files’ like publications or patents and publicly accessible databases can be downloaded and
automatically mined for relevant information, e.g., by natural language processing [33].
Afterwards, manual—or rather cerebral—curation is needed to ensure the quality and
relevance of the insourced information. This knowledge body can be combined with pro-
prietary databases, which contain in-house generated information on peptide properties.
Through interrogating these knowledge bases, the peptides involved in the identified key
molecular mechanisms and the supposedly conferred target benefit(s) can be predicted
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by means of AI-powered mining, which relies on predictors for peptide functions and
physicochemical properties [29,34].

This can be further illustrated with the following analogy: every peptide has a unique
sequence and a flexible three-dimensional (3D) structure. According to these 3D properties,
every peptide can be projected into a 3D space containing all possible peptide 3D structures,
thereby occupying a specific and unique position in that space. Now, the same can be
envisaged with many more properties than just the 3D structure: peptides have numerous
properties and various features that, when taken together, make up the entirety of indi-
vidual peptide characteristics. According to these typically >100 characteristics, peptides
can be projected into the high-dimensional space (representing these >100 characteristics),
thereby again occupying one specific and unique position in that space. Visually speaking,
this multi-dimensional space of peptides with their unique property combinations can then
be “interrogated from the angle and with the depth of the desired property combination”,
eventually “landing” on one or a few peptide positions that represent the best combination
of the desired properties and hence the best hit(s) for a targeted, multi-faceted benefit [35].
This is illustrated in Figure 1.
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Figure 1. Illustration of a multi-dimensional peptide property space: 3D projection of annotated
bioactive peptides according to three principal components (PC1-3), visualized as colored dots
according to different health benefits. Red: blood pressure control; blue: anti-inflammatory; green:
anti-microbial; magenta: glucose regulation; orange: anti-ageing; yellow: sample set of newly
predicted peptides.

The above-described peptide characteristics encompass the biological, biochemical,
and physical properties, but they can also include peptide suitability and applicability
resulting from these primary properties [24]. The biological, biochemical, and physical prop-
erties encompass amino acid sequence, molecular weight, hydrophobicity/hydrophilicity,
basicity/acidity, solubility, and biochemical stability [36]. These features can determine
the peptide’s suitability for specific applications. The key qualities for orally administered
bioactive peptides are, for example, resistance to gastrointestinal digestion; transportability
from the gut lumen to systemic blood circulation (active or passive transport across biologi-
cal membranes); or the stability and half-life in human blood once absorbed from gut to
blood [5]. The primary peptide properties may also determine the peptide’s relevance for
commercial translation: the uniqueness of the peptide sequence influences the protectabil-
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ity of intellectual property; the amino acid sequence and length of a peptide impacts the
manufacturing costs [37].

3.3. Natural Peptide Network (NPN) Design and Validation of Predicted Peptides and
Designed Hydrolysates

Once a feasible and potent set of in vitro bioactive peptides has been identified and
consolidated (from ‘hits to leads’), these candidate peptides can be blasted against all
known plant and food genomes, proteomes, and peptidomes [36]. The purpose of this
straightforward exercise is to identify the best natural source that holds the majority, if
not all, of the desired peptide sequences in the plant and food parent proteins. When
this optimal source is found—be it a grain, legume, vegetable, or any other edible plant,
including not only terrestrial but also marine sources—the best protein hydrolysate with
the resulting Natural Peptide Network (NPN), i.e., the combination of the predicted and
initially validated peptide leads, needs to be designed [37]. Proteolytic digestion as such,
be it in vivo (digestion) or in vitro (processing), may but does not necessarily produce
bioactive peptides because these processes are not designed to do so. However, once a set
of bioactive peptides deriving from plant and food proteins has been identified, the in vitro
hydrolysis can be optimized to release the desired bioactive peptides, in addition to many
others. This process represents a standard bioinformatic sequence analysis in the sense that
the peptide locations in their parent proteins are determined and the adjacent potential
cleavage sites are identified. With the latter in hand, the best proteases can be identified to
be applied in combination to result in an optimized hydrolysis process and eventually yield
the right combination and concentration of the targeted bioactive peptides [36]. In short,
the best plant/food source in terms of the presence and abundance of the lead peptides in
parent proteins is identified; based on the lead peptide sequence and its position within the
parent protein in the plant/food source, the best enzymes for specific release of the lead
peptides from their parent proteins are selected.

The predicted peptides with the best initial in vitro performance are then tested more
extensively in relevant in vitro assays for bioactivity and toxicity. These peptides should be
tested both individually and as the blend generated in the protein hydrolysate. Often, the
hydrolysate exhibits greater bioactivity than the individual peptides, thanks to the com-
bined, or even additive, effects of the multiple active principles present in the hydrolysate.
These tests are typically performed over a range of peptide and hydrolysate concentrations,
which can already to some extent inform on subsequent in vivo and in human studies.
The advantage of bioactive food peptides is their inherent biosafety [8]. Therefore, after
successful in vitro validation, the peptide and/or hydrolysate testing can often directly
advance to a pilot pre-clinical study.

3.4. Natural Peptide Network (NPN) Manufacturing and Analysis

The optimal plant/food source is insourced, and the bulk protein material is extracted.
The identified enzymes (proteases) are applied to a solution/suspension of this bulk protein
material in different combinations and under different conditions (temperature, pH, time,
concentration, etc.) [30,31]. The resulting protein hydrolysates are analyzed by MS-based
peptidomics (see Section 4), which delivers a detailed peptide profile encompassing the
NPN, i.e., the nearly complete hydrolysate peptidome [38]. Mass spectrometry enables
the sequencing, identifying, and quantifying of peptides and proteins and is described in
detail in the next section. Based on these preparations and analyses, the best procedure for
manufacturing the desired protein hydrolysate with the optimal peptide profile is identified.
The reproducibility of this optimized procedure is established in replicate manufacturing
and analysis experiments. The optimized procedure is then established and used for
further laboratory scale preparations, as well as for the pilot- and large-scale hydrolysate
production for clinical trials and commercial purposes, respectively [32].
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4. Mass Spectrometric Characterization of Bioactive Peptides

Mass spectrometry (MS) has developed into and is established as the most versatile
and information-rich analysis method for biomolecules, especially for proteins [39] and
peptides [38], but also for micro- and phyto-nutrients [40], metabolites [41], lipids [42],
and DNA and RNA [43]. Mass spectrometry-based proteomics and peptidomics are the
key platforms for the comprehensive analysis of proteins and peptides at the levels of
identification, quantification, and structural characterization [44]. They have generated
enormous data sets for protein- and peptide-related molecular biology, from molecular cell,
tissue, and disease catalogues via complex biomolecular interaction networks, targets for
drugs, and bioactives, to the structural and functional elucidation of complex biomolecules
and even supra-molecular machineries [45].

Despite increasing efforts in top-down MS proteomics, e.g., the direct analysis of large,
intact proteins for the fine characterization of antibodies [46] and the establishment of pro-
teoform databases [47], MS proteomics, which is typically coupled online to upfront liquid
chromatography (LC-MS), has been largely deployed as a bottom-up strategy [48]. That s,
protein identification and quantification by sequencing of tryptic peptides representative
of parent protein(s): the protein complement of a given sample (cell, tissue, body fluid,
biopsy, extract, etc.) is digested by the protease trypsin, which generates “MS-friendly”
peptides of typically 500 to 2500 Da with terminal arginine or lysine residues, which confer
protonation sites in addition to inner-sequence basic side chains. The peptide mixture is
subsequently separated via reversed-phase liquid chromatography (RP-LC) and directly
and continuously infused into the mass spectrometer (MS) typically via electrospray ion-
ization (ESI), where the eluting peptides are ionized (protonated), transferred into the gas
phase, and then analyzed by intact mass (MS) and amino acid sequence (MS/MS), the latter
two processes being executed in an alternating fashion “on the fly”. Peptide sequencing
practically means the fragmentation of the peptide along its backbone and around the
peptide bond and the generation of various peptide fragment types, which require the
computational reassembly of the peptide sequence from those fragments [49].

This analysis process can be done either in data-dependent acquisition (DDA; the
most intense intact peptides are selected and then sequenced) [50] or in data-independent
acquisition mode (DIA; intact masses and sequencing are performed independently, with-
out precursor ion selection, and the parent peptide-sequence context is reconstructed post
hoc) [51]. Both acquisition methods have proven to be complementary. Finally, all se-
quenced and identified peptides are assigned to their parent proteins, which results in a
proteome analysis of the entire sample.

The quantification of peptides and, thereby, proteins is done either by the label-free
technique, i.e., the summation of spectral intensities across peptides and proteins (suited for
less complex samples; limited by the facts that the MS response per se is analyte-dependent
and that one LC-MS/MS run is required for each condition/sample type in question) [52],
or by stable-isotope labelling methods, in which the protein or the tryptic peptide mixtures
are derivatized with reagents carrying an isotopic signature, which is MS response-neutral,
thereby allowing for the relative quantification of peptides and proteins between conditions
blended in the same analytical sample and allowing for the multiplexed, simultaneous
analysis of several conditions in one run [53]. Such stable-isotope labelling can be done
in two different ways. When working with cells or bacteria, these living entities can be
differentially grown with isotope-labelled media (e.g., with different stable-isotope coded
amino acids) according to the conditions to be compared, which translates into a condition-
specific signature to each such condition. This strategy is called ‘metabolic labelling’ and
has been more specifically coined as the ‘stable-isotope labelling of amino acids in cell
culture’ (SILAC) [54]. However, when working with samples derived from humans or other
complex organisms, metabolic labelling is not an option. In those cases, the tryptic peptide
mixtures are derivatized chemically by a set of reagents that are chemically identical (and
therefore generate the same MS response when coupled to the same analyte) yet carry a
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specific isotope signature. As for SILAC, these differential signatures allow for relative
quantification across several conditions within the same sample pool.

Most of the above-described proteomic features also apply to peptidomics, yet this lat-
ter discipline harbors specific conditions and challenges [55]. The main difference between
proteomics and peptidomics is already indicated by their respective names: proteomics
delivers the ‘proteome’, i.e., the totality of proteins, whereas peptidomics delivers the
‘peptidome’, i.e., the totality of peptides contained in a sample [56]. Such peptidomes
can be enriched upfront by size-exclusion chromatography (SEC), by a membrane-based
molecular-weight cut-off, by the precipitation of the proteins with acids or organic sol-
vent [57] as such, and directly by LC-MS/MS. This peptide complement is typically much
more heterogeneous than that of a tryptic peptide digest because the “native” peptides, i.e.,
those naturally contained in a sample, comprise a more diverse molecular space in terms of
size, hydrophobicity, basicity (protonation efficiency), and fragmentation behaviour [58].
Moreover, a possibly bioactive ‘native’ peptide may occur in variants differing only in one
or a few amino acids at the termini, and these ‘native’ peptide variants may be present
individually in only very few copy numbers. This heterogeneity and complexity of a
peptidome puts particular challenges on the LC-MS/MS analysis in terms of sensitivity
and comprehensiveness [59].

Mass spectrometry, combined with tailored methods for peptide separation and enrich-
ment, is the analytical platform of choice to identify, quantify, and characterize bioactive
peptides as an analytical validation of AI prediction and discovery, and therefore it is
an integral part of the development of bioactive peptide-based products [60]. MS-based
peptidomics in this context is deployed for (a) characterizing bioactive peptides and the
entire peptidome in the designed proteolytic hydrolysates of plant and food proteins [59];
(b) quantifying the desired bioactive peptides in vivo (that is, determining bioavailability
in the gut lumen, blood, or target tissues; depending on the peptide’s place of action, the
pre-clinical study design, and the sample availability) [61]; and (c) creating an experimental
MS peptide library from plant and food proteins to analytically cover the technically acces-
sible space of bioactive peptides [59]. In essence, artificial intelligence drives prediction and
discovery, and mass spectrometry-based peptidomics provides analytical validation and
proteolytically accessible peptidomes. These are complementary and synergistic platforms
for the discovery and development of bioactive peptides as ingredients and drugs.

5. Conclusions

Bioactive peptides constitute a virtually unlimited reservoir of molecular solutions to
human health care and a more sustainable food system. They co-evolved with mankind as
biological messengers and regulators with specific functions. In particular, plant- and food-
derived peptides represent a safe and sustainable complement of bioactives for nutritional
and pharmaceutical applications. However, nature’s huge peptide reservoir has remained
largely untapped to date because of inefficient discovery methods and the underestimated
value of peptides as drugs and nutrients.

Artificial intelligence is changing this situation and unlocking this bottleneck. AI-
driven bioactive peptide prediction and discovery, combined with downstream MS char-
acterization, is a new development putting design and prediction up front, resulting in
a benefit-directed, top-down approach as opposed to the traditional bottom-up, high-
throughput screening. The establishment of large peptide knowledge bases and their
AI-powered interrogation enables the efficient prediction of bioactive peptides for biofunc-
tionalities within predefined health and sustainability benefits. The benefit-and-design-first
principle and the computational zoom into most relevant bioactive candidates drastically
reduces the number of in vitro and pre-clinical peptide tests and studies and thereby also
reduces the development time and costs for peptide-based solutions. Artificial intelligence-
guided and -driven bioactive peptide prediction, discovery, validation, and manufacturing
will soon change the development of bioactives for better human and planetary health.
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