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Abstract: Rhipicephalus microplus tick highly affects the veterinary sector throughout the world.
Different tick control methods have been adopted, and the identification of tick-derived highly
immunogenic sequences for the development of an anti-tick vaccine has emerged as a success-
ful alternate. This study aimed to characterize immunogenic sequences from R. microplus ticks
prevalent in Pakistan. Ticks collected in the field were morphologically identified and subjected to
DNA and RNA extraction. Ticks were molecularly identified based on the partial mitochondrial
cytochrome C oxidase subunit (cox) sequence and screened for piroplasms (Theileria/Babesia spp.),
Rickettsia spp., and Anaplasma spp. PCR-based pathogens-free R. microplus-derived cDNA was used
for the amplification of full-length cysteine protease inhibitor (cystatin 2b), cathepsin L-like cysteine
proteinase (cathepsin-L), glutathione S-transferase (GST), ferritin 1, 60S acidic ribosomal protein (P0),
aquaporin 2, ATAQ, and R. microplus 05 antigen (Rm05Uy) coding sequences. The cox sequence
revealed 100% identity with the nucleotide sequences of Pakistan’s formerly reported R. microplus,
and full-length immunogenic sequences revealed maximum identities to the most similar sequences
reported from India, China, Cuba, USA, Brazil, Egypt, Mexico, Israel, and Uruguay. Low non-
synonymous polymorphisms were observed in ATAQ (1.5%), cathepsin-L (0.6%), and aquaporin
2 (0.4%) sequences compared to the homologous sequences from Mexico, India, and the USA, respec-
tively. Based on the cox sequence, R. microplus was phylogenetically assembled in clade C, which
includes R. microplus from Pakistan, Myanmar, Malaysia, Thailand, Bangladesh, and India. In the
phylogenetic trees, the cystatin 2b, cathepsin-L, ferritin 1, and aquaporin 2 sequences were clustered
with the most similar available sequences of R. microplus, P0 with R. microplus, R. sanguineus and
R. haemaphysaloides, and GST, ATAQ, and Rm05Uy with R. microplus and R. annulatus. This is the first
report on the molecular characterization of clade C R. microplus-derived immunogenic sequences.

Keywords: Rhipicephalus microplus; immunogenic sequences; Pakistan

1. Introduction

Ticks and tick-borne pathogens have substantial economic effects on the veterinary
and public sectors, mainly in tropical and subtropical countries where cattle populations
have been addressed at risk of ticks and tick-borne diseases, representing a huge estimated
economic impact [1]. To date, controlling ticks and tick-borne diseases remains a serious
challenge [2]. Although chemical acaricides are used to control the tick infestation, their
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continuous and excessive use has led to the accumulation of residues in milk, meat, and
in the environment. They also induce the development of acaricide-resistant tick pop-
ulations [3,4]. Tick-derived protective antigens have been an alternative approach that
have gained focus for the characterization of immunogenic sequences in different tick
species [5,6].

Several immunogenic sequences have been identified in ticks in the last few years
including cysteine protease inhibitor (cystatin 2b) [7], cathepsin L-like cysteine proteinase
(cathepsin-L) [8], glutathione S-transferase (GST) [9], ferritin 1 [10,11], 60S acidic ribosomal
protein (P0) [12], aquaporin 2 [13], ATAQ [14], and R. microplus 05 antigen (Rm05Uy) [15].
Based on their physiological importance, the potential anti-tick vaccine efficacy of these
immunogenic proteins against multiple ticks has been determined [7–13], and Rm05Uy
was suggested as a candidate antigen for inclusion in the future anti-tick vaccine devel-
opment [15]. Ticks have undergone different evolutionary processes marked by morpho-
logical and genetic variations [16]. In particular, sequence polymorphisms in the Bm86,
ATAQ, and cathepsin L-like cysteine proteinase genes in Rhipicephalus microplus strains
have been reported in different geographical locations [17–21]. This phenomenon has
been welcomed to characterize previously reported anti-tick vaccines in different geo-
graphical setups [6,20], and to determine their sequence homogeneity to be-assured before
vaccination potential [18]. Reports have shown that polymorphisms in the tick-derived
immunogenic sequences of different tick strains are associated with an impact on anti-tick
vaccine efficacy [17,22–24].

In tropical and subtropical regions, R. microplus tick infestation is predominant [25].
Based on the cytochrome C oxidase subunit (cox), R. microplus species complex has been
grouped into five distinct geographical clusters; clade A includes ticks from Africa, Asia,
and South America, clade B includes ticks from southern China and northern India,
clade C includes ticks from Pakistan, Myanmar, Malaysia, Bangladesh, and India, and
Rhipicephalus australis and Rhipicephalus annulatus [25–28]. Pakistan is a subtropical country
where more than 70% of the rural population is directly or indirectly dependent upon live-
stock and contribute approximately 60.07% and 11.53% to agriculture and gross domestic
product values, respectively [28–30]. Rhipicephalus microplus infestations seriously affect
livestock and cause substantial losses to the country’s economy [31–34]. Characterizing
immunogenic sequences from R. microplus is necessary for future anti-tick vaccine develop-
ment [35]. Indeed, systematic work is required to identify and investigate immunogenic
sequences and subsequently use them for anti-tick vaccine development. This preliminary
study aimed to characterize immunogenic sequences in R. microplus ticks collected from
various geographical locations in Pakistan to infer their phylogenetic relationship and
determine the sequence polymorphisms.

2. Materials and Methods
2.1. Study Area

Ticks were collected in five districts; Swat (35.2227◦ N, 72.4258◦ E), Shangla
(34.8883◦ N, 72.6003◦ E), Upper Dir (35.3356◦ N, 72.0468◦ E), Lower Dir
(35.3356◦ N, 72.0468◦ E), and Mardan (34.1989◦ N, 72.0231◦ E) located in Khyber Pakhtunkhwa
(KP) (Northwestern geographical state of Pakistan previously known as North-West Frontier
Province), Pakistan. Geographically, it is bounded to the West by Afghanistan, South-East
by Punjab, South-West by Baluchistan, and Gilgit-Baltistan in the North. The KP province
comprises a 101,741 km2 total area with varied elevation and climactic perspectives. The hilly
regions are cold in winter and cool in summer, and the temperature markedly falls towards
the North. The selected study area represents the main cattle-keeping agroecological zones
with high tick burden (Figure 1).
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2.2. Ethical Approval

Ethical consent was obtained from the advanced studies and research board of the
Abdul Wali Khan University Mardan under Dir/A&R/AWKUM/2021/5466. Oral and
written consents were obtained from cattle owners for tick collection.

2.3. Sample Collection and Morphological Identification

The partially engorged ticks collected in the field from cattle hosts were preserved
in RNAlaterTM (Invitrogen, Carlsbad, CA, USA) and instantly shifted to the laboratory
for morphological identification and molecular experimentation. Each tick sample was
morphologically identified under a stereo zoom microscope (SZ61, Olympus Corporation,
Tokyo, Japan) to the species level employing a previously published dichotomous key [36]
during the first hour of collection. Global Positioning System took the geographical coordi-
nates of each sample location for tagging the exact locations on the land cover map of KP
province of Pakistan in ArcGIS V. 10.3.1 [37].

2.4. Nucleic Acid Extraction and cDNA Synthesis

Morphologically identified 20 R. microplus ticks representing each district were indi-
vidually used as a sampling unit for molecular experimentation. Ticks were individu-
ally diced with a sterile scalpel blade in ice-cold phosphate buffer saline (pH 7.2). Sub-
sequently, whole female tick tissues were separately taken in a single 1.5 mL tube and ho-
mogenized in a sterilized environment. The homogenized tissues were subsequently used in
two series: genomic DNA extraction using DNA extraction Kit (Qiagen Ltd.,
West Sussex, UK) and RNA extraction using TRIzol® Reagent/100 mg tissue (Ambion, Life
Technologies, Carlsbad, CA, USA) following the manufacturer’s instruction. The extracted
DNA and RNA were assessed for quantity and purity using a NanoDrop (Nano-Q, OPTIZEN,
Daejeon, South Korea).

Prior to cDNA synthesis, the genomic DNA was removed by treating 1 µg/µL quan-
tified RNA with 1 µL DNase I and RNase-free (1 U/µL), 1 µL DNase buffer, and 10 µL
DEPC-treated water (Thermo Fisher Scientific, Inc., Waltham, MA, USA). The reaction was
incubated at 37 ◦C for 30 min, followed by DNase I inactivation using 1 µL of 50 mM EDTA,
and incubated at 60 ◦C for 10 min. Furthermore, 1 µg/µL RNA was mixed with 1 µL of
100 µM oligo (dT) and 10 µL DEPC-treated water and incubated at 65 ◦C for 5 min. Samples
were chilled on ice for 1 min and subsequently pipetted with 4 µL first-strand reaction buffer
(5×), 20 U/µL RiboLock RNase inhibitor, 2 µL dNTPs (10 mM), and 200 U/µL RevertAid
M-MuLV RT (Thermo Fisher Scientific, Inc., Waltham, MA, USA). The reaction was incubated
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at 42 ◦C for 1 h followed by 70 ◦C for 5 min. The cDNA concentration and purity were
determined using a NanoDrop (Nano-Q, OPTIZEN, Daejeon, Republic of Korea).

2.5. Primer Synthesis

Reference primers were used for the amplification of cox of ticks [38]. Tick-borne
pathogens commonly occurring in this tick were screened by the amplification of partial
mitochondrial 16S rRNA for Anaplasma spp. (345 bp), and gltA for Rickettsia spp. (401 bp)
as previously described [39,40]. A set of primers was used for the amplification of 897 bp
fragment of the mitochondrial 18S rRNA of piroplams (Theileria/Babesia spp.) based on the
conserved regions of previously reported piroplasms 18S rRNA mitochondrial sequences.
In order to amplify the full-length Open Reading Frame (ORF) encoding immunogenic
proteins, primers were designed based on the sequences retrieved from GenBank includ-
ing cysteine protease inhibitor (cystatin 2b) (Accession numbers; KM588294, KC816580),
cathepsin-L (JX502822–JX502830, MN175238–MN175239, KM272201–KM272202, KC707945–
KC707946, AF227957), glutathione S-transferase (GST) (HQ337616–HQ337618, HQ337620,
HQ337622–HQ337623, EF440186, AF077609), 60S acidic ribosomal protein (P0) (KC845304,
KR697563, KP087926, EU048401), ferritin 1 (AY456681, AF467696, AY277902–AY277904),
aquaporin 2 (KP406519), ATAQ (MF314445–MF314447, MG437296, MG437298, MG437299),
and R. microplus 05 antigen (Rm05Uy) (KX611484, EF675686). All primers were examined
to avoid the self-complementary hairpins, dimers, and difference in melting temperature
using Vector NTI V. 11.5 (Invitrogen, Part of Life technologies, Carlsbad, CA, USA) (Table 1).

2.6. PCR Amplification

The R. microplus-derived DNA was amplified in a total volume of 25 µL PCR reaction
containing a template DNA (50–100 ng/µL), 1X PCR buffer, 3 mM MgCl2, 0.2 mM dNTPs,
0.5 mM each forward and reverse primers, 1 U Taq DNA polymerase, and PCR water “nu-
clease free” (Thermo Fisher Scientific, Inc., Waltham, MA, USA). Thermal cycling conditions
for cox, Anaplasma spp., and Rickettsia spp. were followed as previously described (Table 1),
however, the condition of piroplams amplification consisted of an initial denaturation at
94 ◦C for 5 min, followed by 35 amplification cycles (94 ◦C for 30 s, 55 ◦C for 30 s, and 68 ◦C
for 1 min), and a final extension step at 72 ◦C for 10 min.

In order to amplify the full-length ORF encoding immunogenic proteins, a template
cDNA (~500 ng/µL) was used, and a similar PCR reaction was prepared as mentioned
above. The initial denaturation was kept at 94 ◦C for 4 min followed by 35 cycles of
denaturation at 94◦C for 1 min, annealing at 60 ◦C (cystatin 2b, ferritin 1, ATAQ, and
Rm05Uy), 57 ◦C (cathepsin-L), 54 ◦C (GST), and 50 ◦C (P0 and aquaporin 2) for 30 s, and
extension at 72 ◦C for 1–2 min. The final extension was performed at 72 ◦C for 7–10 min, and
then held at 4 ◦C until further processing. A negative control of PCR without cDNA and a
positive control containing tick-specific actin primers were used for PCR validation [41].
All PCR reactions were performed in a PCR thermocycler (T100 Bio-Rad, Laboratories Inc.,
Hercules, CA, USA). PCR amplified products were resolved by electrophoresis on ethidium
bromide-stained agarose gel (1.8%) and the results were visualized under UV light using a
Gel Documentation system (UVP, BioDoc-It imaging system, UVP, LLC, Upland, CA, USA).

Table 1. Primers used for ticks, pathogens, and full-length ORF encoding immunogenic proteins.

Organism/Gene Primer Sequence Tm ◦C, s Amplicon Size References

Ticks/cox F: GGA ACAA TATA TTT AAT TTT TGG
R: ATC TAT CCC TAC TGT AAA TAT ATG 55 ◦C, 60 s 801 [38]

Piroplasms
(Theileria/Babesia spp.)/

18S rRNA

F: ACC GTGCTAA TTGT AGGGCTA ATAC
R: GAACCCAAAGACTTTGATTTCTCTC 55 ◦C, 30 s 897 This study

Rickettsia spp./gltA F: GCAAGTATCGGTGAGGATGTAAT
R: GCTTCCTTAAAATTCAATAAATCAGG 50 ◦C, 30 s 401 [39]

Anaplasma spp./16S rRNA F: GGTACCYACAGAAGAAGTCC
R: TGCA CTCA TCGT TTACAG 55 ◦C, 30 s 345 [40]
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Table 1. Cont.

Organism/Gene Primer Sequence Tm ◦C, s Amplicon Size References

Tick’s full-length ORF
coding genes

Cysteine protease inhibitor
(cystatin 2b)

F: ATGGCTTCTTTGAGAATCACCCCG
R: TTAGGTAGATGTGCTGCTTCCTTCG 60 ◦C, 30 s 423 This study

Cathepsin L-like cysteine
proteinase (cathepsin-L)

F: ATGCTTAGATTAAGCGTACTTTGCG
R: TTAGACGAGBGGGTAGCTGGCCTG 57 ◦C, 30 s 999 This study

Glutathione S-transferase (GST) F: ATGGCTCCTGTGCTCGGCTAC
R: GCTTGTTTCATGGCTTCTTCTGC 54 ◦C, 30 s 672 This study

Ferritin 1 F: ATGTTTTGGTCGATGTTATGC
R: CTAGTCTGACAGGGTCTCCTTGTCA 60 ◦C, 30 s 654 This study

60S acidic ribosomal protein (P0) F: ATGGTCAGGGAGGAYAAGAC
R: CTAGTCGAAGAGTCCGAAGCCCAT 50 ◦C, 30 s 957 This study

Aquaporin 2 F: AAT TCAGCAGC AGGAG AAGC
R: CTGA TGCATA AAAAA CTCAG CAT 50 ◦C, 30 s 1043 This study

ATAQ F: ATG GGAA GAATG AACA ACG AACGC
R: TCAG GCCTC TTCCTC CGTTG GAAGC 60 ◦C, 30 s 1818 This study

R. microplus 05 antigen (Rm05Uy) F: ATGGT GGCTT TCAAG GCAG CCC
R: TTAA CCATGG GCCGG CGC ACCA 60 ◦C, 30 s 516 This study

Actin F: GCATCCACGAGACCACG
R: GGGGTGTAGAAGGAAGG 54 ◦C, 30 s 339 [41]

2.7. Purification, Cloning and Sequencing

The amplified PCR products were precipitated in 1 mL of 100% absolute ethanol and
40µL of 3 M sodium acetate (pH 5.2) and kept at −20 ◦C for overnight incubation. The solution
was purified with the GeneClean II Kit (Qbiogene, Carlsbad, CA, USA) and the amplicons
were individually ligated to pGEM-T vector (Promega, Madison, WI, USA) according to the
manufacturer’s instructions. The plasmid constructs were used to transform in Escherichia coli
TOP 10 strain (Invitrogen, Carlsbad, CA, USA) using a thermic shock method and the resultant
colony clones were screened with PCR employing the same primers modified with the
addition of Nde I and Hind III restriction site sequences. All the obtained PCR positive
products were bi-directionally sequenced (Macrogen Inc., Seoul, Republic of Korea).

2.8. Sequence and Phylogenetic Analysis

The obtained nucleotide sequences were analyzed in SeqMan V. 5.00 (DNASTAR Inc.,
Madison, WI, USA), and each consensus sequence from 100% identical sequences of cox
and full-length ORF coding genes were subjected to BLAST (BLASTn for nucleotides cox
sequence, and BLASTp and BLASTx for immunogenic sequences) analysis at NCBI. The
homologous nucleotide (FASTA aligned) and protein (FASTA complete) sequences of closely
related species were retrieved for downstream analysis [42]. The alignment and editing of
sequences were performed in BioEdit sequence alignment editor V. 7.0.5 [43,44]. Furthermore,
the phylogenetic analyses for cox nucleotide sequences and immunogenic proteins were
individually constructed using the Maximum Likelihood (ML) and Neighbor-Joining (NJ)
methods, respectively, in Molecular Evolutionary Genetics Analysis (MEGA-11) software [45].
The evolutionary distances were computed using the Poisson correction method. Each
constructed tree comprises a branch support value (1000 bootstrap replicons) for nodes [45],
and title at each taxon showing a GenBank accession number, tick species, and country. An
outgroup sequences were taken for keeping the validity of inferred tree topologies. The
obtained sequences were aligned pairwise, identity and nucleotide polymorphism were
determined using DnaSP6 software V. 6.12.03 [46].

3. Results
3.1. Sequences Analysis

The full-length ORF sequences encoding cysteine protease inhibitor (cystatin 2b,
423 bp), cathepsin L-like cysteine proteinase (cathepsin-L, 999 bp), glutathione S-transferase
(GST, 672 bp), ferritin 1 (654 bp), 60S acidic ribosomal protein (P0, 957 bp), aquaporin
2 (1043 bp), ATAQ (1818 bp), and R. microplus 05 antigen (Rm05Uy) (516 bp) of R. microplus
were molecularly characterized. Prior to sequences characterization, R. microplus ticks
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were molecularly characterized and screened for pathogens including Babesia, Theleiria,
Reckettisa spp., and Anaplasma spp. and only pathogens-free ticks were included. The
obtained cox nucleotide sequence revealed 100% identity to the R. microplus reported
from Pakistan. The deduced amino acid sequences showed maximum identities with the
same species sequences available in the GenBank. All the obtained identical sequences
for each gene were considered as a consensus sequence, and the nucleotide sequences
were uploaded to GenBank under the accession numbers: OP379525 (cox), OP2119720
(cystatin 2b), OP2119714 (cathepsin-L), ON921299 (GST), OP312653 (ferritin 1), ON921298
(P0), OP312654 (aquaporin 2b), OP2119719 (ATAQ), and OP312655 (Rm05Uy).

3.2. Phylogenetic Analysis of cox

Based on the cox nucleotide sequence, the R. microplus was clustered in clade C together
with the sequences reported from Pakistan, Myanmar, Malaysia, Thailand, Bangladesh,
and India. (Figure 2).Vaccines 2022, 10, x FOR PEER REVIEW 7 of 20 
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microplus and Rhipicephalus geigyi as an outgroup. The supporting values (1000 bootstraps) are
indicated at each node, and the black circle represents the current study sequence.
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3.3. Phylogenetic Analysis of Cystatin 2b

The cystatin 2b deduced amino acid sequence showed maximum identity with the
same sequences of R. microplus reported from India (100%), Brazil (95.71%), and China
(95%). The obtained cystatin 2b sequence showed identity between 48.53 and 92.14% with the
cystatin sequences of R. appendiculatus, R. sanguineus, R. haemaphysaloides, Dermacentor andersoni,
D. silvarum, Haemaphysalis flava, and Ixodes persulcatus. In the phylogenetic tree, the cystatin 2b
sequence clustered with the most similar available sequences of R. microplus (Figure 3).
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3.4. Phylogenetic Analysis of Cathepsin L-like Cysteine Proteinase

Cathepsin-L deduced amino acid sequence showed maximum identity (99.40–100%)
with the sequences of R. microplus reported from India. The obtained Cathepsin-L sequence
showed identity between 68.06 and 98.80% with the cathepsin-L sequences of R. annulatus,
R. haemaphysaloides, R. sanguineus, D. variabilis, D. andersoni, H. flava, H. longicornis, and
I. scapularis. In the phylogenetic tree, the cathepsin-L sequence was clustered with the most
similar available sequences of R. microplus and R. annulatus in the GenBank (Figure 4).Vaccines 2022, 10, x FOR PEER REVIEW 9 of 20 
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3.5. Phylogenetic Analysis of Glutathione S-Transferase

The GST deduced amino acid sequence showed maximum identity with the same
sequences of R. microplus from India (100%) and USA (99.55%), and R. annulatus from
Egypt (100%). The obtained GST sequence showed identity between 87.44 and 98.65%
with the GST sequences of R. appendiculatus, R. sanguineus, D. silvarum, D. marginatus,
D. variabilis, Amblyomma variegatum, H. longicornis, and I. scapularis. In the phylogenetic tree,
the GST amino acid sequence was clustered with the most similar available sequences of
linebreak emphR. microplus, and R. annulatus (Figure 5).Vaccines 2022, 10, x FOR PEER REVIEW 10 of 20 
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3.6. Phylogenetic Analysis of Ferritin 1

Ferritin 1 amino acid sequence showed maximum identity with the same sequences
of R. microplus reported from USA and India (100%), and China (99.42%). The obtained
Ferritin 1 sequence showed identity between 85.88 and 96.51% with the ferritin 1 sequences
of R. Haemaphysaloides, R. sanguineus, D. silvarum, D. andersoni, D. variabilis, H. longicornis,
H. flava, H. doenitzi, A. americanum, A. maculatum, I. scapularis, I. ricinus, Ornithodoros moubata,
O. parkeri, and O. coriaceus. In the phylogenetic tree, ferritin 1 was clustered with the most
similar available sequences of R. microplus (Figure 6).Vaccines 2022, 10, x FOR PEER REVIEW 11 of 20 
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3.7. Phylogenetic Analysis of 60S Acidic Ribosomal Protein (P0)

The deduced amino acid sequence of P0 showed maximum identity with the same
sequences of R. microplus from Cuba (100%), R. sanguineus from China (100%) and Cuba
(99.85%), and R. haemaphysaloides from China (99.69%). The obtained P0 sequence showed
identity between 91.85 and 99.37% with the P0 sequences of D. andersoni, D. nitens,
D. silvarum, A. cajennense, H. longicornis, and I. scapularis. In the phylogenetic tree, the
P0 sequence was clustered with the most similar available sequences of R. microplus,
R. sanguineus, and R. haemaphysaloides (Figure 7).Vaccines 2022, 10, x FOR PEER REVIEW 12 of 20 

 

 

 
Figure 7. Phylogenetic tree based on the Neighbor-Joining method for the amino acid sequences of 
tick’s P0 and Ixodes scapularis sequence as an outgroup. The supporting values (1000 bootstraps) are 
indicated for nodes, and the black circle represents the current study sequence. 

3.8. Phylogenetic Analysis of Aquaporin 2 
Aquaporin 2 deduced amino acid sequence showed maximum identity with the same 

sequences of R. microplus from USA (99.66%), and China (98.98%). The obtained aquaporin 
2 sequence showed identity between 58.66 and 90.72% with the aquaporin sequences of 
R. sanguineus, D. variabilis, D. silvarum, D. andersoni, I. scapularis, and H. qinghaiensis. In the 
phylogenetic tree, the aquaporin 2 sequence was clustered with the most similar available 
sequences of R. microplus in the GenBank (Figure 8). 

Figure 7. Phylogenetic tree based on the Neighbor-Joining method for the amino acid sequences of
tick’s P0 and Ixodes scapularis sequence as an outgroup. The supporting values (1000 bootstraps) are
indicated for nodes, and the black circle represents the current study sequence.

3.8. Phylogenetic Analysis of Aquaporin 2

Aquaporin 2 deduced amino acid sequence showed maximum identity with the same
sequences of R. microplus from USA (99.66%), and China (98.98%). The obtained aquaporin
2 sequence showed identity between 58.66 and 90.72% with the aquaporin sequences of
R. sanguineus, D. variabilis, D. silvarum, D. andersoni, I. scapularis, and H. qinghaiensis. In the
phylogenetic tree, the aquaporin 2 sequence was clustered with the most similar available
sequences of R. microplus in the GenBank (Figure 8).Vaccines 2022, 10, x FOR PEER REVIEW 13 of 20 
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3.9. Phylogenetic Analysis of ATAQ

The ATAQ deduced amino acid sequence showed maximum identity with the same
sequences of R. microplus reported from Mexico (97.85%), and R. annulatus from Israel
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(96.69%). The obtained ATAQ sequence showed identity between 70.69 and 94.38% with
the ATAQ sequences of R. decoloratus, R. evertsi, R. appendiculatus, Hyalomma marginatum,
and D. variabilis. In the phylogenetic tree, the ATAQ sequence was clustered with the most
similar available sequences of R. microplus and R. annulatus (Figure 9).Vaccines 2022, 10, x FOR PEER REVIEW 14 of 20 
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3.10. Phylogenetic Analysis of Rm05Uy

The Rm05Uy deduced amino acid sequence showed maximum identity with the same
sequences of R. microplus reported from Uruguay and China (100%), and R. annulatus from
Egypt (100%). The obtained Rm05Uy sequence showed identity between 75.90 and 99.95%
with the sequences of R. sanguineus, D. andersoni, D. silvarum, H. flava, H. longicornis, and
I. scapularis. In the phylogenetic tree, the Rm05Uy sequence was clustered with the most
similar available sequences (Figure 10).Vaccines 2022, 10, x FOR PEER REVIEW 15 of 20 
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3.11. Nucleotide Polymorphism

Cystatin 2b and GST sequences have shown no nucleotide polymorphisms in pairwise
alignment with the homologous sequences reported from India. Six nucleotide polymor-
phisms were found in the cathepsin-L sequence corresponding to three nonsynonymous
polymorphisms (0.6%). The P0 nucleotide sequence showed five nucleotide polymor-
phisms. Four nucleotide polymorphisms in each ferritin 1 and aquaporin 2 sequences were
found. However, a single nonsynonymous polymorphism was found in aquaporin 2 (0.4%).
Nucleotide polymorphisms in the ATAQ sequence were 28, as a result 13 nonsynonymous
polymorphisms were found (1.5%). Two nucleotide polymorphisms were found in Rm05Uy
(Table 2).

Table 2. Identity, nucleotide polymorphisms, and their subsequent nonsynonymous polymorphisms
of Rhipicephalus microplus-derived full-length ORF sequences compared to highly homologous pub-
lished nucleotide sequences (GenBank) from different countries.

Gene Country Accession
Number Identity (%) Polymorphic Nucleotides Nonsynonymous

Polymorphism

Cysteine protease inhibitor
(cystatin 2b) India KM588294 100 - -

Cathepsin L-like cysteine
proteinase (cathepsin-L) India JX502822 99.40 T189C, A528C, A684G, A732G,

T837C, T940A

Ser246Gly,
Trp281Arg,
Val315Asp

Glutathione S-transferase
(GST) India HQ337620 100 - -

Ferritin 1 USA AY277902 99.39 G330A, A396G, T507C, T514C -
60S acidic ribosomal

protein (P0) Cuba KC845304 99.48 C75A, T151C, C195T, (T354C,
A762G -

Aquaporin 2 USA KP406519 99.62 C781A, C873A, C961A, T963A Leu254Ile,

ATAQ Mexico MG437296 98.46

G90A, A177G, G405A, C794A,
C855G, A858G, A1001G, A1131G,

G1137A, G1152A, C1170T,
T1275C, A1284G, C1296A, C1318T,
G1327A, G1415T, C1416T, T1483C,

A1991C, A1562C, A1411C,
G1640A, G1671A, C1695A,
A1701G, T1710A, A1711C

Glu265Ala,
Gln285His,
Ile320Val,

Gln334Arg,
Pro440Ser,
Val443Ile,

Leu473Met,
Cys495byArg,

Glu497Asp,
Asp521Ala,
Gln537His,
Ile567Met,
Ile571Leu,

R. microplus 05 antigen
(Rm05Uy) Uruguay KX611484 99.61 T207C, T319C -

4. Discussion

Tick control is a priority for many countries in tropical and subtropical regions [47].
Their control largely depends on the repeated use of acaricides, and the identification
and characterization of tick immunogenic sequences is necessary [4,15]. A systematic
work on the molecular characterization of full-length open reading frame (ORF) encoding
immunogenic proteins in the R. microplus ticks of Pakistan is not available. For this purpose,
the driven approaches for the characterization of immunogenic sequences and analysis of
their genetic homogeneity are necessary to pre-ensure the future development of anti-tick
vaccines and their subsequent trials.

Studies have suggested the importance of cytochrome C oxidases subunit (cox) sequences in
revealing the intra-species phylogenetic relationship complex of ticks [26,48]. In this study, the
obtained sequences for cox revealed maximum identity with the formerly reported R. microplus
sequence from Pakistan; phylogenetically belongs to clade C, and distantly placed from clade
A of Brazil, Panama, and Cambodia, and clade B of China [26–28]. Screening of R. microplus
for the detection of pathogens such as Babesia, Theleiria, Rickettsia, and Anaplasma species
revealed negative results. It has been shown that the tick-pathogen interaction can influence
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the expression of tick genes and transcriptional shifts [49,50]. Therefore, PCR-based negative
R. microplus were used in the amplification of full-length ORF sequences. Amplifications
of tick-derived protein encoding sequences have been shown in several studies; cysteine
protease inhibitor (cystatin 2b) [7], cathepsin L-like cysteine proteinase (cathepsin-L) [8],
glutathione S-transferase (GST) [9], ferritin 1 [10,11], 60S acidic ribosomal protein (P0) [12],
aquaporin 2 [51], ATAQ [14,21], and R. microplus 05 antigen (Rm05Uy) [15], and their variable
anti-tick vaccine efficacies have been determined. The obtained sequences revealed maximum
identities with the available sequences of R. microplus reported from different regions. The
partial polypeptide P0 protein has been used as an anti-tick vaccine against both R. sanguineus
and R. microplus infestations [12,52]. The reason was due to the highly conserved sequence of
P0 protein among the R. sanguineus, and R. microplus. Cystatin 2b sequence from R. microplus
revealed its evolutionary homogeneity with the sequences of same tick population from
India, China, and Brazil and showed its proximal genetic association with R. haemaphysaloides.
Similar results have been previously obtained [7,53,54], suggesting that cystatin sequences
showed a maximum identity within Rhipicephalus species. The GST and cathepsin-L deduced
amino acid sequences showed genetic resemblance between R. microplus and R. annulatus.
The sequence identity for each R. microplus-derived cathepsin-L and GST with the sequences
of R. annulatus were 99.80% and 100%, respectively. The sequences were highly conserved
that might be the reason of the close association between the two tick species as previously
reported [55–58].

The phylogenetic tree based on ATAQ sequences was similar to the previous
findings [14,21]. Several ATAQ sequences of R. microplus revealed a high identity at the pro-
tein level (97.8–100%) that have been reported from Mexico and phylogenetically clustered
within the same clade [21]. Ferritin 1 and aquaporin 2 deduced amino acid sequences were
highly identical to the homologous sequences of R. microplus reported from India, USA and
China. Ferritin 1 sequences retrieved from various tick isolates revealed that the sequence
was highly conserved within tick genera and clustered together with the same sequences
of their respective Rhipicephalus genera [10,11]. This high degree of intraspecific homology
in ticks can be suitable for tick’s phylogenetic reconstruction [10,59]. Aquaporin 2 sequence
shared the same clade with the aquaporin 2 sequences from USA [13]. This remarkable
similarity among aquaporin 2 sequences in R. microplus supports their conserved homo-
geneity. The Rm05Uy deduced amino acid sequence was clustered with the most similar
available sequence from Uruguay and China, and R. annulatus from Egypt. This analysis
was consistent with the previous report [15]. The phylogenetic analysis uncovered that the
tick’s local isolates were closely related to isolates from different countries with maximum
protein sequence identities reported from India and China. A probable explanation for this
could be the commercial cattle trade between the adjacent countries.

Nonsynonymous polymorphisms in ATAQ, cathepsin-L, and aquaporin 2 sequences
were observed in this study. Nonsynonymous mutations in the immunogenic sequences of
R. microplus populations have been reported in different geographical
locations [17–21,57,60]. Genetic analysis provides evidence of gene function and genetic
variation in ticks, the latter being suggested as a factor in the variable efficacy between tick
species and geographical strains [17]. Evolutionary factors such as adaptation to the local
hosts and environment can significantly change the nucleotide sequences and it is generally
accepted that evolution proceeds toward greater complexity at both the organismal and
genomic levels [61,62]. In Mexico, ATAQ protein sequences revealed a high degree of
conservation between the Mexican R. microplus populations [21]. Similarly, the protein
sequences of two different strains of R. microplus were also identical [15]. Complying with
these results, low genetic variability was observed for the full-length ORF immunogenic
sequences of R. microplus. In contrast, nonsynonymous polymorphisms of cathepsin-L were
high among the R. microplus populations [8]. Identifying the level of genetic polymorphisms
and phylogeny of R. microplus complex from a geographically distinct recognized clade C
is imperative for effective anti-tick vaccine development [63].



Vaccines 2022, 10, 1909 13 of 16

The ultimate aim of antigen screening is to analyze the R. microplus-derived immunogenic
sequences to decipher their hidden/conserved genetic features for an anti-tick vaccine against
R. microplus complex species [21,64]. It is important to obtain genetic information from strains
in different geographical regions to develop effective anti-tick vaccines against infestations
by regional ticks [65,66]. To the best of our knowledge, there is no published report on the
molecular characterization of full-length ORF immunogenic sequences in Pakistan. Thus, the
current study ensured the R. microplus-derived sequences’ identity, phylogenetic association,
and variability with several previously characterized immunogenic sequences and displayed
a guide for the control of the Pakistani R. microplus strain. These sequences have been
previously used as an anti-tick vaccine against different R. microplus strains [7,12,29,52,67],
however, polymorphisms in the antigenic sequences may decrease the anti-tick vaccine efficacy
in different geographical locations [17]. Future studies should aim to increase the current
database of tick-derived full-length ORF immunogenic sequences that can then be evaluated
for the development of an anti-tick vaccine.

5. Conclusions

This is the first report of the R. microplus-derived full-length ORF immunogenic sequences
from Pakistan. Phylogenetic analysis of the deduced protein sequences described a close
resemblance to the corresponding sequences of R. microplus, R. annulatus, R. sanguineus, and
R. haemaphysaloides. The obtained cox sequence revealed the evolutionary assemblage of
R. microplus in clade C, which includes ticks from Myanmar, Malaysia, Thailand, Bangladesh,
and India. Furthermore, low nonsynonymous polymorphisms were found which may be
considered for in anti-tick vaccine development against R. microplus clad C.
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